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ABSTRACT. Accurate knowledge of the telescope’s point-spread function (PSF) is essential for the weak
gravitational lensing measurements that hold great promise for cosmological constraints. For space telescopes,
the PSF may vary with time due to thermal drifts in the telescope structure, and/or due to jitter in the spacecraft
pointing (ground-based telescopes have additional sources of variation). We describe and simulate a procedure for
using the images of the stars in each exposure to determine the misalignment and jitter parameters, and reconstruct
the PSF at any point in that exposure’s field of view. As a case study, the simulation uses the design of the
Supernova Acceleration Probe (SNAP) telescope. Stellar-image data in a typical exposure determines secondary-
mirror positions as precisely as 20 nm. The PSF ellipticities and size, which are the quantities of interest for weak
lensing are determined to 4:0 × 10�4 and 2:2 × 10�4 accuracies, respectively, in each exposure, sufficient to meet
weak-lensing requirements. We show that, for the case of a space telescope, the PSF estimation errors scale inversely
with the square root of the total number of photons collected from all the usable stars in the exposure.

Online material: color figures

1. INTRODUCTION

The accelerated expansion of the universe is one of the most
puzzling astrophysical discoveries of the century. The proposed
explanations are dark energy, modified gravity, and feedback
from density fluctuations. To explore the mystery, a few large
astronomical surveys are underway (Pan-STARRS1, DES2,
ACT3, SPT4) or in planning stages (SNAP,5 DESTINY6, LSST7,
EUCLID8). The sensitivity of these surveys to the expansion of

the universe comes from both cosmological distances and
growth of density perturbations as a function of the cosmic time
or redshift. The probes utilized are Type-Ia supernova, weak
gravitational lensing (WL), baryon acoustic oscillations, galaxy
cluster counting (selected by optical or using Sunyave-Zeldovic
effect), and the integrated Sachs-Wolfe effect (ISW). Among all
these probes, weak lensing is potentially the most rewarding one
if systematics are well under control. The dominating systema-
tics for weak-lensing measurements include galaxy shape-
measurement errors (Huterer et al. 2006; Heymans et al.
2006; Massey et al. 2007; Stabenau et al. 2007; Amara &
Refregier 2007; Kitching et al. 2008), photometric redshift er-
rors (Huterer et al. 2006; Ma et al. 2006; Ma & Bernstein 2008),
uncertainties of the matter power spectrum (Huterer & Takada
2005; Bernstein 2008), galaxy intrinsic alignment (King &
Schneider 2002; King & Schneider 2003; Heymans & Heavens
2003; Hirata & Seljak 2004; King 2006; Mandelbaum et al.
2006; Heymans et al. 2006; Hirata et al. 2007; Bridle & King
2007; Lee & Pen 2008; Joachimi & Schneider 2008), and
higher-order effects such as reduced shear (White 2005;

1For more information on the Panoramic Survey Telescope & Rapid Response
System (Pan-STARRS), see http://pan‑starrs.ifa.hawaii.edu/public.

2 An overview of the Dark Energy Survery (DES) is available at http://www
.darkenergysurvey.org.

3The Atacama Cosmology Telescope (ACT) Project’s Web site is http://www
.physics.princeton.edu/act.

4 See http://pole.uchicago.edu for more information on the South Pole Tele-
scope (SPT).

5 More information on the Supernova Acceleration Probe (SNAP) can be
found at http://snap.lbl.gov.

6More information on the Dark Energy Space Telescope (DESTINY) can be
found at http://www.noao.edu/noao/staff/lauer/destiny.htm.

7For information on the Large Synoptic Survey Telescope (LSST), see http://
www.lsst.org.

8EUCLID represents the merger of DUNE (http://www.dune‑mission.net) and SPACE (Cimatti et al. 2008).
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Dodelson et al. 2006; Shapiro 2008), Born approximation
(Cooray & Hu 2002; Shapiro & Cooray 2006), and source clus-
tering (Bernardeau 1998; Hamana 2001; Schneider et al. 2002).

This paper is concerned with reducing the systematic errors
in galaxy shape measurements. For future weak-lensing sur-
veys, the tolerable rms multiplicative calibration error on WL
shear is about 10�3 (Huterer et al. 2006; Amara & Refregier
2007). Additive errors in galaxy shear should also be held to
<10�3:5. Misestimation of the PSF will propagate into systema-
tic errors in the shear. The size of the PSF must therefore be
determined to better than 1 part in 103 to avoid unacceptable
multiplicative shear error; likewise the PSF ellipticity must
be known to 10�3 or better to avoid unacceptable additive shear
systematic (Paulin-Henriksson et al. 2007).

Unfortunately the PSF of a real telescope changes with time,
as well as with color and field position. Effects that could
change the PSF include thermal expansion of mirrors and sup-
port structures; pointing jitter due to structural vibrations and
tracking errors; for ground-based telescopes there are addition-
ally gravity loading, atmospheric distortions, and wind loading.
Careful engineering of the telescope, mount, and housing can
minimize these effects, but there are limits to what can be
achieved with finite resources. Even for a space telescope it
is prohibitively expensive to guarantee PSF stability to <1 part
in 103. On the other hand, there will be stars in each image to
diagnose the PSF behavior during each exposure. Recall that the
WL analysis requires part-per-thousand knowledge of the PSF at
each location and each exposure, not necessarily that the PSF be
constant to this level. In this work, we study how well the PSF
can be constrained using stellar images, using the proposed
space-based SNAP telescope as a case study.

The outline of the paper is as follows. We present an over-
view of the task we are trying to accomplish in § 2. In § 3, we
provide details of the modeling of the SNAP PSF. We describe
the fitting procedure for the misalignment and jitter parameters
in § 4. The results of the fit are presented in § 5, and we con-
clude in § 6.

2. STELLAR “MORPHOMETRY”

Weak-lensing measurements aim to extract a map of the cos-
mic shear from the coherent distortions in the shapes of many
distant galaxies (Kaiser 1998; Bartelmann & Schneider 2001).
Observed galaxy shapes are distorted by the telescope PSF. To
lowest order, this can be corrected if the PSF across the tele-
scope field of view is known. The PSF can be inferred from
the observed shapes of foreground stars of suitable magnitude.
Because the PSF will drift over time, it is desirable to measure
the PSF across the field of view for every exposure, using the
stars that are interspersed throughout the image along with the
distant galaxies of interest. We refer to this procedure as “stellar
morphometry.”

2.1. Quantities of Interest

The requirements for a weak-lensing survey can be most sim-
ply stated as limits on the tolerable error in the second moments
of the PSF. We will measure the Gaussian-weighted moments
defined as the zeroth moment

M0 ¼
Z

dx dy PSF ðx; yÞW ðx; yÞ; (1)

the higher moments

Mn ¼ 1

M0

Z
dx dy fnðx; yÞ PSF ðx; yÞW ðx; yÞ; (2)

where n ¼ 1, 2… labels the order of the moments. The two first
moments �x and �y correspond to f1ðx; yÞ ¼ x and y, respec-
tively. The three second moments Pxx, Pxy, and Pyy correspond
to f2ðx; yÞ ¼ ðx� �xÞ2, ðx� �xÞðy� �yÞ, and ðy� �yÞ2, respec-
tively. In analogy, we can write down the third moments of
the PSF, Pxxx, Pxxy, Pxyy, and Pyyy. These are calculated under
a weight function which we take to be

W ðx; yÞ ¼ exp

�
�ðx� �xÞ2 þ ðy� �yÞ2

2σ2
mom

�
: (3)

The width of the weighting Gaussian is chosen to be 2 times the
Airy radius,

σmom ¼ 2 × 1:22
λf
D

; (4)

where λ is the wavelength of the incident light, f is the focal
length, and D is the telescope aperture.

We also compute quantities derived from the second mo-
ments. The ellipticities and stellar size are

e1 ¼
Pxx � Pyy

Pxx þ Pyy

; e2 ¼
2Pxy

Pxx þ Pyy

;

σ2⋆ ¼ Pxx þ Pyy

2
:

(5)

These quantities appear in many approaches to weak-lensing
shear measurement (Heymans et al. 2006 and references there-
in). The true PSF of an exposure will depend on the field posi-
tion of the star ðx⋆; y⋆Þ yielding e1ðx⋆; y⋆Þ, e2ðx⋆; y⋆Þ,
σ2⋆ðx⋆; y⋆Þ. Our goal is to produce an accurate model estimate
ê1ðx⋆; y⋆Þ, etc. We will evaluate our success by calculating the
rms residual errors in the ellipticity models,

ðerms
1 Þ2 ≡ 〈½e1ðx⋆; y⋆Þ � ê1ðx⋆; y⋆Þ�2〉; (6)

ðerms
2 Þ2 ≡ 〈½e2ðx⋆; y⋆Þ � ê2ðx⋆; y⋆Þ�2〉; (7)
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and the fractional residual error in the PSF size,

ðσrms⋆ Þ2 ≡ 〈½σ⋆ðx⋆; y⋆Þ � σ̂⋆ðx⋆; y⋆Þ�2〉
〈σ2⋆〉

: (8)

2.2. Parametric Models

If the physical state of the telescope can be described by a
small number of time-variable parameters fpig, then the PSF is
some function PSFðx; yjpi; x⋆; y⋆Þ of focal-plane position, tele-
scope state, and the field position of the star. We note that a great
advantage of space-based observatories for WL work is that the
stability of their environment allows us to engineer a telescope
for which only a small number of degrees of freedom will vary
significantly. For the SNAP telescope, the engineering specifi-
cations are that all optical systems are stable to well below the
WL specification, except for the following:

1. The alignment of the secondary mirror, which may vary
due to imperfect performance of the feedback system that sta-
bilizes the temperature of the mirror support structure;

2. The telescope line of sight (LOS) may vary during an ex-
posure and smear the PSF due to noise and the finite bandwidth
of the attitude control system (ACS) or due to high-frequency
reaction-wheel vibrations that transfer through the structure to
optical elements, particularly the secondary mirror.

In § 3 we describe in detail the model we adopt for these
disturbances.

Ground-based telescopes pose a more difficult challenge for
PSF modeling, because they have a very large number of time-
varying degrees of freedom. Indeed the atmospheric distortions
have infinite degrees of freedom, formally. Our analysis thus can-
not be considered valid for ground-based observatories. Jarvis &
Jain (2004) propose instead that a principal-components analysis
be performed on the ensemble of PSF patterns observed by the
telescope, so that the coefficients of some finite number of prin-
cipal components become the parameters for the PSFmodel. Jain
et al. (2006) discuss how changes in Seidel aberrations would be
manifested as PSF-change patterns, and might serve as a para-
meter set for PSFmodeling. Jarvis et al. (2008) carry out the ana-
lysis and show that the physical model describes a substantial
part of the PSF size and anisotropy over the field of view. The
success of thesemethodswill depend uponhowwell-behaved the
telescope and atmosphere are, particularly whether the optically
significant perturbations are described by a small number of vari-
ables. An alternative approach, applied by Wittman (2005) to
PSF ellipticities induced by the atmosphere, is to determine
by a priori analysis that the disturbance will be below the WL
threshold.

2.3. Simulations

We simulate the following strategy:

1. Locate the stellar images in each exposure.
2. Measure PSF quantities at each star location; in our case,

the second and third Gaussian-weighted moments.
3. Find the PSF parameters fp̂ig that best reproduce the

stellar data.
4. Use the fp̂ig and the PSF model to derive the desired ê1,

etc., at any location in the focal plane.

In the simulation we can then evaluate the rms residual
errors of the PSF model.

In the simple case where the PSF does not depend on the
field position of stars, we can consider this procedure to be, es-
sentially, averaging the measured PSFs (and moments) of the
observed stars. In this case, we expected the error on the
PSF moments to be determined by the (quadrature) sum of
the signal-to-noise (S/N) levels of all the available stars. In par-
ticular, if all the stars are dominated by Poisson noise from
source photons, then S=N ¼ ffiffiffiffiffi

N
p

γ, where Nγ is the total num-
ber of photons collected from all usable stars in the exposure.
We can therefore expect that

erms
1 ≈ erms

2 ≈ ffiffiffi
2

p
σrms⋆ ¼ αN�1=2

γ ; (9)

where α is some coefficient of order unity (α ¼ 1=
ffiffiffi
2

p
for a

Gaussian PSF).
More realistically, the PSF does depend on the field position

of stars. In this case, we are using the PSF parametric model as a
means of interpolating between the stellar positions. If the para-
meters are not too numerous, and cause readily distinguished
PSF patterns on the focal plane, then we expect equation (9)
to continue to hold. Our simulation will show that this is indeed
the case for the SNAP design, and we will aim to estimate the
coefficient α.

Paulin-Henriksson et al. (2007) instead consider the PSF to be
locally constant, and ask how large a region will contain enough
stars to adequately constrain this locally constant PSF. They then
consider this region size to be smallest on which WL observa-
tions can be successful. In reality both the time-varying PSF con-
tamination and theWL signal will have nontrivial angular power
spectra andwe have to compare the bandpowers of each in setting
our specifications. Stabenau et al. (2007) investigate how PSF
time variation will translate into multipole patterns for a
SNAP-like sky-scan strategy. In this paper we will simply calcu-
late the rms residual PSF errors and note that they have charac-
teristic angular scales similar to the telescope field of view.

3. MODELING THE PSF

3.1. Optical Aberrations and Diffraction

We adopt standard scalar diffraction theory to evaluate the
optical contribution to the PSF. The wavefront on the focal plane
fx; yg generated by a point source is
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Uðx; yÞ ¼ C

ZZ
dξdηP ðξ; ηÞ eik·OPDð~ξ;~θÞ e�ikðθxξþθyηÞ eikðxξþyηÞ=f :

(10)

Here~ξ is the coordinate on the entrance pupil with components
ξ and η, C is an uninteresting constant, P ðξ; ηÞ is the entrance
pupil function, k ¼ 2π=λ where λ is the wavelength of the
band-limited optical light used to form the image, and f is
the effective focal length of the telescope optics. OPDð~ξ;~θÞ
is the optical path difference caused by the lens/mirrors system,
which we expand using Zernike polynomials (Noll 1976) as ba-
sis. The second exponential describes the phase differences
caused by the off-axis incident light ray in the direction ~θ
and the third exponential is the phase differences caused by
the different distance light has to travel beyond the lens or mir-
rors and reach the focal plane. The optical point-spread function
is

PSF ð~xÞ ¼ jUðx; yÞj2: (11)

Figure 1 shows the pupil function of SNAP telescope.

3.2. Optical Path Difference (OPD)

The OPD map of the perfectly aligned telescope and the de-
rivatives with respect to misalignment parameters are calculated
using ray tracing through the telescope’s optical system. The
OPD is projected onto a Zernike basis, with results shown in
Table 1.

OPDð~ξ;~θÞ ¼
X
n¼1

�
Cnð~θÞ þ

X
m

DmC
0
mnð~θÞ

�
Znð~ξÞ; (12)

where Zn is the nth Zernike polynomial, Dm is the mth mis-
alignment parameter, Cnð~θÞ is the OPD’s Zernike coefficients
for pristine telescope, and C0

mnð~θÞ is the Zernike coefficients
of ∂OPD

∂Dm
.

In the SNAP telescope design (Lampton 2002; Sholl et al.
2004), the secondary-mirror position is expected to be the only
optical dimension to vary significantly with time due to thermal
drift (Sholl et al. 2005; Stabenau et al. 2007. The secondary
mirror has 5 degrees of freedom (DOF) that include shifts
Dx and Dy in transverse directions, the defocus Dz, plus tilts
around the x axis (Tx) and y axis (Ty).

In practice we find that C0
mnð~θÞ is a very weak function of

field for these parameters, and hence for the current simulation
we take C0

mn to be constants. The pristine-telescope Zernike
coefficients Cnð~θÞ retain field dependence, but the axisymmetry
of telescope design reduces the freedom to the radial direction.

3.3. Charge Diffusion

The optical PSF must be convolved with the charge-diffusion
pattern of the CCD detector. Charge diffusion is modeled as a
Gaussian with fixed charge-diffusion length σd ¼ 4 μm. If the
charge-diffusion length were free to vary, it would be degenerate
with an isotropic telescope jitter (see § 3.4). The PSF after
charge diffusion is

PSFðx; yÞ ¼
Z

dx0dy0PSF0ðx0; y0Þ 1ffiffiffiffiffiffi
2π

p
σd

× exp

�
�ðx� x0Þ2 þ ðy� y0Þ2

2σ2
d

�
; (13)

where PSF0 is the optical PSF. We execute the convolution with
fast Fourier transforms (FFTs).

3.4. Jitter

Guiding errors and mirror vibrations, also known as jitter,
alter the effective PSF of a finite-length exposure. Each expo-
sure hence has a unique PSF map, even if the optics are
otherwise stable. If the observatory is free to rotate on all three
axes, as for a space-borne observatory or an altitude-azimuth
terrestrial telescope, then the effect of jitter varies across the
field of view and is not a simple convolution of the image with
a fixed kernel. Stellar images in the exposure can be used to
infer the full field dependence of the jitter on the PSF. We
demonstrate here that as few as two stars are sufficient to fully
reconstruct the jittered PSFs, as long as the jitter amplitude is
much less than the width of the PSF.

FIG. 1.—Pupil function of SNAP telescope. The outer radius is 1 m and the
inner radius is 0.35 m. The width of the three secondary-mirror supporting struts
is 4 cm. See the electronic edition of the PASP for a color version of this figure.
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3.4.1. Effect of Jitter on the PSF

Assume that the modulation transfer function (MTF; the
Fourier transform of the PSF) at x ¼ ðx; yÞ from the optic axis
is known to be T 0ðkÞ in the absence of telescope jitter. If the
jitter has displaced the stellar image by some amount
Δx ¼ ðΔx;ΔyÞ—which varies in time—then the transfer
function becomes

T ðk; tÞ ¼ T 0ðkÞe�ik½ΔxðtÞ�: (14)

The PSF for stellar images in the integrated exposure is the
time-averaged value

T ðkÞ ¼ 1

P

Z
P

0
dt T ðk; tÞ ¼ T 0ðkÞ〈e�ik½ΔxðtÞ�〉: (15)

If k½Δx� ≪ 1, then the exponential can be approximated by a
Taylor expansion:

T ðkÞ ¼ T 0ðkÞ½1� ikf〈ΔxðtÞ〉g � kT 〈ΔxΔxT 〉k=2�: (16)

The effect of the jitter on the PSF is then fully described by
the mean displacement 〈Δx〉 and by the covariance matrix
CΔx ¼ 〈ΔxΔxT 〉. Further detail of the jitter history is irrele-
vant. The linear term is simply a displacement of the entire
PSF, and the quadratic term describes a convolution of the
jitter-free PSF with a very narrow jitter kernel. With a telescope
of diameterD, focal length f , and wavelength λ, physical optics
forces MTF ¼ 0 for k < 2D=ðλfÞ. Therefore the Taylor expan-
sion is valid if

2DΔx

λf
≪ 1; (17)

in other words the jitter must be much less than the size of the
Airy disk.

3.4.2. Field Dependence of the Jitter MTF

If the observatory axis is displaced by angles
θ ¼ ðθx; θy; θzÞ, i.e., pitch, yaw, and roll, then the displacement
of the image of star i at ðxi; yiÞ is

Δxi ¼ fθx � yiθz; (18)

Δyi ¼ fθy þ xiθz: (19)

If the roll is nonzero, then the image displacement is field
dependent. Now considering the observatory misalignment
(jitter) to be a function of time,

〈ΔxiΔxi〉 ¼ f2〈θxθx〉� 2fyi〈θxθz〉þ y2i 〈θzθz〉; (20)

〈ΔxiΔyi〉 ¼ f2〈θxθy〉þ fxi〈θxθz〉� fyi〈θyθz〉� xiyi〈θzθz〉;

(21)

〈ΔyiΔyi〉 ¼ f2〈θyθy〉þ 2fxi〈θyθz〉þ x2
i 〈θzθz〉: (22)

In the small-jitter limit, therefore, we find that the effect of
the jitter on the PSF at every point in the field of view is fully
described by the six independent elements of the jitter covar-
iance matrix Cθ ¼ 〈θθT 〉. We can write

T ðk; xÞ ¼ T 0ðk; xÞf1� k½CΔxðCθ; xÞ�k=2g: (23)

In practice, therefore, if we have an exposure for which the
jitter-free PSF pattern is well determined, then we can comple-
tely determine the jittered PSF anywhere in the focal-plane by
knowing the elements of Cθ. The jitter covariance matrix could
be determined from perfect knowledge of the PSF of any two
stars in the exposure. If there are a larger number of stars in the
exposure, then the six jitter covariances are highly over deter-
mined, hence they are easily derived for every exposure, even if
there are other degrees of freedom in T 0 that must be determined
from these stars.

If the jitter amplitude is not small, then there can be a much
larger number of moments of the jitter history that are important,
and a finite number of stellar images may not in general recover
full knowledge of the effect of jitter on the PSF over the field.
We will defer consideration of this limit for another paper.

TABLE 1

ZERNIKE COEFFICIENTS OF THE OPD IN NM FOR A PERFECTLY ALIGNED TELESCOPE WITH FIELD LOCATION
10.4 MRAD OFF AXIS Cn AND THE DERIVATIVES C0

mn (SEE EQ. [12])

Zernike
Cn . . . . . . . . . . . .

2
7.75

3
0.00

4
10.87

5
0.00

6
8.43

7
0.00

8
−4.45

9
0.00

10
9.15

11
−0.88

Dx (μm) . . . . . −2.54 0.00 0.14 0.00 0.18 0.00 1.86 0.00 0.00 0.00
Dy (μm) . . . . . . 0.00 −2.55 0.00 −0.18 0.00 1.86 0.00 0.00 0.00 0.00
Dz (μm) . . . . . . −0.08 0.00 −23.68 0.00 0.01 0.00 0.00 0.00 0.00 0.24
Tx (μrad) . . . . . 0.00 1.27 0.00 0.63 0.00 −0.93 0.00 0.00 0.00 0.00
Ty (μrad) . . . . . −1.27 0.00 −0.48 0.00 0.64 0.00 0.93 0.00 0.00 0.00
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4. SIMULATION PROCEDURE

The simulation process is to: assume fiducial PSF parameters
(misalignment and/or jitter); create simulated stellar images
across the instrumented field of view; measure moments of
these images; fit the PSF model to these moments; and finally,
evaluate the quality of the fit.

4.1. Fiducial Model

We analyze a fiducial case in which the secondary mirror is
translated 1 μm and rotated 1 μrad from its correct position.
This would be considered a very large error for the optomecha-
nical system. We have verified that the choice of fiducial model
does not influence the rms residuals to the fit.

When analyzing jitter, we assume an rms motion of 36 mas
in pitch and yaw with 700 mas rms in roll (as expected from
SNAP telescope design). The rms cross-correlation between
axes is taken to be small by comparison. Again, these do not
strongly affect the results.

4.2. Simulated Stars

We use the star counts from the COSMOS HST survey as
representative of high galactic latitude fields. The star counts
in the COSMOS field (Robin et al. 2006) are well fit by (see
Fig. 2)

dn⋆
dm

¼ 18:5 × 100:089m deg�2 mag�1; (24)

where m is stellar magnitude in the F814W band.
If the star is too bright, it would saturate the SNAP CCDs. We

hence conservatively assume that only stars with 19 < m < 23
will be used for morphometry. The bright limit roughly corre-
sponds to 50,000 photons for a 300 s exposure. The faint limit
corresponds to ≈1200 photons per star, which is comparable to
the sky background in the exposure. Fainter stars will contribute
little to the PSF knowledge.

The instrumented SNAP focal-plane area is≈0:7 deg2. This
places approximately 2100 measurable stars on the focal plane,
with a total photon count ofNγ ≈ 2:3 × 107 per 300 s exposure.
This suggests that an ideal morphometry process would yield
erms,

ffiffiffi
2

p
σrms⋆ ∼ 2 × 10�4, well below the required weak-lensing

specification as discussed in § 1.
We generate a sample of 2100 stars with random positions

across the focal plane. The magnitude of the stars is randomly
generated according to the magnitude distribution of equa-
tion (24). The PSF, including optical distortions and charge dif-
fusion, is computed and used to determine the mean number of
photons detected in the CCD pixels. The number of detected
photons per pixel is drawn from a Poisson distribution, and
the quantum efficiency and gain of the SNAP pixels are used
to compute pixel values. Random dark noise of 5 photo-
electrons (as expected in the SNAP CCDs) is added to each
pixel. The PSF moments defined in equations (1) and (2)
and equation (5) are then computed from the pixel values.

4.3. Fitting Process

For each available star in an exposure, we calculate the
second and third moments of a PSF image to which shot noise,
sky noise, and read noise have been added. With the resulting
PSF moments as data, we search for the best fit misalignment
parameters by minimizing χ2

χ2 ¼
XN⋆

i¼1

XNmom

jmom¼1

ðMjmom
i � M̂jmom

i Þ2
σ2
moment

; (25)

where N⋆ is the total number of stars, Nmom is the number of
independent PSF moments per star (Nmom ¼ 3 if only second
moments are used), M is star moment (with noise), M̂ is star
moment calculated from the model (no noise), and σmoment is the
rms of star moments. In general, σmoment depends on star mag-
nitude, filter band, and the position of the star on the focal plane.
We assume a fixed filter band and neglect the (<10%) depen-
dence on position. We produce a lookup table of σmoment versus
source magnitude by Monte-Carlo methods before doing the fit.

The PSF moments depend nonlinearly on misalignment
parameters. As an example, Figure 3 shows the dependence

 800

 900

 1000

 2000

 3000

 18  19  20  21  22  23  24

st
ar
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ou

nt

m

18.4715 x 100.08930 m mag-1deg-2

COSMOS
fit

FIG. 2.—COSMOS survey star magnitude distribution (Robin et al. 2006).
See the electronic edition of the PASP for a color version of this figure.
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of Pxx on the defocus parameter Dz. The model-fitting proce-
dure is hence nonlinear, so slower than a linear χ2 fit.

5. RESULTS

In this section, we show results of simulating and fitting for
secondary-mirror misalignment only, and simulating and fitting
with the jitter parameters jointly. We also show that the inclu-
sion of third moments of the PSFs improves the fit.

5.1. Fit for Secondary Misalignments Only

5.1.1. Using Second Moments of PSFs

We first simulate a single exposure of SNAP, using only the
PSF second moments to constrain the secondary-mirror misa-
lignment. The fiducial misalignment parameters, their fitted va-
lues, and the 1 σ uncertainties are listed in Table 2.Dz is precise

to <10 nm which is well below the achievable mechanical sta-
bility. Hence the morphometric information can greatly improve
knowledge of defocus. The other parameters are as much as 20
times less precise: accuracies of ≈0:2 μm in Dx and Dy seem
quite disappointing, for example.

To better understand this wide range of precisions, we
examine the eigenvectors and eigenvalues of the parameter cov-
ariance matrix, shown in Table 3. The best-constrained eigen-
vector is along theDz direction, i.e., defocus. Two eigenvectors
are ≈80 times more poorly constrained, but this is not hard to
understand. If the secondary mirror were spherical with radius
R, it would have only three degrees of freedom, as misalign-
ments with Dx ¼ �RTy and Dy ¼ �RTx leave the sphere in-
variant. A nonspherical secondary mirror breaks these
degeneracies and results in finite (but poor) constraints on these
eigenvectors.

The “Residual” row in the table gives the projection of the
fitting error onto the eigenvectors. It shows that the fitted para-
meters deviate from the fiducial mostly in the directions that
have weak constraints. All the deviations are at or below
1.6 σ level, which is a sign that the fitter is working properly.

The quantity that matters to weak lensing is the precision of
the PSF knowledge. The apparent poor fit to some of the mis-
alignments reflects the insensitivity of the PSF moments to cer-
tain combinations. This insensitivity also means, however, that
poor knowledge of these eigenvectors has little adverse effect
on our PSF model. We compare the noiseless PSF ellipticities
and size generated using the fitted misalignment parameters
with these generated using fiducial misalignment parameters.
Figure 4 (left panel) shows the distributions of the residual
PSF moments for a realization of a single exposure. We see that
the PSF errors are well below the 10�3 target for all three quan-
tities. The spread in PSF errors reflects the variation across the
focal plane.

5.1.2. Including Higher Moments of PSFs

There is information in the higher moments of the PSF. This
could further constrain the telescope misalignments. As shown
in Table 2, the fitted misalignments are noticeably closer to the
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4.86 ×10-11

4.91 ×10-11

4.96 ×10-11

-1.0 ×10-6 -5.0 ×10-7 0.0 ×100 5.0 ×10-7 1.0 ×10-6

P
xx

 [
m

et
er

2 ]

z-misalignment [meter]
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FIG. 3.—Dependence of PSF moment Pxx on z-misalignment (in meters).
The star is located on the diagonal (i.e., x ¼ y). See the electronic edition of
the PASP for a color version of this figure.

TABLE 2

MISALIGNMENT FITTING RESULTS

Misalignment Fiducial value Fitted value a 1 σ error b fit incl. Third moments c 1 σ error d

Dx (μm) . . . . . 1 0.8542 0.1839 1.0052 0.1494
Dy (μm) . . . . . . −1 −1.3869 0.2020 −1.0719 0.1602
Dz (μm) . . . . . . 1 0.9870 0.0086 1.0005 0.0083
Tx (μrad) . . . . . 1 0.4500 0.3280 0.8104 0.3125
Ty (μrad) . . . . . 1 1.2370 0.3063 0.8549 0.2937

a Fit using second moments of the PSFs.
b 1 σ error of the fit using second moments of the PSFs.
c Fit using both second and third moments of the PSFs.
d 1 σ error of the fit using both second and third moments of the PSFs.
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true values and the error bars are reduced when the observed
PSF second and third moments are used in the misalignment
fit. Figure 4 shows the reduction in PSF ellipticity and size re-
siduals. With the inclusion of third moments in the fit, the re-
duction of the residual moments as shown in Figure 4 are much
more impressive than that of the 1 σ errors shown in Table 2.
This is the manifestation that the contributions to the 1 σ errors
are dominated by the two near-degenerate eigens that have little
or no effect on the residual PSF moments. In the following, we
include third moments in the fit unless stated otherwise.

5.2. Fitting Misalignment and Jitter Parameters Jointly

Table 4 shows the results of fitting secondary misalignment
and jitter parameters jointly. Adding the 6 jitter degrees of free-
dom to the model roughly doubles the uncertainties on the 5
misalignment degrees of freedom. The parameterDz is still very

precise (at 20 nm level). The jitter parameters are determined
without significant degeneracies among each other nor with
the misalignments; this is because these parameters influence
the PSF moments with rather distinct dependences on
field angle.

The residual PSF ellipticities and sizes for one realization of
joint misalignment/jitter fitting are shown in Figure 5.

As mentioned before, the spreads of the residual PSF e1, e2,
and σ⋆ distributions in this single realization are due to field
dependence. Different realizations of the data (star locations
and random noise change) produce different mean and spread
of the residual moments distribution. Figure 6 (left panel) shows
the distributions of erms and σrms⋆ from 50 realizations. We pro-
duce a single measure of the efficacy of the morphometry pro-
cedure by averaging the rms PSF residuals over all focal-plane
positions in many realizations, as per equations (6)–(8). The
mean values (in quadrature) of the distributions in Figure 6

TABLE 3

EIGEN VALUES AND EIGEN VECTORS OF THE MISALIGNMENT

COVARIANCE MATRIX

Eigen 1 Eigen 2 Eigen 3 Eigen 4 Eigen 5

Dx (μm) . . . . . . 0.0661 0.4852 0.7423 0.4573 0.0037
Dy (μm) . . . . . . −0.5022 0.0535 0.4597 −0.7304 −0.0107
Dz (μm) . . . . . . . 0.0033 0.0189 −0.0058 −0.0191 0.9996
Tx (μrad) . . . . . −0.8502 0.1516 −0.2812 0.4185 0.0063
Ty (μrad) . . . . . −0.1438 −0.8593 0.3981 0.2862 0.0245
eigen values
(λi × 106)
. . . . . . . . . . . . . .

0.3781 0.3479 0.0797 0.0758 0.0052

Residual (×106)
. . . . . . . . . . . . . a

0.6180 −0.3789 −0.0370 0.0538 −0.0071

aProjection of the vector that points from the fiducial parameters to the fitted
parameters onto the eigen vectors.

FIG. 4.—Distributions of the residual PSF moments as defined in the text. Left panel: the fit is done using second moments of the PSFs. Right panel: both second and
third moments of the PSFs are used. See the electronic edition of the PASP for a color version of this figure.

TABLE 4

FITTING FOR MISALIGNMENT AND JITTER PARAMETERS

Parameters Fit incl. third moments Fiducial values 1 σ error

Dx (μm) . . . . . . . . . . 0.5367 1 0.3596
Dy (μm) . . . . . . . . . . −0.1932 −1 0.3763
Dz (μm) . . . . . . . . . . 0.9725 1 0.0203
Tx (μrad) . . . . . . . . . 2.6843 1 0.7503
Ty (μrad) . . . . . . . . . 1.9457 1 0.7207
〈θxθx〉 (μrad2) . . . . . 0.0302 0.0300 0.0002
〈θxθy〉 (μrad2) . . . . . 0.0013 0.0010 0.0001
〈θxθz〉 (μrad2) . . . . . 0.0049 0.0010 0.0045
〈θyθy〉 (μrad2) . . . . . 0.0298 0.0300 0.0002
〈θyθz〉 (μrad2) . . . . . −0.0011 0.0010 0.0046
〈θzθz〉 (μrad2) . . . . . 19.5098 20.0000 0.9244
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(left panel) are exactly those. They are labeled by the arrows in
the plot and listed in Table 5 as well. Calculated using equa-
tion (9), the α values are also tabulated in Table 5. Taking
the average value, we find α≈ 1:8. As a result, we have

erms
1 ≈ erms

2 ≈ ffiffiffi
2

p
σrms⋆ ¼ 1:8 N

�1=2
γ : (26)

The ensemble average residuals are consistent with zero; i.e.,
the PSF models are unbiased, to the 2:5 × 10�5 accuracy of
our 50 realizations.

To test our hypothesis that the PSF errors will scale asN�1=2
γ ,

we repeat the simulation using 100 stars instead of the fiducial
2100 stars. The distributions of erms and σrms⋆ are shown in the
right panel of Figure 6. Again, the quadrature means of these
distributions are labeled by the arrows in the plot and listed
in Table 5. We find α≈ 1:7: so the rms residuals do indeed scale
as expected.

From Figure 5 it is clear that part of the residual errors in the
PSF ellipticities are from a shift in the mean across the field of
view, while the rest is from errors that vary across the field of
view. The two different types of PSF modeling errors will pro-
pagate into different angular scales in the WL power spectrum.
For the SNAP simulation, we find that roughly half of the e
modeling variance is in the mean across the field of view.

Because essentially all the residual variance arises from
shot noise in the stars, it will be uncorrelated from exposure
to exposure.

6. CONCLUSION AND DISCUSSION

We set up a framework to fit for the telescope misalignment
and jitter parameters by using stellar images, and we estimate
the accuracies of the inferred PSF ellipticities and size. The
SNAP telescope is used as a case study.

Our simulation of “morphometry” for the SNAP telescope
demonstrates that the ≈2000 well-measured stars in a typical
exposure contain sufficient information to reduce the errors
in the modeled PSF ellipticities and size to 4:0 × 10�4 and
2:2 × 10�4, respectively, giving significant margin to meet

FIG. 5.—Distributions of the residual PSF moments for fit including 5
secondary-mirror misalignment and 6 jitter parameters. Both second and third
moments of the PSF are utilized. See the electronic edition of the PASP for a
color version of this figure.

FIG. 6.—Distributions of erms
1 , erms

2 , and erms� from 50 realizations. Left: 2100 stars are used for each realization. Right: 100 stars are used for each realization. The
arrows point at the quadrature means of the distributions, which are listed in Table 5. Note that the horizontal scales are different in the two panels. See the electronic
edition of the PASP for a color version of this figure.
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the ≈10�3 level needed to reduce weak-lensing systematic
errors below statistical errors of future surveys. For the SNAP
telescope design and focal plane, we find erms ≈ 1:8=

ffiffiffiffiffiffiffi
Nγ

p
and σrms⋆ ≈ 1:1=

ffiffiffiffiffiffiffi
Nγ

p
.

For any wide-field space-based telescope, we expect that the
scaling of the PSF ellipticities and size with the total number of
star photons Nγ is still valid as discussed in § 2.3. The scaling
coefficient α might vary slightly.

PSF estimation error in morphometry will be only part of the
shape-measurement error budget, so this margin is important.
Other potential sources of errors in PSF estimation include
charge transfer inefficiency (CTI), data compression artifacts,
and chromatic PSF dependence that causes galaxies’ PSFs to
differ from stellar PSFs. Shape-measurement errors can also
arise in the deconvolution process even if the PSF is known pre-
cisely (Heymans et al. 2006; Massey et al. 2007). To have a
successful weak-lensing mission, the sum of these errors must
meet the weak-lensing requirement.

We have also assumed that the only time-variable aspects of
the PSF are the secondary-mirror alignment and small pointing
jitter. The SNAP spacecraft is engineered to take advantage of

the extremely stable space environment so that these are the
only relevant degrees of freedom. A ground-based observatory
would suffer in addition the effects of wind, gravity loading, and
seeing, which are complicated to model, potentially involving a
large number of degrees of freedom. We have seen in the SNAP
case that adding 6 jitter degrees of freedom to the PSF model
makes the PSF model errors twice as large as when we fit for
only 5 misalignment parameters, so it seems likely that the PSF
modeling performance will be degraded by larger number of
parameters in the system.
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