
Over the past 60 years, there have been  
major advances in many of the scientific and 
technological inputs into drug research  
and development (R&D). For example, 
combinatorial chemistry increased the 
number of drug-like molecules that could be 
synthesized per chemist per year by perhaps 
800-fold during the 1980s and 1990s1–3,  
and greatly increased the size of chemical  
libraries4. DNA sequencing has become over 
a billion times faster since the first genome 
sequence was determined in the 1970s5–7, 
aiding the identification of new drug targets. 
It now takes at least three orders of magni-
tude fewer man-hours to calculate three-
dimensional protein structure via X-ray 
crystallography than it did 50 years ago8,9, 
and databases of three-dimensional protein 
structure have 300 times more entries than 
they did 25 years ago9 (see the RCSB Protein 
Data Bank database website), facilitating the 
identification of improved lead compounds 
through structure-guided strategies. High-
throughput screening (HTS) has resulted 
in a tenfold reduction in the cost of testing 
compound libraries against protein targets 

since the mid-1990s10. Added to this are 
new inventions (such as the entire field of 
biotechnology, computational drug design 
and screening, and transgenic mice) and 
advances in scientific knowledge (such as  
an understanding of disease mechanisms,  
new drug targets, biomarkers and surrogate 
end points).

There have also been substantial efforts  
to understand and improve the management 
of the commercial R&D process. Experience 
has accumulated on why projects overrun11,  
on the factors that influence financial 
returns on R&D investment12–17, on project 
success18 and R&D portfolio manage-
ment19–22, on how to reduce costs by  
outsourcing, and on what is likely to impress 
or worry the regulatory authorities23.

However, in parallel — as many have 
discussed — R&D efficiency, measured 
simply in terms of the number of new 
drugs brought to market by the global bio-
technology and pharmaceutical industries 
per billion US dollars of R&D spending, 
has declined fairly steadily24. We call this 
trend ‘Eroom’s Law’, in contrast to the more 

familiar Moore’s Law (‘Eroom’s Law’ is 
‘Moore’s Law’ backwards). Moore’s Law is a 
term that was coined to describe the expo-
nential increase in the number of transistors 
that can be placed at a reasonable cost onto 
an integrated circuit. This number doubled 
every 2 years from the 1970s to 2010. The 
term is used more generally for technolo-
gies that improve exponentially over time. 
The data in FIG. 1a show that the number 
of new US Food and Drug Administration 
(FDA)-approved drugs per billion US dol-
lars of R&D spending in the drug industry 
has halved approximately every 9 years since 
1950, in inflation-adjusted terms. Part of the 
contrast between Moore’s Law and Eroom’s 
Law is related to the complexity and limited 
current understanding of biological systems 
versus the relative simplicity and higher  
level of understanding of solid-state  
physics25 but, as discussed below, there  
are other important causes.

Although there are difficulties in making 
like-for-like comparisons in R&D spending  
over very long periods, Eroom’s Law has 
been fairly robust. The number of new 
drugs introduced per year has been broadly 
flat over the period since the 1950s, and 
costs have grown fairly steadily24. The slope 
of the line, over 10-year periods at least, 
does not change substantially (FIG. 1b), and 
assumptions about the delay between R&D 
investment and drug approval do not have a 
substantial influence on the overall pattern 
(FIG. 1c). For more details of the data used for 
FIG. 1, and the major assumptions made,  
see Supplementary information S1 (table).

Eroom’s Law indicates that powerful 
forces have outweighed scientific, technical 
and managerial improvements over the past 
60 years, and/or that some of the improve-
ments have been less ‘improving’ than com-
monly thought. The more positive anyone 
is about the past several decades of progress, 
the more negative they should be about the 
strength of countervailing forces. If someone is 
optimistic about the prospects for R&D today, 
they presumably believe the countervailing 
forces — whatever they are — are starting to 
abate, or that there has been a sudden and 
unprecedented acceleration in scientific, 
technological or managerial progress that will 
soon become visible in new drug approvals.
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Abstract | The past 60 years have seen huge advances in many of the scientific, 
technological and managerial factors that should tend to raise the efficiency of 
commercial drug research and development (R&D). Yet the number of new 
drugs approved per billion US dollars spent on R&D has halved roughly every 
9 years since 1950, falling around 80‑fold in inflation‑adjusted terms. There have 
been many proposed solutions to the problem of declining R&D efficiency. 
However, their apparent lack of impact so far and the contrast between 
improving inputs and declining output in terms of the number of new drugs 
make it sensible to ask whether the underlying problems have been correctly 
diagnosed. Here, we discuss four factors that we consider to be primary causes, 
which we call the ‘better than the Beatles’ problem; the ‘cautious regulator’ 
problem; the ‘throw money at it’ tendency; and the ‘basic research–brute force’ 
bias. Our aim is to provoke a more systematic analysis of the causes of the 
decline in R&D efficiency.
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The magnitude and duration of Eroom’s 
Law also suggests that a lot of the things that 
have been proposed to address the R&D pro-
ductivity problem are likely, at best, to have a 
weak effect. Suppose that we found that it cost 
80 times more in real terms to extract a tonne 
of coal from the ground today than it did 
60 years ago, despite improvements in mining  
machinery and in the ability of geologists 
to find coal deposits. We might expect coal 
industry experts and executives to provide 

explanations along the following lines: “The 
opencast deposits have been exhausted and 
the industry is left with thin seams that are 
a long way below the ground in areas that 
are prone to flooding and collapse.” Given 
this analysis, people could probably agree 
that continued investment would be justified 
by the realistic prospect of either massive 
improvements in mining technology or large 
rises in fuel prices. If neither was likely, it 
would make financial sense to do less digging.

However, readers of much of what has 
been written about R&D productivity in 
the drug industry might be left with the 
impression that Eroom’s Law can simply be 
reversed by strategies such as greater man-
agement attention to factors such as project 
costs and speed of implementation26, by 
reorganizing R&D structures into smaller 
focused units in some cases27 or larger units 
with superior economies of scale in others28, 
by outsourcing to lower-cost countries26,  
by adjusting management metrics and 
introducing R&D ‘performance score-
cards’29, or by somehow making scientists 
more ‘entrepreneurial’30,31. In our view, these 
changes might help at the margins but it 
feels as though most are not addressing  
the core of the productivity problem.

There have been serious attempts to 
describe the countervailing forces or to 
understand which improvements have been 
real and which have been illusory. However, 
such publications have been relatively 
rare. They include: the FDA’s ‘Critical Path 
Initiative’23; a series of prescient papers by 
Horrobin32–34, arguing that bottom-up  
science has been a disappointing distraction;  
an article by Ruffolo35 focused mainly on 
regulatory and organizational barriers;  
a history of the rise and fall of medical inno-
vation in the twentieth century by Le Fanu36; 
an analysis of the organizational challenges 
in biotechnology innovation by Pisano37; 
critiques by Young38 and by Hopkins et al.39, 
of the view that high-affinity binding of a 
single target by a lead compound is the best 
place from which to start the R&D process; 
an analysis by Pammolli et al.19, looking at 
changes in the mix of projects in ‘easy’ versus 
‘difficult’ therapeutic areas; some broad-
ranging work by Munos24; as well as a  
handful of other publications.

There is also a problem of scope. If we 
compare the analyses from the FDA23, 
Garnier27, Horrobin32–34, Ruffolo35, Le Fanu36, 
Pisano37, Young38 and Pammolli et al.19, there 
is limited overlap. In many cases, the differ-
ent sources blame none of the same counter-
vailing forces. This suggests that a more 
integrated explanation is required.

Seeking such an explanation is important 
because Eroom’s Law — if it holds — has 
very unpleasant consequences. Indeed, 
financial markets already appear to believe 
in Eroom’s Law, or something similar to it, 
and the impact is being seen in cost-cutting 
measures implemented by major drug com-
panies. Drug stock prices indicate that inves-
tors expect the financial returns on current 
and future R&D investments to be below 
the cost of capital at an industry level40, and 

Figure 1 | Eroom’s Law in pharmaceutical R&D. a | The number of new drugs approved by the US 
Food and Drug Administration (FDA) per billion US dollars (inflation‑adjusted) spent on research 
and development (R&D) has halved roughly every 9 years. b | The rate of decline in the approval of 
new drugs per billion US dollars spent is fairly similar over different 10‑year periods. c | The pattern 
is robust to different assumptions about average delay between R&D spending and drug approval. 
For details of the data and the main assumptions, see Supplementary information S1 (table) and 
REFS 24,86,87. Note that R&D costs are based on the Pharmaceutical Research and Manufacturers 
of America (PhRMA) Annual Survey 2011 (REF. 86) and REF. 87. PhRMA is a trade association that 
does not include all drug and biotechnology companies, so the PhRMA figure understates R&D 
spending at an industry level. The total industry expenditure since 2004 has been 30–40% higher 
than the PhRMA members’ total expenditure, which formed the basis of this figure. The new drug 
count, however, is the total number of new molecular entities and new biologics (applying the same 
definition as Munos24) approved by the US FDA from all sources, not just PhRMA members. We have 
estimated real‑term R&D cost inflation figures from REFS 24,87. The overall picture seems to be fairly 
robust to the precise details of cost and inflation calculations. Panel a is based on a figure that origi‑
nally appeared in a Bernstein Research report (The Long View — R&D productivity; 30 Sep 2010). 
*Adjusted for inflation. PDUFA, Prescription Drug User Fee Act. 
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would prefer less R&D and higher dividends. 
Investors may well be wrong about this. 
However, they have less reason to be biased 
towards optimism about the likelihood of 
Eroom’s Law being successfully counteracted 
than those who are working in the industry, 
or those who sell consulting services to the 
industry. Shareholders ultimately appoint 
executives and control resource allocation, 
so their perceptions matter. It is likely that 
Pfizer, Merck & Co., AstraZeneca and Eli 
Lilly will be spending less — in nominal 
terms — in 2015 than they did in 2011, partly 
in response to shareholder pressure. Across 
the top ten large pharmaceutical companies, 
it seems that nominal R&D spending will be 
flat until 2015, which represents a decline in 
real terms. More importantly, the combined 
effect of declining real-term R&D spending  
with Eroom’s Law (fewer new drugs per 
billion US dollars of R&D investment over 
time) is that there will be fewer new drugs 
and/or drugs will become inordinately 
expensive. This will threaten the huge  
benefits41,42 that follow from the availability  
of effective and affordable new drugs.

In our view, avoiding such an outcome 
requires a more systematic analysis of  
the factors that underlie Eroom’s Law.  
We think that any serious attempt to explain 
Eroom’s Law should try to address at least 
two things: the progressive nature of the 
decline in the number of new drugs per  
billion US dollars of R&D spending, and the 
scale (~80-fold) of the decline. In this article,  
we make some suggestions. We realize that 
the industry is heterogeneous, so our gen-
eralizations will be wrong in many cases. 
We appreciate the intellectual effort that has 
been made by others on analysing the prob-
lems of R&D productivity. We note that our 
chosen measure of R&D efficiency is based 
on cost per new drug approved. This does 
not account for the huge variation in the 
medical and financial value of new drugs. 
A few breakthrough drugs — for example, 
a highly effective Alzheimer’s disease treat-
ment — could have much greater medical 
and financial value than a larger number of 
new drugs that provide only modest incre-
mental benefits. We also note that the very 
long cycle time for drug R&D means that 
our productivity measure is a lagging  
indicator; perhaps things have improved, 
but the result is not yet visible.

However, with the aim of prompting 
debate and analysis, here we discuss what 
we consider to be the four primary causes 
of Eroom’s Law: the ‘better than the Beatles’ 
problem; the ‘cautious regulator’ problem; 
the ‘throw money at it’ tendency; and the 

‘basic research–brute force’ bias. There may 
also be some contribution from a fifth factor, 
termed ‘the low-hanging fruit’ problem, but 
we consider this to be less important.

Primary causes
The ‘better than the Beatles’ problem. 
Imagine how hard it would be to achieve 
commercial success with new pop songs 
if any new song had to be better than the 
Beatles, if the entire Beatles catalogue was 
available for free, and if people did not  
get bored with old Beatles records.  
We suggest something similar applies to  
the discovery and development of new 
drugs. Yesterday’s blockbuster is today’s 
generic. An ever-improving back catalogue 
of approved medicines increases the com-
plexity of the development process for new 
drugs, and raises the evidential hurdles for 
approval, adoption and reimbursement.  
It deters R&D in some areas, crowds R&D 
activity into hard-to-treat diseases and 
reduces the economic value of as-yet-
undiscovered drugs. The problem is  
progressive and intractable.

Few other industries suffer from this 
problem. In the example of the coal indus-
try noted above, the opencast deposits are 
mined first. However, the coal is burnt, 
which increases the value of the coal that 
is still in the ground. In most intellectual 
property businesses (for example, fashion or 
publishing), people get bored with last year’s 
creations, which maintains demand for 
novelty. Unfortunately for the drug industry, 
doctors are not likely to start prescribing 
branded diabetes drugs because they are 
bored with generic metformin.

Anti-ulcerants — still a very valuable 
therapeutic area in terms of revenues — pro-
vide an example of the shadow that is cast by 
successful drugs. A class of anti-acid agents 
known as potassium-competitive acid block-
ers, such as soraprazan (now discontinued), 
would probably be safe and effective anti-
ulcerants, and 15 years ago they could have 
been blockbusters. The problem today is that 
there are now two classes of highly effective 
and safe anti-ulcer drugs on the market: 
the histamine H2 receptor antagonists (for 
example, generic ranitidine, which is avail-
able over the counter) and the proton pump 
inhibitors (for example, generic esomepra-
zole and several others). Any sensible health-
care system would only pay for patients to 
receive a new branded potassium-competitive 
acid blocker if they fail to respond to a 
cheap generic proton pump inhibitor and/
or H2 receptor antagonist, but such patients 
are a very small proportion of the total 

population. This general problem applies  
in diabetes, hypertension, cholesterol  
management and many other indications.

Pammolli et al.19 have provided a quan-
titative illustration of the ‘better than the 
Beatles’ problem. Their analysis compared 
R&D projects started between 1990 and 
1999 with those started between 2000 and 
2004. Attrition rates rose during the latter  
period. However, the increase could be 
largely explained by a shift in the mix of 
R&D projects from commercially crowded 
therapeutic areas in which historic drug 
approval probabilities were high (for example, 
genitourinary drugs and sex hormones) 
to less crowded areas with lower historical 
approval probabilities (for example, antineo-
plastics and immunomodulatory agents).

There is another related potential cause 
of Eroom’s Law that has frequently been 
put forward, termed the ‘low-hanging fruit’ 
problem, which results from the progressive 
exploitation of drug targets that are more 
technically tractable43. To be clear, the  
‘low-hanging fruit’ problem argues that  
the easy-to-pick fruit has gone, whereas the  
‘better than the Beatles’ problem argues that 
the fruit that has been picked reduces the 
value of the fruit that is left in the tree.

In our opinion, the ‘low-hanging fruit’ 
problem is less important than the ‘better 
than the Beatles’ problem. First, estimates 
of the number of potential drug targets44,45 
versus the number of drugged targets46 sug-
gest that many decades-worth of new targets 
remain if the industry continues to exploit 
four or five new targets each year. It is also 
becoming clear that many drugs may derive 
their therapeutic benefit from interactions 
with multiple proteins rather than a single 
target. These drugs are ‘magic shotguns’ 
rather than ‘magic bullets’47. If this turns out 
to be more generally true, then worrying  
about the ‘low-hanging fruit’ problem would 
be similar to worrying that a shortage of 
notes is threatening the future of music 
composition. In our view, the ‘low-hanging 
fruit’ explanation is sometimes tautological 
as ‘technically easy’ tends to be equated with 
‘already discovered’48. Indeed, investigation 
of the history of drug discovery suggests that 
there was little easy or obvious about some 
of the great discoveries of the 1940s and 
1950s, such as the anti-inflammatory effects 
of corticosteroids, the psychiatric effects of 
imipramine or lithium, or the antibacterial 
properties of penicillin36,49–51.

The ‘cautious regulator’ problem. Progressive 
lowering of the risk tolerance of drug regu-
latory agencies obviously raises the bar for 
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the introduction of new drugs, and could 
substantially increase the associated costs 
of R&D52. Each real or perceived sin by the 
industry, or genuine drug misfortune, leads 
to a tightening of the regulatory ratchet, and 
the ratchet is rarely loosened, even if it seems 
as though this could be achieved without 
causing significant risk to drug safety. For 
example, the Ames test for mutagenicity may 
be a vestigial regulatory requirement; it prob-
ably adds little to drug safety but kills some 
drug candidates. Furthermore, for most of 
the past 60 years large and sophisticated drug 
companies may not have been disappointed 
to see the regulatory ratchet tighten because 
it reduced competition.

It also seems that the concern that drug 
companies could cheat the system in some 
way has led the cautious regulator to apply 
an audit-based approach to regulatory 
documentation, as the more demanding the 
reporting requirements are, the harder it is to 
cheat without leaving some kind of error or 
inconsistency in what is reported. The scale 
of reporting was summarized recently by 
the Chief Scientific Officer of Novo Nordisk 
in the company’s third quarter 2011 results 
conference call with respect to the submis-
sion to the FDA of data on two new insulin 
therapies: “If printed and stacked, the many 
million pages of documentation, with a total 
of 9 million electronic links, [would] exceed 
the height of [the] Empire State Building.”

The impact of the ‘cautious regulator’ 
problem on Eroom’s Law is apparent in  
FIG. 1. First, it shows R&D efficiency dipping  
in the early 1960s following the 1962 
Kefauver Harris Amendment to the Federal 
Food, Drug, and Cosmetic Act, which was 
introduced in the wake of the thalidomide 
drug safety disaster. For the first time, medi-
cines had to demonstrate efficacy, and the 
safety hurdles were also raised. This reduced 
financial returns on R&D for a decade or 
so12,14, before rising drug prices outstripped 
R&D cost inflation and increased financial 
returns in the 1970s15. Interestingly, FIG. 1 also 
shows a rise in R&D efficiency in the mid to 
late 1990s, which is likely to be due to two 
regulatory factors: primarily the clearing of 
a regulatory backlog at the FDA following 
the implementation of the 1992 Prescription 
Drug User Fee Act (PDUFA), but also a small 
contribution from the rapid development 
and approval of several HIV drugs. In the 
case of HIV drugs, organized and politically 
astute lobbying effectively lowered the  
normal regulatory hurdles53.

The ‘cautious regulator’ problem fol-
lows, in part, from the ‘better than the 
Beatles’ problem, as the regulator is more 

risk-tolerant when few good treatment 
options exist; or, put another way, the avail-
ability of safe and effective drugs to treat 
a given disease raises the regulatory bar 
for other drugs for the same indication. 
Although the ‘cautious regulator’ problem 
is tractable in principle, it is hard to see the 
regulatory environment relaxing to any 
great extent. Society may be right to prefer 
a tougher regulator, even if it means more 
costly R&D. Drug safety matters. And 
although the 1950s and 1960s may be viewed 
by some as a golden age in terms of thera-
peutic innovation36,48,54, it seems unlikely 
that the severe adverse outcomes for many 
patients taking part in clinical trials during 
this period36 would be acceptable today.

The ‘throw money at it’ tendency. The 
‘throw money at it’ tendency is the tendency 
to add human resources and other resources 
to R&D, which — until recent years — has 
generally led to a rise in R&D spending 
in major companies, and for the industry 
overall. It is probably due to several factors, 
including good returns on investment in 
R&D for most of the past 60 years, as well as 
a poorly understood and stochastic innova-
tion process that has long pay-off periods.  
In addition, intense competition between 
marketed drugs (where being second or 
third to launch is often worth less than 
being first) provides a rationale for investing 
additional resources to be the first to launch. 
There may also be a bias in large companies 
to equate professional success with the size 
of one’s budget.

Unfortunately for people working in 
R&D today, tackling the ‘throw money  
at it’ tendency looks feasible. Investors and 
many senior executives think that a lot  
of costs can be cut from R&D without  
reducing output substantially. Whether this 
is correct remains to be seen, although if so, 
it may be the single strategy most likely to 
counteract Eroom’s Law in the short term. 
The risk, however, is that the lack of under-
standing of factors affecting return on R&D 
investment that contributed to relatively 
indiscriminate spending during the good 
times could mean that cost cutting is simi-
larly indiscriminate. Costs may go down, 
without resulting in a substantial increase  
in productivity.

The ‘basic research–brute force’ bias. The 
‘basic research–brute force’ bias is the ten-
dency to overestimate the ability of advances 
in basic research (particularly in molecular 
biology) and brute force screening methods  
(embodied in the first few steps of the 

standard discovery and preclinical research 
process) to increase the probability that a 
molecule will be safe and effective in clinical 
trials (FIG. 2). We suspect that this has been 
the intellectual basis for a move away from 
older and perhaps more productive  
methods for identifying drug candidates32–34.  
It should be noted that many of our com-
ments are more relevant to small-molecule 
drugs, although the data used for FIG. 1 also 
include biologics.

FIGURE 2 illustrates the standard model of 
most drug R&D. It is — effectively — a serial 
search, filter and selection process. Scientific 
and technical advances have, superficially 
at least, increased the breadth of the funnel 
(that is, more potential targets have been 
identified, and more drug-like molecules 
have been synthesized). They have improved 
the filtering efficiency by several orders of 
magnitude (for example, HTS versus testing 
in expensive and low-throughput animal 
models). They should also have increased 
the quality of filtering and selection (for 
example, the use of pathway analysis for tar-
get selection, the use of transgenic mice for 
target validation and the use of accumulated 
experience to favour molecules that would 
be likely to have good ADMET (absorption, 
distribution, metabolism, excretion and  
toxicology) characteristics).

The cumulative effect of improvements in 
these early steps should have been a higher 
signal-to-noise ratio among drug candidates 
entering clinical trials; that is, the candidates 
chosen should have had a greater likelihood 
of successfully demonstrating effective-
ness and safety in these trials. This, in turn, 
should have increased R&D efficiency, 
given that most of the costs of new drug 
development are related to the costs of failed 
projects22. Yet the probability that a small-
molecule drug successfully completes clini-
cal trials has remained more or less constant 
for 50 years21, and overall R&D efficiency 
has declined24.

So how can some parts of a process 
improve dramatically, yet important meas-
ures of overall performance remain flat or 
decline? There are several possible explana-
tions, but it seems reasonable to wonder 
whether companies industrialized the wrong 
set of activities34,36,38. At first sight, R&D was 
more efficient several decades ago (FIG. 1), 
when many research activities that are 
today regarded as critical (for example, the 
derivation of genomics-based drug targets 
and HTS) had not been invented, and when 
other activities (for example, clinical science, 
animal-based screens and iterative medicinal 
chemistry) dominated.
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There have been several interesting  
critiques of modern research33,48,55, but here 
we highlight two potential problems. First, 
much of the pharmaceutical industry’s R&D 
is now based on the idea that high-affinity 
binding to a single biological target linked 
to a disease will lead to medical benefit 
in humans39. However, if the causal link 
between single targets and disease states is 
weaker than commonly thought38,56, or if 
drugs rarely act on a single target, one can 
understand why the molecules that have 
been delivered by this research strategy into 
clinical development may not necessarily be 
more likely to succeed than those in earlier 
periods.

Indeed, drug-like small molecules tend 
to bind promiscuously, and this sometimes 
turns out to have an important role in their 
efficacy47,57 as well as their so-called off-
target effects39. Targets are parts of complex 
networks leading to unpredictable effects58, 
and biological systems show a high degree of 
redundancy, which could blunt the effects of 
highly targeted drugs56,57. Perhaps this helps 
to explain why the R&D process was more 
cost-effective several decades ago (FIG. 2), 
when expensive labour-intensive animal 
models — rather than cheap automated 
molecular assays — formed the basis of  
initial drug screening36,49–51,59.

More recent analysis also points to a 
similar conclusion. More first-in-class 
small-molecule drugs approved between 
1999 and 2008 were discovered using 
phenotypic assays than using target-based 
assays60. Drugs approved during this period 
would have been discovered when screening 
activity was dominated by the target-based 
approach, so one might have expected 
more target-based discoveries. Perhaps 

target-based approaches are efficient for  
pursuing validated therapeutic hypotheses 
but are less effective in the search for innova-
tive drugs that have a better chance of  
clearing the ‘better than the Beatles’ barrier.

The second potential problem follows 
from the nature of chemical space and a shift 
from iterative medicinal chemistry coupled 
with parallel assays (pre-1990s) to serial 
filtering that begins with HTS of a static 
compound library against a target. Directed 
iteration — even if each cycle is slow — may 
be a much more efficient way of searching a 
large and high-dimensional chemical space 
than fast HTS of a predefined collection of 
compounds (BOX 1).

As an aside, biologics have had a higher 
success rate than small molecules once 
they leave research and enter clinical trials. 
There was an approximately 32% approval 
rate for biologics versus an approximately 
13% approval rate for small-molecule drugs 
first tested in humans between 1993 and 
2004 (REF. 21). This may not be surprising 
for copies or close analogues of endogenous 
signalling molecules (for example, insulins, 
erythropoietins or growth hormones) or for 
agents that replace dysfunctional proteins 
(for example, clotting factors, lysosomal 
enzymes, and so on). The high rates of 
success in clinical trials of monoclonal 
anti bodies (and related fusion proteins) is 
perhaps more notable61. One might expect 
them to suffer from the same kind of prob-
lems with single-target efficacy as small mol-
ecules (albeit with fewer off-target effects). 
However, they have opened up new sets of 
therapeutic targets, which may suffer less 
from the ‘better than the Beatles’ problem. 
Perhaps their success is also a function of 
their limited target set — either cell surface 

proteins or protein-based extracellular 
signalling molecules. In both cases, the 
chain of causality between target binding 
and therapeutic effect is relatively short. 
Out of 34 monoclonal antibodies or other 
targeted biologics (such as fusion proteins 
or aptamers) that have been approved by 
the FDA, 13 target white blood cell-specific 
antigens (for example, CD20) and are used 
for haematological cancers or immunosup-
pression; three target receptors in the human 
epidermal growth factor receptor family and 
are used in oncology; seven target tumour 
necrosis factor or interleukins and are used 
for immunomodulation in autoimmune 
diseases; and four target vascular endothelial 
growth factor variants and are used in oncol-
ogy or ophthalmology.

In our view, there are several reasons 
why the ‘basic research–brute force’ bias 
has come to dominate drug research. First, 
by the early 1980s there was already a sense 
that the pace of pharmaceutical innovation 
was slowing. The ‘cautious regulator’ prob-
lem was an obvious drag52,54,62. The ‘better 
than the Beatles’ problem was starting to 
emerge, with complaints that new drugs had 
only modest incremental benefit over what 
was already available62. There were concerns 
about the ‘low-hanging fruit’ problem, 
with a growing sense that the industry had 
started to run out of good animal models  
to screen drugs for still poorly treated 
diseases52,62.

Second, the ‘basic research–brute force’ 
bias matched the scientific zeitgeist48, par-
ticularly as the older approaches for early-
stage drug R&D seemed to be yielding less. 
What might be called ‘molecular reduction-
ism’ has become the dominant stream in 
biology in general, and not just in the drug 

Figure 2 | How can some parts of the R&D process improve, yet the 
overall efficiency decline? Dramatic improvements in brute force 
screening methods and basic science should have tended to increase the 
efficiency of the research process (more leads tested against more tar‑
gets, at a lower cost; shown in gold) and raised its quality (better targets 
as disease pathways and mechanisms are understood, better leads that 
avoid old mistakes surrounding ADMET (absorption, distribution, metab‑
olism, excretion and toxicity) characteristics, and so on). This, in turn, 

should have increased the probability that molecules would succeed in 
the clinic (shown in red), which in turn should have increased overall  
efficiency, as research and development (R&D) costs are dominated by 
the cost of failure. However, the probability that a small molecule  
successfully completes clinical trials has remained more or less constant 
for 50 years21, whereas overall R&D efficiency has declined24. One pos‑
sible explanation for this is that much of the industry industrialized and 
‘optimized’ the wrong set of R&D activities.
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industry33,34,55: “Since the 1970s, nearly all 
avenues of biomedical research have led to 
the gene”63. Genetics and molecular biology 
are seen as providing the ‘best’ and most 
fundamental ways of understanding biologi-
cal systems, and subsequently intervening 
in them64. The intellectual challenges of 
reductionism and its necessary synthesis 
(the ‘-omics’) appear to be more attractive to 
many biomedical scientists than the messy 
empiricism of the older approaches.

Third, the ‘basic research–brute force’ 
bias matched the inclination of many com-
mercial managers, management consult-
ants and investors. The old model, based 
on iterative medicinal chemistry, animal-
based screening and clinical science was 
seen as “too dependent on either inefficient 
trench-warfare type of slog or the unpre-
dictable emergence of seemingly capricious 
geniuses like James Black, Paul Janssen, 
Daniel Bovet, Gertrude Elion, or Gerald 
Hitchings”33. Automation, systematization 
and process measurement have worked in 
other industries. Why let a team of chemists 
and biologists go on a trial and error-based 
search of indeterminable duration, when 
one could quickly and efficiently screen mil-
lions of leads against a genomics-derived 
target, and then simply repeat the same 
industrial process for the next target, and 
the next? In the early 1990s, few companies 
thought they could thrive or survive without 
moving towards a drug discovery process 
based on HTS and the products of the 
human genome.

Here, we are reminded of a debate25 about 
improving clinical trial efficiency, triggered 
by an editorial by Andy Grove65, the former  
Chief Executive of Intel — a man with 
personal experience of Moore’s Law. Grove 
noted the “disappointing output” of R&D 
in the drug industry and made suggestions 
to radically change clinical trials by making 
more use of electronic health data65. Some 
biomedical scientists probably find Grove’s 
intervention irritating, given the simplicity 
and predictability of semiconductor physics  
versus “biology’s mysteries”25. However, 
shareholders and taxpayers have been 
persuaded to fund a lot of R&D because 
biomedical scientists (and drug industry 
executives) have told them that — thanks 
to molecular reductionism — it would soon 
become more predictable63, more productive 
and less mysterious.

We think that the ‘basic research–brute 
force’ bias is supported by survivor bias 
among R&D projects. This makes drug  
discovery and development sound more pro-
spectively rational than it really is. Nearly all  

Box 1 | Directions in small-molecule drug discovery

The 1990s saw a major shift in small-molecule drug discovery strategies, from iterative 
low-throughput in vivo screening and medicinal chemistry optimization to target-based 
high-throughput screening (HTS) of large compound libraries. At first sight, the former is slow  
and expensive in terms of the number of compounds that can be tested, whereas the latter is  
fast and cheap59. However, the topography of chemical space and the nature of industrialized 
drug discovery may conspire to make the second approach less productive. The problem is not 
necessarily HTS per se (the pros and cons of which are actively debated79); rather, it may be the 
research processes that new technologies helped to cement.

First, real-world compound libraries for HTS cover infinitesimally small and somewhat 
redundant regions of chemical space, which is vast; it has been suggested that there could be 
between 1026 and 1062 (REFS 80,81) chemotypes that would comply with the Lipinski guidelines  
for oral drugs82, and each chemotype has a large number of potential derivatives. By contrast, a 
typical corporate screening collection for HTS contains around 106 chemical entities and perhaps 
103 chemotypes. Furthermore, mergers have revealed that different companies’ compound 
libraries often substantially overlap. This is not surprising: companies generated their libraries in 
similar ways, as they used clustered sets of molecules from similar historical campaigns; there is  
a limited set of commercially available reagents; and a relatively small number of reactions are 
amenable to high-throughput automated synthesis.

Second, it has proved to be difficult to design systems that reward people for producing ‘good’ 
hits and leads rather than ‘more’ hits and leads. Collections are biased towards developable 
compounds with acceptable ADME (absorption, distribution, metabolism and excretion) 
characteristics. Companies want measurable developability benchmarks. There are few 
immediate prizes for chemical or biological novelty. The pre-selection and pre-design of 
screening collections means that the lead structures are largely foreseen. It provides no easy  
way to jump from local chemical optima to something better.

Third, the process to whittle down a few thousand HTS hits into a couple of qualified leads has 
been dominated by molecules that win on potency measures. Selection is based on serial assays, 
with most molecules failing at each step. There is no practical way to view the full biological 
profile of all hits at an early stage. Hits with merely adequate target potency but with other 
potentially attractive features (such as good ADME, other interesting biological properties, and 
so on) could be thrown away. This further focuses the search process on small parts of screening 
collections. It may even focus the search process on a suboptimal part of the screening collection. 
Recent research suggests that there is a negative correlation between in vitro potency and 
desirable ADME and toxicology83. Given these features of HTS in the real world, we should expect 
different drug companies to produce similar molecules for a given target. We should also expect 
these molecules to reflect local optima within the screening collections, rather than global 
optima from the much larger chemical universe.

Before the 1990s, however, the standard approach for small-molecule drug discovery involved 
synthesizing and screening a relatively small number of compounds. There would be a few tens  
of molecules (often fewer) in active assessment at any one time, and perhaps 1,000 molecules 
synthesized by a team of chemists during a 5-year project. The search usually started with a 
molecule that was known, or suspected, to have promising pharmacology but perhaps with poor 
ADME characteristics: adrenaline led to the development of beta blockers, and histamine lead to 
the development of cimetidine. Phenomenological screening was also used, to a small extent,  
to provide starting points. Each molecule was then assessed in a range of concurrent assays (often 
in vivo59, considering potency, ADME, toxicity, selectivity and so on). Molecules were then modified 
(or discarded) depending on the results of the assays. The cycle was repeated, with the biological 
results being used to establish structure–activity relationships for each assay and thus advance the 
structures of lead compounds through the chemical space until one or two compounds met the 
multiple criteria necessary for progression into clinical trials. Unlike the screening case, after a few 
iterations one had compounds specifically customized to a particular target, with structures that 
would not have been foreseen at the start of the process. This approach prevented trial compounds 
from being confined to minor local optima. It facilitated what Sir James Black called “obliquity”84 — 
the art of looking for one thing and finding something else. It made it less likely that competitors 
had identical drugs. Remarkably, the search for blockbuster drugs using this method was often 
achieved with fewer than 1,000 compounds.

This is a profoundly different search strategy to the one that was industrialized, but one that may 
be more efficient when there is a very large number of items arranged in a high-dimensional space, 
as is the case with drug-like molecules (see Supplementary information S2 (box)). This is because  
it is possible to traverse large regions of a high-dimensional space with a small number of steps85, 
whereas any static, predefined compound library will cover only a tiny part of the chemical space. 
Perhaps this is part of the explanation of the pre-1990s productivity? These kinds of arguments are 
not lost on the drug industry. Efforts are underway to try to combine some of the obvious 
advantages of HTS with the advantages of small teams dedicated to a broader exploration of the 
biological profiles of a set of evolving lead compounds. The idea is to analyse several structure–
activity relationships in parallel (for example, potency at the target, potency at likely toxicity sites, 
potency in cellular assays, in vivo ADME) to direct rapid, sometimes automated, iterative chemistry.
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drugs are sold with a biological story that 
sounds like molecular reductionism and that 
sometimes, but not always, turns out to be 
true: for example, “drug x works by binding  
receptor a, which influences pathway b, 
which adjusts physiological process c,  
which alleviates disease d.” Such stories get 
confused with prediction because we hear 
very little about the vast majority of the 
other projects that were also initiated on the 
basis of high-affinity binding of a plausible 
candidate to a plausible target, and that had 
similarly plausible biological stories until the 
point at which they failed in development  
for unexpected reasons.

It would be interesting to see how well 
prospective estimates of plausibility cor-
related with subsequent attrition. This 
point is illustrated by the anticancer drug 
iniparib. Attendees of the 2010 meeting of 
the American Society of Clinical Oncology 
(ASCO), or readers of the New England 
Journal of Medicine66, could have been 
forgiven for believing that iniparib had a 
spectacular effect on metastatic breast can-
cer in a Phase II trial because it inhibited a 
specific target, poly(ADP-ribose) polymer-
ase 1 (which is involved in DNA repair), 
and therefore potentiated chemotherapy. 
However, the following year, Phase III trial 
results presented at the 2011 ASCO meeting 
indicated that iniparib did not work very 
well in breast cancer67, and it did not seem to 
inhibit poly(ADP-ribose) polymerase 1 very 
much either68.

Fortunately, the ‘basic research–brute 
force’ issue is tractable in several ways. First, 
in a handful of therapeutic areas the research 
process does appear to be delivering better  
systems-level insights, better targets (or 
sets of targets) and better candidate drugs. 
Oncology is the most obvious example.  
It is hard to look at the genesis of drugs like 
crizotinib69, vemurafenib70 or vismodegib71 
and think that one is simply looking at ran-
dom survivors. Furthermore, in oncology 
the regulator is less cautious and the back 
catalogue of approved drugs is far from 
‘Beatle-esque’. One or two other disease areas 
with simple genetics may perhaps resemble 
oncology. Second, more emphasis could be 
put on iterative approaches, on animal-based 
screening or even on early proof of clinical 
efficacy in humans, and less on the predic-
tive power of high-affinity binding to the 
target of a molecule from a static library. 
Novartis is one company that is emphasizing 
proof-of-concept trials for drugs in rare  
diseases for which there is a high unmet 
need and a compelling match between the 
drug’s mode of action and the disease.  

Only if there is success here does the company 
invest in more expensive trials in more com-
mon diseases in which the mode of action 
may be more speculative, or in which the 
risk–benefit profile may be less clear. Third, 
in some therapeutic areas people could just 
stop believing in the current predictive ability  
of ‘basic research–brute force’ screening 
approaches, and resist the temptation to put 
molecules into clinical trials without having 
more compelling evidence of the validity of 
the underlying therapeutic hypothesis. 

There is, of course, no way of going 
back in time to see how well more recent 
R&D approaches would have worked in the 
1940s and 1950s. It is possible that research 
has become much better at delivering the 
right molecules into the clinic but that the 
improvements have been swamped by the 
‘better than the Beatles’ problem, the ‘low-
hanging fruit’ problem and the ‘cautious 
regulator’ problem.

Ironically however, if the industry really 
has been doing the right things, the ultimate 
prognosis may be bleaker. One can think of 
the opportunities for R&D in terms of a Venn 
diagram: as science and technology improve, 
some sets grow (for example, the set of drug-
gable targets, the set of drug-like molecules 
and the set of drugged targets), whereas other 
sets shrink (for example, the set of economi-
cally exploitable and still untreated diseases, 
or the set of acceptable off-target effects). 
It is obvious that R&D productivity could 
decline despite improvements in the inputs if 
the intersection that contained commercially 
attractive and approvable drug candidates 
shrunk. This idea is illustrated in FIG. 3, in 
which the notional set of validated targets 
grows between 1970 and 2010, but it does 
not grow fast enough to offset the growth in 
the set of targets that would either worry a 
cautious regulator or fail the ‘better than the 
Beatles’ test.

Finally, we note that it would be easier to 
improve the signal-to-noise ratio of drugs 
that enter clinical trials if: first, there was 
a detailed understanding of why drugs fail 
in the clinic; second, this led to the discov-
ery of a small number of common failure 
modes; and third, this knowledge could be 
used to change the early stages of the R&D 
process. If it is impractical to carry out 
retro spective analyses on the precise molec-
ular mechanisms of clinical trial failure, or if 
such retrospective analyses show that trials 
fail for many rare and idiosyncratic reasons, 
or if cycle times are so long that the lessons 
are obsolete by the time they are learned, 
then incremental improvement will be  
more difficult. Both the regulators23 and  

the industry18 are interested in the analysis 
of failure but it receives less scrutiny than 
one might expect given its dominant role in 
the costs of R&D.

Secondary symptoms
The four proposed primary causes of 
Eroom’s Law discussed above have given rise 
to several ‘symptoms’ that tend to further 
increase costs, particularly the costs of clini-
cal development. Some of these symptoms 
are highlighted below.

The narrow clinical search problem. The 
narrow clinical search problem is the shift 
from an approach that looked broadly for 
therapeutic potential in biologically active 
agents to one that seeks precise effects from 
molecules designed with a single drug 
target in mind. In the 1950s and 1960s, 
initial screening was typically performed in 
animals, not in vitro or in silico, and drug 
candidates were given in early stages of the 
development process to a range of physi-
cians. Discovery involved, to an extent, the 
ability of physicians to spot patterns through 
careful clinical observation, especially in 
therapeutic areas in which symptomatic 
improvements are readily observable, such 
as psychiatry36,49–51. This is sometimes dis-
missed as serendipity but the approach made 
it likely that new therapeutic effects would 
be detected. Even recently, it appears that 
many — perhaps most — new therapeutic 
uses of drugs have been discovered by moti-
vated and observant clinicians working with 
patients in the real world72. Some drug com-
panies, particularly smaller and mid-sized 
firms, recognize this opportunity and are 
active repositioners of existing drugs.

However, the ‘cautious regulator’ prob-
lem and the ‘basic research–brute force’ 
bias have pushed most of the drug industry 
towards a narrow clinical search strategy. 
If a drug has an effect but this is not the 
precise effect that the trial designers antici-
pated, then the trial fails. Opportunities 
for serendipity are actively engineered out 
of the system. Perhaps it is too risky to 
let bright doctors with large numbers of 
patients make broad clinical observations, 
or to let creative scientists rummage around 
in rich clinical data sets, in case they find 
something unexpected, which has to be 
explained to the cautious regulator who 
then kills the project. Modern multicentre 
trials tend to spread the patients so thinly 
that a doctor who did want to look for pat-
terns might miss them. In Phase II trials 
— perhaps the best opportunity to spot new 
things — the average number of patients 
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per multicentre trial site is now very small: 
between five and ten patients in oncology, 
central nervous system and respiratory  
disease trials73.

The big clinical trial problem. The first 
randomized controlled trial, published in 
1948, recruited 109 patients and randomized 
107 of them74. Between 1987 and 2001, the 
number of patients per pivotal trial for anti-
hypertensive agents rose from around 200 to 
around 450 (REF. 75). Between 1993 and 2006, 
the average number of patients across the 
pivotal trials for a new oral antidiabetic drug 
rose from around 900 to over 4,000 (REF. 76). 
The first pivotal trial for Merck’s simvastatin 
(a cholesterol-lowering agent), published 
in 1994, recruited around 4,400 patients77. 
A pivotal trial for Merck’s anacetrapib, an 
investigational cholesterol-modulating agent 
intended to be used on top of drugs like 
simvastatin, is currently recruiting around 
30,000 patients.

This expansion is a consequence of sev-
eral factors. First, the ‘better than the Beatles’ 
problem increases trial size. Everything 
else being equal, clinical trial size should be 
inversely proportional to the square of the 
effect size. If the effect size halves, the trial 
has to recruit four times as many patients to 
have the same statistical power. The problem 
is that treatment effects on top of an already 
effective treatment are usually smaller 
than treatment effects versus placebo. 
Furthermore, Phase III trials have become a 
messy mixture of science, regulation, public 
relations and marketing. Trying to satisfy 
these multiple constraints tends to inflate 
their size and cost.

The best clinical trial to show efficacy 
would be something relatively small in a 
homogeneous patient sample recruited from 
as few centres as possible — the medical 
equivalent of a well-controlled experiment. 
But this tends to make the cautious regulator 
uneasy given variation in practice patterns 
and patients. What about rare side effects (the 
FDA has recently required post-marketing 
trials for long-acting bronchodilators in 
around 53,000 patients)? Small trials also 
make for bad marketing and, in the world 
of evidence-based medicine, poor market 
access. It is better to involve the senior  
doctors at the major centres. The number of 
principal investigators per drug in clinical  
trials has doubled over the past decade73.  
The consequence of this is multicentre  
trials that add noise and heterogeneity, and 
are therefore bigger and more expensive.

The multiple clinical trial problem. The 
‘better than the Beatles’ problem has 
increased the complexity of medical practice.  
In some areas, where once there were only 
one or two treatment options, there is now 
a rich back catalogue. For example, the 
treatment of patients with type 2 diabetes 
was once a choice of insulin or diet and 
exercise, but can now involve a combination 
of drugs from around ten different drug 
classes: biguanides, thiazolidinediones, sul-
fonylureas, meglitinides, alpha-glucosidase 
inhibitors, dipeptidyl peptidase 4 inhibitors, 
glucagon-like peptide 1 analogues, amylin 
analogues, long-acting and short-acting 
insulin analogues, as well as various human 
insulins and insulin mixes. Treatment for 
patients with colon cancer was once a choice 

between surgical resection or palliative 
care, but now the National Comprehensive 
Cancer Network’s colon cancer treatment 
guidelines contain up to 100 pages of 
detailed treatment algorithms.

The cautious regulator is less prepared to 
assume that the safety and efficacy of new 
drugs can be generalized across such hetero-
geneous and fragmented patient popula-
tions. Cost-sensitive health-care funders are 
also wary. This means narrower indications 
and more clinical trials per drug. The first 
long-acting insulin analogue, glargine, was 
approved by the FDA in 1999 following three 
pivotal Phase III trials. The newest long-
acting insulin analogue, degludec, was filed 
for regulatory approval in 2011 following 12 
pivotal trials (and, as mentioned above, an 
Empire State Building’s worth of documen-
tation). Some successful drugs in complex 
therapeutic areas appear to demand, over 
their life cycle, dozens of Phase III trials78.

The long cycle time problem. In the 1950s 
and 1960s, cycle times were remarkably 
short by modern standards. The regula-
tor was less cautious and there was less 
molecular reductionism before agents were 
screened for efficacy in animal models and 
in patients. This sped up innovation. The 
first antidepressant, imipramine, was synthe-
sized in around 1951. It was screened almost 
immediately in rats, and tested personally by 
a few scientists at the drug company Geigy51. 
It was then tested without much success in 
various patient groups in 1952, tested again 
in 1953, found to be problematic in patients 
with psychosis in 1954 and tried yet again 
in 1955 before it was identified as an anti-
depressant in 1956. It completed preclinical 
development and had not one but three clin-
ical cycles within 5 or 6 years. In 2005–2006, 
the typical period of time in clinical develop-
ment for a new drug was over 9 years21.  
The biggest increase in development times 
came between the 1960s and the 1980s21.

An idea: the CDDO
This article is intended to provoke further 
analysis of the forces that have counter-
vailed scientific, technical and managerial 
improvements over the past 60 years. We 
have avoided cures, partly because the ratio 
of published cures to diagnoses is already 
too high. We do, however, have one idea, 
which might also be viewed as a thought 
experiment.

We suggest that all large drug companies 
introduce a new board level role, which we 
call the Chief Dead Drug Officer (CDDO). 
This role would be focused on drug failure 

Figure 3 | Venn diagram illustrating hypothetical headwinds to R&D efficiency. Research and 
development (R&D) efficiency could decline if scientific, technical and managerial improvements 
are offset by other factors. For example, R&D efficiency could be limited by the supply of validated 
targets that could be drugged without failing the ‘cautious regulator’ test and/or the ‘better than 
the Beatles’ test. In this hypothetical illustration, the increase in the number of validated targets 
between 1970 and 2010 is outweighed by increasing regulatory caution and an improving catalogue 
of approved drugs.
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at all stages of R&D, and the CDDO 
would have a fixed time — for example, 18 
months — from appointment to compose 
a detailed report that aims to explain the 
causes of Eroom’s Law. This report would 
be submitted to the board of the company, 
included in the company’s annual report to 
shareholders, and would also be submitted 
for publication in a scientific journal and 
sent to organizations such as the FDA 
and the US National Institutes of Health. 
The remuneration for the role would be 
structured in such a way as to provide a 
strong incentive to provide an accurate 
forecast of the future R&D productivity 
of the company and the industry overall. 
For example, perhaps the salary could be 
relatively modest, but the CDDO could 
be eligible for an enormous bonus if their 
projections after a 10-year period are no 
more than 10% too optimistic or no more 
than 30% too pessimistic.

We like the idea for several reasons. 
First, the CDDO has no incentive to be 
irrationally optimistic. Second, R&D costs 
are dominated by the cost of failure73.  
Most molecules fail. Most research scientists 
spend most of their time on products that 
fail. It seems fitting that someone on the 
board should focus on the products that 
consume most of the R&D organization’s 
time, energy and money. Third, an expertise 
in drug failure should qualify the CDDO to 
produce a good explanation of Eroom’s Law.

The CDDO’s report should aim to explain 
the scale of the change in productivity.  
It should set out the major factors responsible 
for the progressive decline, and rank them 
in order of importance. It should consider 
how the relative importance of these factors 
has changed over time. Perhaps changes at 
the FDA dominated from 1960 to 1970, but 
something else dominates now? The analysis 
should compare different therapeutic areas. 
It should assess the extent to which the 
different factors are tractable. There should 
be some effort to quantify the ‘better than 
the Beatles’ problem and the ‘low-hanging 
fruit’ problem, as well as the potential value 
of underexploited drug targets. Attention 
should be given to the regulatory ratchet. 
Which requirements are most costly 
and least valuable? Which requirements 
might the regulator be persuaded to drop? 
What proportion of R&D cost is a direct 
consequence of the ‘throw money at it’ 
tendency? In which therapeutic areas are 
molecular reductionism and brute force 
screening methods a distraction, and in 
which are they genuinely helpful? What 
explains the difference between these 

therapeutic areas? Perhaps the CDDO 
could quantify their analysis with a series 
of Venn diagrams like those in FIG. 3, to 
identify which sets and intersections have 
grown, and by how much, and which sets 
and intersections have shrunk. There should 
also be an attempt to measure the veracity 
of previous diagnostic and forecasting 
exercises. What has been the accuracy of 
internal forecasts on drug approvability and 
commercial success? Has this changed over 
time? What have been the most common 
kinds of error?

If the CDDOs provide a good explanation 
that is consistent with the idea that the 
countervailing forces will abate, or will be 
overcome, then all is well and good. If the 
explanation is unconvincing, or identifies 
forces that appear to be intractable, then 
the problems are obvious. At least it would 
advance the debate on how to balance the 
property rights of shareholders and the 
financial responsibilities of company boards 
with the wider benefits of safe, effective and 
affordable new drugs.

The prognosis for Eroom’s Law
Just as we wanted to avoid proposing cures, 
we do not want to say too much about the 
prognosis for Eroom’s Law. However,  
it might appear strange if we said nothing.

Despite the durability of the trend in 
FIG. 1, we would be surprised if Eroom’s 
Law holds at an industry level over the next 
5–7 years. Our view follows from two some-
what mechanical factors, in addition to one 
more interesting reason.

Turning to the first of the mechanical  
factors, the amount spent on R&D is not 
going to increase. The ‘throw money at it’ 
tendency is being tackled by most compa-
nies, with varying degrees of intensity.  
The second mechanical factor is the cumber-
some biosimilar approval pathway that is 
emerging in the United States. Every aspect 
of the biosimilar production process can be 
scrutinized by the originator’s lawyers, and 
this raises the prospect of endless blocking  
litigation. Consequently, developers of  
biosimilar products anticipate to get at least 
some of these products approved via the 
standard new biologics approval pathway 
(the FDA’s biologics license application 
(BLA) process). These products will be 
approved as though they were novel agents, 
so they will inflate the number of novel 
approvals at very low R&D costs.

Turning to the interesting reason, we 
suspect that the signal-to-noise ratio may 
be improving among the compounds being 
developed for oncology indications. One or 

two other therapeutic areas may be similar 
in this respect. Perhaps there are hints of 
this in the FDA’s new drug approvals in 
2011. These totalled 30 overall, the most 
since 2004, although Munos24 has shown 
that the distribution of new drugs approved 
by the FDA per year resembles the output 
of a Poisson process, so we do not want to 
over-interpret one good year (if new drug 
approvals did follow a Poisson process with 
a mean number of 26 from 1980 to 2010, 
we would expect 30 drugs to be approved 
by chance alone around once every 5 years). 
Looking in more depth at the nature of 
the 30 new drugs, eight were anticancer 
agents (brentuximab vedotin, vandetanib, 
crizotinib, ipilimumab, asparaginase, vemu-
rafenib, ruxolitinib and abiraterone acetate). 
A focus on rare and poorly treated diseases 
is also visible in the 2011 total; 11 of the  
30 new drugs were orphan drugs, and  
the orphan drugs included seven of the 
eight new anticancer agents. Orphan drugs 
are less prone to many of the factors dis-
cussed above, including the ‘better than the 
Beatles’ problem, the ‘cautious regulator’ 
problem and the big clinical trial problem.

Flat to declining R&D costs, as well as a 
bolus of oncology drugs, more orphan drugs 
and ‘biosimilars as BLAs’, might put an end 
to Eroom’s Law at an industry level. Whether 
this improves things enough to provide 
decent financial returns on the industry’s 
R&D investment is a different question. 
Financial markets don’t think so. Industry 
executives do. It would be interesting to see 
what CDDOs think.
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