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Abstract—It is well known that a packet loss in 802.11 can
happen either due to collision or an insufficiently strong signal.
However, discerning the exact cause of a packet loss, once it
occurs, is known to be quite difficult. In this paper we take
a fresh look at this problem of wireless packet loss diagnosis
for 802.11-based communication and propose a promising tech-
nique called COLLIE. COLLIE performs loss diagnosis by using
newly designed metrics that examine error patterns within a
physical-layer symbol in order to expose statistical differences
between collision and weak signal based losses. We implement
COLLIE through custom driver-level modifications in Linux and
evaluate its performance experimentally. Our results demonstrate
that it has an accuracy ranging between 60-95% while allowing
a false positive rate of upto 2%. We also demonstrate the use
of COLLIE in subsequent link adaptations in both static and
mobile wireless usage scenarios through measurements on regular
laptops and the Netgear SPH101 Voice-over-WiFi phone. In these
experiments, COLLIE led to throughput improvements of 20-60%
and reduced retransmission related costs by 40% depending upon
the channel conditions.

I. INTRODUCTION

Carrier-Sense Multiple Access or CSMA which evolved

from the slotted-Aloha protocol in the early 1970s, has become

the de-facto mechanism for implementing distributed access

to shared communication medium. It is commonly used by

the Ethernet class of link technologies for both wired (802.3)

and wireless (802.11) media. An important facet to the proper

implementation of the CSMA method is being able to detect

concurrent access of the media by two or more entities that

usually leads to a collision.

In the case of a wired Ethernet, transmitting stations con-

tinue to listen for incoming signals (collisions) and emit a

jamming signal to notify all other stations if a collision is

detected[1]. This provides accurate and timely feedback to the

CSMA protocol which triggers a backoff in order to resolve

the concurrent access. For wireless media, such detection is

hard to realize due to the fact that the strongest signal (or

the closest source), always dominates the receiver circuity.

Thus, a receiver close to the transmitter (or possibly co-located

with it) would not be able to receive any other concurrent

transmissions thereby being unable to detect collisions. As a

result 802.11 implements CSMA with Collision Avoidance :

the receipt of a data packet is confirmed through an explicit

acknowledgement (ack) from the receiver; the lack of which

upon timeout gives an indirect indication of a collision.

A packet loss could also be due to weak signal – that

is, the signal at the receiver was insufficient given the data-

rate that the packet was modulated at. This can happen

frequently as aggressive data-rate adaptation algorithms (such

as SampleRate [2]) attempt to operate a wireless link at the

highest rate possible in order to maximize throughput and

overall system capacity. Attributing the correct cause for a

packet loss is important for wireless media, as they trigger

different choice for link parameters and thus affect the overall

performance of the wireless link. We call this problem of

determining the cause of a packet loss to collision versus weak

signal, as loss diagnosis.

Loss diagnosis in 802.11 can be challenging since by design,

the receiver provides binary (i.e. whether the packet was

correctly received or was lost) feedback on the reception

properties of a packet. Suppose, for the purposes of our

study, we had a receiver that could provide detailed diagnostic

information on the reception properties of a packet. Then,

could we do better than the current mechanisms used in

802.11? More systematically, we pose the following question

in this paper : By analyzing the bit-level error patterns in

received data and other physical layer metrics (e.g. at the

symbol-level) can we determine the cause of a packet loss

between collision and weak signal? Further, can we do this

based on a single (or a few) packet loss(es) in real-time?

Implications of loss diagnosis: Determining the cause of a

packet loss is significant as this dictates the corresponding

action to be taken at the link layer – for collisions, the

transmitting station would perform an exponential backoff,

while for weak signal the rate-adaptation algorithm would be

invoked. Figure 1 illustrates what must be ideally done in

the event of a packet loss. Depending on the specific reason

for packet loss, different actions should be taken at the link

layer, each corresponding to adjusting different transmission

parameters of the wireless interface as follows:

• Collision: In case of a collision related loss, the Con-

gestion Window (CW) parameter should be double as

determined by the Binary-Exponential Backoff (BEB)

algorithm used in 802.11.

• Weak signal: For packet loss due to a weak signal, adap-

tation of data-rate and transmit power parameters must

be performed as dictated by a specific data-rate/power

adaptation algorithm.

Unfortunately the inability to determine the cause of a

packet loss in real-time, has forced a rather conservative design

for 802.11 – to start with, the cause is ‘blindly’ attributed to

collision (thereby invoking exponential backoff) for a certain

fixed number of re-transmission attempts. Further, continued
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Fig. 1. What link parameters to adapt and how depends on the cause for a
packet loss.

failure of the re-transmissions is taken as an indication of

weak signal thereby triggering rate-adaptation. For example,

on experiencing a packet loss the transmitting station doubles

the CW parameter using the BEB algorithm performs a re-

transmission of the packet after appropriate backoffs (given by

the new CW). If a certain number of re-transmissions fail, as

determined by the tunable Short/Long Retry Count parameters,

the station then decides to attribute the cause for packet loss to

weak signal, thereby triggering a rate/transmit power change

by using appropriate rate adaptation algorithms such as Auto-

rate Fallback (ARF) [3] or SampleRate.

Such a biased approach of assuming collision as the default

cause for packet loss works well for the dominant laptop-

based usage scenarios where a user is static most of time

while using the network. However, such usage patterns are

increasingly changing [4] [5] as certain emerging class of

applications such Voice or Video over WiFi allow a user to

be mobile while communicating with network. This creates

new scenarios where constant adaptation of link parameters

becomes necessary in order to operate the link at the ‘best’

setting. In such high mobility usage scenarios, packet losses

are more likely to occur due overly optimistic settings for data-

rate/transmit power parameters rather than due to collision.

Therefore, the biased approach used by 802.11 could incur

severe performance penalties by incorrectly attributing initial

packet losses to collision.

As we move to a diverse class of applications and usage

scenarios for 802.11, it is becoming increasingly important

to be able to diagnose the cause of a packet loss at the link

layer and trigger the correct method of adaptation in real-

time. Attempts to address this problem in an indirect manner,

have been observed in the design of recent approaches for

rate-adaptation such as RRAA [6]. In RRAA, the station

does not immediately conclude that a packet loss is due to

collision or weak signal. In particular, the station performs an

‘RTS test’ to identify whether a certain packet loss was due

to a hidden terminal, and if so, adaptively enables the RTS

option to guard against future possibility of collisions from

such hidden terminals. (CARA [7] also uses this approach to

handle a slightly different problem.) However, the philosophy

employed in RRAA and also mimicked in 802.11 is to conduct

active tests or experiments (by retransmitting or sending an

RRTS) to estimate collision probabilities. Being indirect, these

approaches require multiple transmissions and observations to

discern the channel conditions, thereby taking a long time to

converge to the correct transmission parameters. In contrast,

we employ a direct approach; we immediately determine

the cause of a packet loss without requiring any additional

transmissions from the wireless client, but by conducting

an empirical post-factum analysis of the explicit feedback

obtained from the receiver.

A. Key Contributions

The following are the major contributions of this work.

• Mechanism for diagnosing wireless packet losses: In

this paper, we present the first empirical study based on failure

bit patterns of received data for loss diagnosis in 802.11,

specifically between collision and a weak signal. The key

component of our design is the Collision Inferencing Engine

- COLLIE
1. COLLIE immediately determines the cause of a

packet loss without requiring any additional transmission from

the wireless client, but by using explicit feedback from the

receiver. COLLIE performs intelligent analysis on received data

through a combination of various metrics such as bit-level

and symbol-level error patterns and received signal strength.

Our design consists of two components: (i) algorithms which

separate the cases of collision from weak signal through

empirical analysis; (ii) a protocol which capitalizes on the

judgement from the algorithms by aptly adjusting the correct

link-level parameters for 802.11 (backoff for collision versus

data-rate for signal). This results in significant throughput and

capacity improvements for high mobility usage scenarios.

• Design of ’symbol level’ metrics to study wireless

errors: Through COLLIE, we explore new metrics that study

error properties at the level of a physical layer symbol.

For example, in Orthogonal Frequency Division Multiplexing

(OFDM) employed by 802.11a/g standards, a symbol refers

to the collection of bits modulated in single unit of time syn-

chronously across 48 sub-carriers which constitute a channel.

We find that error patterns appear differently for collision

versus weak signal when isolated to within a single symbol.

We explore the design and realization of these new metrics

such as Symbol Error Rate (SER), Error Per Symbol (EPS)

further in Section II. We believe that these metrics could

be employed in other areas such as when estimating link

bandwidth, quality or capacity.

• Demonstrating applications of COLLIE by enhancing

existing link adaptation mechanisms: Mechanisms proposed

in COLLIE can be used to enhance existing link adaptation

mechanisms, enabling them to differentiate between the losses

due to collision and weak signal, and thus make more intelli-

gent selection of the transmission parameters. We demonstrate

this by enhancing the Auto Rate Fallback (ARF) [3] rate adap-

tation mechanism with our collision inferencing component.

The observed throughput gains ranged from 20-60% based on

the channel conditions, level of contention, etc.

• In-kernel Implementation: Through custom driver-level

modifications, we implement COLLIE on a standard Linux

laptop platform using an Atheros based wireless card and the

Openhal port of the Madwifi driver.

It is important to note that the issue of loss diagno-

sis does not arise in the case of cellular networks which

use a wide-variety of centralized techniques such as Time-

division, Code-division or Frequency-division multiplexing

1Apart from refering to helper dogs for shepherds, COLLIE is an Anglo-
Saxon term for “something very useful.”



3

(TDMA/CDMA/FDMA) to allow sharing among multiple

users. This avoids the problem of collisions altogether, thus

eliminating the need for any link-level inferencing and at-

tributing any bit-level errors to weak signal (thereby taking

the correct action).

The rest of this paper is organized as follows. First, we

present a detailed overview of COLLIE, with an emphasis on

the design choices made and various components involved in

the system. In Section II, we identify an appropriate set of

metrics used for loss diagnosis through targeted experiments

designed to understand collisions and a subsequent empirical

analysis. Based on these metrics, we design a basic collision

inferencing scheme and evaluate its accuracy through rigorous

experimentation. Further in Section II-B, we propose enhance-

ments to our basic approach using feedback from multiple

APs. In Section III, we modify an existing link adaptation

mechanism using the COLLIE framework and evaluate its per-

formance through experiments over various static and mobile

scenarios. In Section IV we discuss the related work and

finally conclude in Section V.

B. An Overview of COLLIE

The ideas in COLLIE are motivated from the collision

detection mechanism employed by the Ethernet. An Ethernet

station easily detects a collision by comparing the transmitted

data with the simultaneously received data. We show that, even

in 802.11 systems, given a copy of the originally transmitted

packet and the received error packet, it is possible to make

an educated inference about the cause of transmission failure

based on the error bit-patterns of this single packet. A number

of different metrics are used to discern this cause, the most

unique among them are the ones derived out of the constituent

PHY-layer symbols of the packet. Once the cause of a packet

loss is identified, this information is fed into link adaptation

algorithms (such as transmit power, data rate adaptation etc.)

enabling them to more intelligently select the right set of

transmission parameters for all subsequent communication.

Our design (Figure 2) involves three components: a client

module which resides on a handheld or a wireless laptop, an

AP module which resides on an access point, and an optional

backend COLLIE server which implements some additional

algorithms. COLLIE places most of the optimization logic on

the client device, and requires only a minimal support from

the APs.

Client module: The client-side COLLIE module resides at

the link-layer and interacts with the link adaptation algorithms.

It has access to the physical layer and MAC layer parameters

and metrics such as signal strength, packet receptions, etc.

Our implementation of COLLIE client module was done in

a standard Linux 2.6 kernel that resides within the wireless

driver as a separate kernel module. This module implements

logic to discern the cause of a packet loss to either a collision

or a weak signal. This process in the client is facilitated

through specific feedback from the receiver, i.e., the AP, when

the latter receives a packet in error. In particular, the AP relays

the entire packet, received in error, back to the client for

analysis. (Of course, this is only possible if the AP manages

Fig. 2. Design of our COLLIE system which consists of three modules —
the client which implements a majority of the logic, the AP which performs
minimal packet relaying and an optional backend server (for some specific
multi-AP extensions).

to correctly decode the source MAC address of the packet in

error, which is actually quite typical.) Even though it appears

wasteful, this unique and somewhat simple, type of feedback,

in combination with the collision inferencing logic at the

client, provides surprisingly good performance as shown by

our experiments in section III.

The collision inferencing algorithm analyzes the data packet

that was received in error and makes an educated inference as

to the cause of the packet loss. It uses a set of metrics such

as received signal strength (communicated as a part of the

feedback process), patterns in bit-errors and their distribution,

patterns in symbol errors and their distribution, etc. One

interesting observation in our work is that symbol-level errors

were quite useful in discerning cause of packet losses. Section

II studies this in detail through an empirical analysis.

AP module: As shown in Figure 2, the AP-side imple-

mentation of COLLIE includes a module, that implements the

component to provide the kind of client feedback described

above (and in further detail in Section II). Finally, it optionally

implements constructs that allow a central COLLIE server to

more accurately determine the cause of a packet loss.

COLLIE server (optional): This is an optional component in

our design. The COLLIE server implements a simple collision

inferencing algorithm that utilizes feedback from multiple

access points in the network. We show (in Section II-B) that

the accuracy of our basic collision detection mechanisms can

be greatly improved by using a COLLIE server in additional

to the above two modules.

II. FEEDBACK-BASED COLLISION INFERENCE

A critical component in COLLIE is the client side component

which takes advantage of feedback from the receiver such as

an AP in WLAN (or a peer if in ad-hoc mode) in order to

infer the cause of a packet loss (weak signal versus collision).

COLLIE implements most of the logic on the client device

requiring minimal support from the receivers. We describe

two versions of this inferencing algorithm. (i) A basic version
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Fig. 3. Experiment setup designed to study various metrics for inferring
collisions.

(Single-AP), which requires minimal support from the AP to

which the client is associated to. This applies to environments

where a single AP provides wireless access to the entire

establishment, such as in hotspots – coffee shops, apartments,

etc. (ii) An enhanced version (Multi-AP) which builds on top

of the basic version, by leveraging input from two or more

APs to provide very high accuracy in detecting collisions.

This approach applies to enterprise WLANs where multiple

APs belong to the same administrative domain. As with the

basic case, APs here also implement a very minimal relaying

of information that assists in collision inferencing.

We evaluate our algorithm quantitatively by considering the

following (i) the probability of false positives – that is, the

cases where our algorithm outputs a collision while the actual

cause was weak signal, and (ii) the accuracy – that is, the

number of cases our algorithm identifies as collision over

the total number of cases. Our design of metrics, discussed

later in this section, allows the link management algorithms to

specify a certain false positive rate, making the exact accuracy

a function of this rate. This choice is by design, thereby

leaving a significant control to the actual link management

algorithms in the client. However, to provide a sense of the

strong performance of our algorithms we observe that, given a

desired false positive rate of 2%, our basic algorithms achieve

an accuracy of about 60% on average, while the multi-AP

enhacements achieve an accuracy of 95% on average.

A. Basic Approach (Single AP)

The basic algorithm for collision inferencing presented here,

uses a simple relaying back of a data packet received in

error. This relaying is done by the intended recipient of the

packet which is the AP to which the client is associated to (in

the infrastructure mode of 802.11). Our observations indicate

that due to receiver-synchronization using the physical-layer

preamble, data that immediately follows the preamble is

seldom found in error — this includes critical fields in the

header such as the source and destination MAC addresses.

Thus, practically for all cases of packets received in error at

the AP, it was possible to relay it back to the correct associated

client. By analyzing these packets, we design a necessary and

sufficient set of metrics comprising of bit-error rates (BER),

symbol-error rates (SER), error-per-symbol (EPS), and joint

distributions of these, which can act as strong indicators for

packets suffering collision versus signal attenuation. We now

describe the experiments designed to understand collisions and

identify the set of metrics used for loss diagnosis.

Experiment Design for Detecting Collisions

Figure 3 shows the experiment setup designed to induce

collisions. T1 and T2 are two transmitters placed a certain

distance apart. Receivers R1 and R2 are co-located with

respective transmitters. Receiver R was placed in common

range of both transmitters and was modified to capture and

log all packets received (whether correctly or in error). The

chances of collision is greatly increased by disabling the MAC-

level backoffs at both T1 and T2. The signal between the

transmitters T1, T2 and the receiver R was strong enough

so as to not cause any bit-level errors due to attenuation.

This was verified through rigorous testing. Both transmitters

send broadcast packets at a fixed data-rate, thus eliminating

any acknowledgments. All three receivers are opportunistically

synchronized using common transmissions received thereby

maintaining a clock skew of less than 10 µs.

To construct “ground truth,” we determined the actual set

of collision events by analyzing the synchronized packet

logs at the transmitters, the data rates used for the packets,

and the packet size information and identifying packets that

overlapped in time.

Given that we know a certain collision occurred, R observes

one of the following: (1) A packet is received correctly, (2) a

packet is received in error, and (3) no packet is received. Case

1 occurs when signal from one of the transmitter dominates the

other resulting in a correct reception due to capture effect. Case

2 occurs when the respective signals interfere causing one of

the packets to be received but with errors. Case 3 occurs when

both the transmissions were perfectly synchronized, which

resulted in corruption at the physical-layer header/preamble

and resulting in a complete frame loss.

We performed various runs of this experiment with different

data-rates and packet sizes of 1400 and 200 bytes representing

long/short packets. The distance between the transmitters was

set so as to sustain a certain data-rate for the broadcast packets.

This ensured that no packets were received in error at R due

to weak signal.

Packets in-error due to weak signal were collected using a

simple process. An AP-client pair was used with unicast traffic

sent from the client to the AP. Rate adaptation was enabled.

Client mobility created a dynamically varying channel thereby

trig erring link adaptation at a packet loss. These packet losses

were recorded at the AP along with additional information

such as the Received Signal Strength (RSS), data-rate, etc.,

and used in our analysis. During the experiment, care was

taken to ensure no interfering transmitters were present, thus

avoiding the possibility of packet losses due to collisions.

Empirical Analysis

We present an empirical analysis of a set of metrics over

the data collected through targeted experiments designed in

the previous subsection.

1. Received signal strength (RSS): The received signal

strength (RSS) refers to the aggregate signal plus interference

(S + I) measured in dBm. This is reported by most device

drivers including the Madwifi driver that we used for our ex-

periments. The intuition behind using RSS is the following: for

packets suffering a collision, their RSS is usually higher than

that of packets suffering signal attenuation for the same data-

rate. This observation directly follows from the observation
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that packets suffering signal attenuation should have a low

RSS.

Figure 4 plots a cumulative distribution function (CDF) for

the distribution of RSS values for packets lost due to collision

and weak signal. The RSS distributions are further sorted

based on their data-rates; for purposes of clarity we only show

data-rates of 24, 36 and 48 Mbps. In all the following plots,

the legend ’C’ indicates packets in error due to collision and

’S’ indicates the packets in error due to weak signal. From

the plot in Figure 4 one can observe a clear distinction in the

distribution of RSS for the two categories given the same data-

rate. For example, in this experiment, 98% of packets in error

due to weak signal have an RSS of about -73 dBm or less,

while only 10% of packets suffering collision have RSS of -73

dBm or less. Thus, by using a ‘cutoff’ value of -73 dBm, and

it would be possible to capture about 90 % of collision cases

while incurring a false-positive rate of 2%. Thus, RSS can act

as a good metric for inferring the cause of packet loss.

2. Bit-error rate (BER): Much like RSS, bit-error rates

(BER) for weak signal versus collision can act as a metric to

distinguish with. Figure 5 plots the CDF of BERs for packets

in error. As before, the data is sorted depending on the data-

rates of 24, 36 and 48 Mbps. It follows from this plot that

packets received in error due to collision have much wider

distribution of BER values. For example much like RSS, 98%

of packets in error due to signal have a BER of 12% or less,

while only 24% of packets in error due to collision have BERs

of 12% or less.

3. Metrics for capturing ‘symbol-level’ errors: A ‘symbol’

refers to a sequence of bits which are transmitted concurrently

through a joint encoding and modulation method at the phys-

ical layer. For example, at 6 Mbps, the Orthogonal Frequency

Division Multiplexing scheme (OFDM) uses a set of 48 sub-

carriers each modulating 1 bit of information. This results in

the encoding of a sequence of 48 bits in a single time-unit,

which defines a symbol. Studying the patterns of symbols in

error as opposed to just bits received in error can provide

valuable information about the cause of a packet loss. We

define a symbol to be in error if any of the bits received as

a part of that symbol are in error. We studied three different

metrics which exhibit certain interesting properties which we

leverage in our collision inference algorithm. Note that each

of these metrics are computed over every single error packet:

(i) Symbol-error rate (SER): Like the BER, this is the

ratio of the total number of symbols received in error to

the total number of symbols in the data packet. The symbol

error rate indicates the actual ‘amount’ if error present in

the packet. We have studied SER for packets in error due to

collision and weak signal and we found significant overlap in

its distributions. An analysis of this metric and its distributions

lead us to the design of other interesting metrics which show

strong results in inferring collision, described next.

(ii) Error-per symbol (EPS): This metric refers to the

average number of bits in error among all the symbols which

are in error. This is indicative of the ‘amount’ of error per

symbol — unlike bits which have only one possible way of

being in error, a 48-bit symbol received in error could have

varying ‘amounts’ of error represented by the number of bits

in error. We observe that packets in error due to collision have

a larger amount of error per symbol. This is shown in Figure

6 which plots the CDF of EPS for both collision and weak

signal. For example, 98% of packets in error due to weak

signal have an EPS of 28% or less, while 45% packets in

error due to collision have the same EPS of 28% or less.

(iii) Symbol error score (S-Score): From our study of the

distributions of the symbols in error, we found that packets

in collision had larger bursts of contiguous symbols in error.

We designed a metric which uses ‘symbol burst lengths’ and

computes a ‘score’ which we call the S-Score that amplifies

such ambient patterns in symbol error burst lengths. We

compute S-Score as =
∑

n

i=1
|Bi|

2, where |Bi| represents the

length of the symbol-error bursts for burst number i. Figure 7

plots the CDF of the S-Score values for packets in error due to

collision versus weak signal. We find that, for example, 98%

of the packets in error due to weak signal have an S-Score of

500 or less, while 26% packets in error due to collision have

an S-Score of 500 or less. Thus, by using a cutoff of 500, we

would be able to detect 74% of collision cases while incurring

a false positive rate of 2%.

(iv) Joint distribution of SER and EPS: By considering

the joint distribution of these two metrics it is possible to

distinguish error packets in collision. The intuition follows

from the observation that error packets in collision suffer

higher symbol-error rates and correspondingly higher errors-

per symbol as a function of the symbol-error rates. From the

scatter plot shown in Figure 8, we can observe that for higher

values of SER, the values of EPS get streamlined into a high

yet narrow range allowing for a more accurate prediction of

collision versus signal as to the cause of a packet loss.

Collision Inferencing Algorithm – Metric-Vote Scheme

Our basic collision inferencing algorithm is fairly simple.

It computes the metrics discussed above on the single data

packet that was received in error (relayed back by the AP). If
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TABLE I
COLLISION DETECTION ACCURACY AND FALSE POSITIVE RATES

BER EPS S-Score Metric-Vote

Accuracy 0.550 0.524 0.441 0.597

False Positives 0.0057 0.022 0.0126 0.024

TABLE II
CORRELATION BETWEEN THE METRICS

BER/EPS S-Score/EPS BER/S-Score

Collision 0.840 0.963 0.854

Weak Signal 0.981 0.993 0.975

any of the metrics indicate (vote for) a collision, the algorithm

outputs collision as its inference. Even with such an aggressive

approach, over the experiments performed in this section, we

find that for a false positive rate of 2% (a tunable parameter),

our basic approach yields a reasonable accuracy. Table I shows

the results for the metrics BER, EPS, S-Score and Metric-

Vote. For the cases of collision, we see that Metric-Vote has

an accuracy of about 60% on an average. Later in Section III,

we show that even a 60% accuracy in collision prediction can

translate to significant gains in terms of throughput and energy.

Next in section II-B, we also study further enhancements to

this basic scheme using support from multiple APs that can

improve the accuracy to about 95% on average. For each of

the metrics and the Metric-Vote scheme, Table I also shows the

false positive rate — the percentage of error packets (caused

due to weak signal) which the algorithms incorrectly identify

as the cases of collision. We see that Metric-Vote scheme

also has a low false positive rate of 2.4%. It is important

to understand that the collision detection algorithms should

maintain a low false positive rate. While it is beneficial to be

able to decide if the packet was in error due to weak signal or

collision, it would be rather costly in terms of retransmissions

if we incorrectly identify a packet to be in error because of

collision, when in reality it was due to a weak signal. Table

II shows the correlation between the metrics – the percentage

of cases where the metrics agree on their decision about the

cause of the packet loss. For the cases of weak signal, the

correlation between the metrics is extremely high (around

98%) evident from the fact that all the metrics have a very

low false positive ratio. For the cases of collision, we see

that the correlation drops down a little to around 85%, which

improves the accuracy of Metric-Vote scheme.

Some observations: From our empirical study in the previ-

ous subsection, we found that there were a certain set of cases

where inferring collision was becoming a challenge. We now

explain these issues in detail:

(i) Using RSS as a metric: Although in general RSS acted

as a good indicator of the cause of a frame loss, in some of the

cases it was not able to distinguish well between the cases of

collision and weak signal. This can be mainly attributed to the

observed temporal variation in RSS [8]. Estimating a ’cut-off’

value also becomes harder because the delivery probability

is actually a function of (i) signal-to-noise ratio S/(I + N)
rather than (S + I) which is reported by most wireless cards

and (ii) receiver sensitivity [8]. However, we feel that RSS is

a promising metric and could act very well when used with

additional information such as RF profile of the receivers.

(ii) Impact of physical-layer capture: We found that there

were cases of collision where the average BER for the error

packet was very low due to whats known as the capture effect.

Capture effect refers to the phenomenon that during a collision

the packet with stronger signal is received with almost no

errors or a few bits in error. This experiment set up used to

measure the impact of capture effect was very similar to that

shown in Figure 3 except that now the receiver R is very close

to the transmitter T1 which resulted in a strong capture. By

carefully searching for the packets received in error from T1

(due to a collision from a concurrent transmission from T2),

we found that about 80% of packets in collision experiencing

capture effect, were received with about 12% or less bits in

error. This falls within our target margin of 2% false positives

for the signal case thereby impacting accuracy. The accuracy

of Metric-Vote scheme for strong capture effect cases was

found to be around 28%.

(iii) Effect of colliding packet size: Using the set up in

Figure 3, we also measured the bit error rates in collision

cases for varying packet sizes. Figure 9 shows a scatter

plot of RSS and BER for the cases of (i) weak signal (ii)

collision between a 1400-byte packet and a 200-byte packet

(iii) collision between two 1400-byte packets. While it is clear

that using RSS in this case clearly distinguishes between the

cases of collision and weak signal, using BER does not provide

the same level of accuracy. In particular, we see that it becomes

difficult to distinguish between cases (i) and (ii) using BER

because a smaller colliding packet (200-byte in this case)

would cause fewer bits in error. On the other hand, as shown

in Figure 8, the joint distribution of SER and EPS is useful in

distinguishing these cases.

B. Multi-AP assisted enhancements

The accuracy of our basic approach can be greatly improved

if feedback from multiple APs on the packet loss could
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Fig. 10. Improvements in collision detection accuracy using the Multi-AP
approach.

taken into consideration. This is feasible in an enterprise

WLAN where APs operate in a coordinated fashion as a

part of a single network. First, we present an algorithm that

uses feedback from multiple APs to improve the accuracy of

collision inferencing. Next, through experiments, we show that

such an approach can yield good results in a practical setting.

By leveraging feedback from two or more APs, we present

an algorithm that can detect such cases and improve the

accuracy of collision inferencing. Our algorithm works by

aggregating such feedback at a central COLLIE server, shown

earlier in Figure 2. The APs implement two functionalities :

(i) they synchronize among each other much like the receivers

R1 and R2 did for our experiments earlier in this section. This

synchronization is done using opportunistic common packets

received by the two APs on either the wired or the wireless

segment. (ii) for any packet received in error, or for physical-

layer error indications, the APs send a message to the COL­

LIE server with the time the packet (or error indication) was

received, the source/destination MAC addresses and data-rate

information for the packet received in error. It is possible that

in certain cases only a subset of this information is available,

and we evaluate such possibilities through experiments later

in this section.

The COLLIE server implements a simple collision infer-

encing algorithm that uses time-of-receipt information about

packets received in error at the APs, and combines this with

information about the data-rate of the packet received to

make an inference as to whether the packets did experience

a collision. As a part of this algorithm the COLLIE server

compares input from pairs (or a set) of APs that are known to

be within range of each other. Detection of APs that are within

range of each other is implemented through passive monitoring

of beacons. Scenarios where APs are within each other’s range

are becoming fairly common in todays WLANs. In fact, dense

deployment of APs is promoted as an architecture for next-

generation WLANs [9].

We have implemented this approach over standard Linux

based APs and clients. The collision inference algorithm

was implemented over a central COLLIE server. Through

experiments over a simple testbed consisting of two APs and

two clients we study the accuracy of our approach of using

feedback from multiple APs.

Figure 10 shows the accuracy in collision inference using

our multi-AP implementation. For the two scenarios where

capture effect is dominant which were computed through

experimentation within our indoor network environment, the

COLLIE Module Summary of tasks

Client Collision inference, selective re-tx based on Diff

AP Return packet in error, re-construct packet on Diff

Server Facilitate multi-AP collision detection

TABLE III
COLLIE -BASED LINK ADAPTATION TASKS IN DIFFERENT MODULES

multi-AP approach improves the accuracy of collision de-

tection to about 95%. These two scenarios correspond to

configurations where packet transmission dominate from one

of the two clients respectively. For the two scenarios where

capture effect is weak, both approaches provide good levels

of accuracy.

III. USING COLLIE FOR LINK ADAPTATION

In this section we present a simple, yet effective protocol

used to enhance link adaptation mechanisms based on the

COLLIE framework. The algorithm implemented in this simple

protocol is only to serve as a reference implementation of

COLLIE and is by no means is an optimal algorithm. The

goal of this description is to demonstrate how COLLIE can be

effective in making more intelligent link adaptation decisions

leading to improvements in throughput.

COLLIE-based link adaptation protocol: The goal of this

link adaptation protocol is to utilize the collision inference

results available from COLLIE in deciding how to best react

to a packet loss and its consequent recovery. Consider a client

which transmits a packet to an AP, but the latter receives the

packet in error. Using feedback mechanisms, as outlined in

Section II and shown in Figure 2, the client can infer the

cause of the packet error. This knowledge is, then, fed into

the link adaptation decision at the client. If the packet loss is

due to a collision, then the correct adaptation mechanism is to

perform exponential backoff. On the other hand, if the packet

loss is determined to be due to a weak signal, then we allow an

existing rate adaptation algorithm to explore and find a better

data rate to transmit future packets. In general, any existing

rate adaptation algorithm, e.g., RRAA, SampleRate, AARF,

and ARF, can be used here to leverage such feedback from

COLLIE. We explain this in the context of one of the simplest

algorithm – Auto Rate Fallback (ARF). ARF uses the history

of previous transmission error rates to adaptively select the

data rates used for future transmissions. That is, after a number

of consecutive successful transmissions, the sender attempts

to transmit at a higher rate and if the delivery of this frame

is unsuccessful, it immediately falls back to the previously

supported mode. In our implementation, we augment the ARF

algorithm with COLLIE to make it collision-aware.

In addition, the feedback on the erroneous packet provides

another opportunity of optimization during re-transmission

of a incorrectly received packet at the AP — selective re-

transmission of packet segments in error. By examining the

erroneous packet, the client knows exactly the set of bits that

were in error. If the number of bits in error is low (say, not

more than 20% of the entire packet), then it is advantageous

to create a Diff bitmap of these bits in error and to send only

this Diff bitmap to the AP piggybacked with the next packet
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Fig. 13. Setup for inducing collisions

transmission. If the Diff bitmap is correctly received, then

the AP can re-construct the original packet thereby reducing

the retransmission related costs associated with the client.

Table III summarizes the different implementation aspects

of this protocol. Note that our implementation has all the

overheads due to the AP’s transmission of the erroneous packet

feedback, which is therefore, reflected in our performance

evaluation presented next.

Experimental Results

We now present an evaluation of COLLIE-enhanced link

adaptations through experiments conducted in various static

and mobile scenarios:

Experiment #1: Static scenario – Figure 11 shows the

throughput of a static wireless client (with and without COL­

LIE ) for increasing distance between the client and the AP. We

see that as the distance between the client and AP increases,

there is a corresponding drop in the throughput for both the

cases. However, using COLLIE results in throughput gains

of as high as 52%. On an average, we observed throughput

gains of around 30%. Note that, these results account for the

transmission overhead involved in the receiver feedback. We

see that after an initial increase, the throughput gains drop

with the increase in distance. This is because as the channel

becomes error-prone, it also becomes difficult for the AP

to successfully transmit the feedback. Figure 11 shows that

increase in throughput gains are almost negligible (2%) for

these cases. Figure 12 plots the throughput of the client at

a particular distance over time. As before, we see that using

COLLIE improves the throughput by around 30%.

Experiment #2: Additional collision sources – We re-

peated the above experiment in presence of additional collision

sources (Figure 13). Figure 14 shows the throughput improve-

ments with and without COLLIE . We see that using COLLIE

results in throughput gains of as high as 60%.

Experiment #3: Mobile scenario – For this experiment,

the client position was continuously varied thereby inducing

dynamic channel conditions. Figure 15 plots the throughput

over time for both with and without COLLIE . We observe that

throughput improvements using COLLIE range from around

15% to as high as 65% for the mobile scenarios. This is

because COLLIE provides the rate adaptation mechanism with

the information about the cause of the packet loss, thereby

helping it choose the correct transmission parameters.

Experiment #4: Emulating a voice call – In this exper-

iment, we wanted to emulate the behavior of voice traffic

on the wireless medium. To do this, we made a 4 minute

voice call using the Netgear SPH101 VoWiFi phone over

Skype. For the duration of the call, we collected the set of

packets that were sent, the time instants when they were sent,

the packet sizes etc. and then replayed the exact sequence

of transmissions between the wireless laptop and the access

point. We conducted this experiment for low, medium and

high mobility scenarios. The ‘Slow’ speed represents a sta-

tionary user with sporadic movement while the ‘High’ speed

corresponds to a walking user continuously moving with a

speed of about 0.5 ft/sec inside a building. Figure 16 shows the

number of wasted 802.11 transmissions — transmissions that

were not successfully received at the Access Point (AP). Under

relatively high mobility conditions the percentage of wasted

transmissions for 802.11 exceeded 80%. However, under the

same mobility patterns, COLLIE achieves a reduction in wasted

transmissions by a 40% for each of the mobility scenarios.

This would not only improve the voice quality but also result

in lesser energy costs on the battery constrained mobile device.

IV. RELATED WORK

The problem of loss diagnosis is a fairly difficult one, and

there has been a few prior efforts in the wireless domain that

have tried to address this problem. For example, Whitehouse

et. al. [10] showed that if two frames arrive at a receiver with

certain timing characteristics (the second message arrives after

the preamble and start bytes of the first message) and with

certain power levels (the second message has significantly

higher power level when compared to the first) then it was

possible for the receiver to conclude that collision had, indeed,

occurred. This mechanism was implemented on the Mica2

sensor mote platform using a 433 MHz Chipcon CC1000 radio

transceiver, and required low-level access to timing and signal

strength measurements that were available on that platform. In

comparison, COLLIE is implemented for off-the-shelf 802.11

wireless transceivers that do not provide such low-level access

to communication parameters. Hence, the mechanisms in [10]

could not be applied in this environment. In other work, Yun

and Seo [11] propose another related mechanism for collision

detection in 802.11 links by measuring the RF energy and its

changes during such an event. This work was done through

simulations alone, and based on our experimental evaluation

may not work well in practice.

Rate adaptation mechanisms like RRAA [6] and CARA [7]

have, also, tried to address the problem of collision detection

in an indirect manner. CARA tries to detect collisions by using

the RTS-CTS mechanism, but the proposed mechanism fails

in the presence of hidden terminals. CARA also suffers from
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RTS oscillation [6] which RRAA solves using an adaptive RTS

filter. Unlike both RRAA and CARA which try to estimate

the collision probabilities by active probing (using an RTS),

COLLIE employs a direct approach by conducting an empirical

post-factum analysis based on the feedback from the receiver.

There is a growing interest in the wireless networking

community to integrate hints from the physical layer, e.g.,

symbol level information, to solve certain MAC level prob-

lems. One recent example is work by Jamieson et. al. [12]

for partial packet recovery and throughput improvement in

wireless networks. In this paper, COLLIE also uses information

derived from the physical layer symbols for diagnosing the

cause of a packet loss.

Receiver feedback (used in the design of COLLIE) has

been employed for other different purposes. For example,

RBAR [13] uses a feedback mechanism based on RTS-CTS

handshake to communicate the good choice of data rate to the

sender. The feedback in COLLIE, is used to discern the cause

of packet loss, and use this information to make subsequent

adaptation choices.

The capture effect phenomenon has been previously studied

through analysis and experimentation [14] in the context how

of it affects the throughput and fairness in 802.11 networks.

In this paper, we study the impact of capture effect on the

collision detection mechanisms used in COLLIE.

Use of multiple receivers has also been exploited previously

in the context of improving throughput in wireless networks,

e.g., the Multi-Radio Diversity (MRD) System [15]. More

specifically, mechanisms proposed in MRD use multiple re-

ceivers to recover from bit errors and improve loss resilience,

whereas COLLIE uses multiple receivers to determine the

cause of the packet loss and uses this information for adapting

link transmission parameters. Jigsaw [16] also uses informa-

tion from multiple receivers to provide a global cross-layer

viewpoint for enterprise wireless network management.

V. CONCLUSION

In this paper, we have tried to address the fundamental

issue of identifying the cause of an erroneous packet reception

in 802.11 systems. Unlike most of the previous approaches,

our proposed mechanism, COLLIE employs a direct approach

by using explicit feedback from the receiver to immediately

determine the cause of the packet loss. Through rigorous

evaluations conducted on regular laptops over a wide range

of experiments, we find that our collision inferencing mech-

anisms can provide upto 95% accuracy in detecting packets

in collision while allowing a configurable false positive rate

of 2% and lead to throughput improvements between 20-

60%. Through an emulation of voice call (made using the

Netgear SPH101 Voice-over-WiFi phone), we also showed

that COLLIE reduces retransmission related costs by 40% for

different mobility scenarios. Since all analysis performed in

this paper was based on actual experiments and implementa-

tion over contemporary 802.11 hardware, we expect that the

implications of our results and the various insights gained from

this study will be very useful in other problem domains such as

link adaptation, channel management, transmit power control

etc., where understanding the link behavior is critical.
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