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Abstract

Workflow management technology promises a flexible solution for business-process support facilitating the
easy creation of new business processes and modification of existing processes. Unfortunately, today’s workflow
products have no support for workflow verification. Errors made at design-time are not detected and result in very
costly failures at run-time. This paper presents the verification tool Woflan. Woflan analyzes workflow process defi-
nitions downloaded from commercial workflow products using state-of-the-art Petri-net-based analysis techniques.
This paper describes the functionality of Woflan emphasizing new diagnostics to locate the source of a design error.
Based on a case study (involving twenty groups of students designing a complex workflow process), these new
diagnostics have been evaluated and the results have been used to develop a method to guide the user of Woflan in
finding and correcting errors in the design of workflows.
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1 Introduction

Workflow management systems take care of the auto-
mated support and coordination of business processes
to reduce costs and flow times and to increase qual-
ity of service and productivity [20, 22, 25, 26, 31]. A
critical challenge for workflow management systems is
their ability to respond effectively to changes [9, 13, 24,
29, 36]. Changes may range from simple modifications
of a workflow process such as adding a task to a com-
plete restructuring of the workflow process to improve
efficiency. Changes may also involve the creation of
new processes. Today’s workflow management systems
are ill suited to dealing with frequent changes, because
there are hardly any checks to assure some minimal
level of correctness. Even a simple change as adding a
task can cause a deadlock or livelock. Creating or modi-
fying a complex process that combines parallel and con-
ditional routing is an activity subject to errors. Contem-
porary workflow management systems do not support
advanced techniques to verify the correctness of work-
flow process definitions [5, 6, 23]. These systems typ-
ically restrict themselves to a number of (trivial) syn-
tactical checks. Therefore, serious errors such as dead-
locks and livelocks may remain undetected. This means
that an erroneous workflow may go into production,
thus causing dramatic problems for the organization.
An erroneous workflow may lead to extra work, legal
problems, dissatisfied customers, managerial problems,
and depressed employees. Therefore, it is important to
verify the correctness of a workflow process definition
beforeit becomes operational. The role of verification
becomes even more important as many enterprises are
making Total Quality Management (TQM) one of their
focal points. For example, an ISO 9000 certification
and compliance forces companies to document business
processes and to meet self-imposed quality goals [21].
Clearly, rigorous verification of workflow processes can
be used as a tool to ensure certain levels of quality.

The development ofWoflan started at the end of
1996. The goal was to build a verification tool specif-
ically designed for workflow analysis. Right from the
start, there have been three important requirements for
Woflan:

1. Woflan should beproduct independent, i.e., it
should be possible to analyze processes designed
with various workflow products of different ven-
dors.

2. Woflan should be able to handlecomplex work-
flowswith up to hundreds of tasks.

3. Woflan should give to the pointdiagnostic infor-
mationfor repairing detected errors.

Based on these requirements, we decided to base
Woflan on Petri nets. Petri nets are a universal mod-

eling language with a solid mathematical foundation.
Yet, Petri nets are close to the diagramming techniques
used in today’s workflow management systems. The
efficient analysis techniques developed for Petri nets al-
low for the analysis of complex workflows. The graphi-
cal representation of Petri nets and the available anal-
ysis techniques are particularly useful for generating
meaningful diagnostic information. Since the release
of version 1.0 of the tool in 1997, we have been contin-
uously improving Woflan. Both new theoretical results
and practical experiences stimulated several enhance-
ments. Pivotal to Woflan is the notion ofsoundnessof
a workflow process [1, 4, 5]. This notion expresses the
minimal requirements any workflow should satisfy and
includes properties such as the absence of deadlocks
and livelocks, and proper termination. The current ver-
sion 1.3 of Woflan can analyze workflows designed
with the workflow productsCOSAandProtos. COSA
(COSA Solutions/Software Ley, [33]) is one of the lead-
ing workflow management systems on the Dutch work-
flow market. COSA allows for the modeling and en-
actment of complex workflow processes which use ad-
vanced routing constructs. The modeling language of
COSA is based on Petri nets. However, COSA does
not support verification. Fortunately, Woflan can an-
alyze any workflow process definition constructed by
using CONE (COSA Network Editor), the design tool
of the COSA system. Woflan can also import process
definitions made with Protos. Protos (Pallas Athena,
[28]) supports Business Process Reengineering (BPR)
and can be used to model and analyze business pro-
cesses. The tool is very easy to use and supports Petri
nets. To facilitate the modeling of simple workflows by
users not familiar with Petri nets, it is possible to ab-
stract from states. However, Protos cannot detect subtle
design flaws that may result in deadlocks or livelocks.
Therefore, it is useful to download workflows specified
with Protos and analyze them with Woflan.

This paper focuses on the new features recently
added to Woflan 1.3. These features allow for the gener-
ation of so-calledbehavioral error sequences. One can
think of such a sequence as a doomsday scenario that
clearly shows the roots of the error. These sequences
are used for diagnosing errors that are not easy to detect
with analysis techniques available in earlier versions of
Woflan. The functionality of Woflan 1.3 has been eval-
uated using a case study. This case study was part of
the final assignment of the courseWorkflow Manage-
ment & Groupware(1R420), attended by 42 students of
the Eindhoven University of Technology, and the course
Workflow Management: Models, Methods, and Tools
(25756), attended by 15 students of the University of
Karlsruhe. These students formed 20 groups which in-
dependently designed the workflow in a travel agency
consisting of about 60 tasks (see AppendixA for the
complete assignment text). These workflows were de-
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signed with Protos. Afterwards, we collected the work-
flows and analyzed them with Woflan 1.3. Most of
the designed workflows contained several errors that
were repaired using the diagnostics provided by Woflan.
Based on this case study and earlier experience, we have
developed a method to guide users of Woflan in detect-
ing and repairing design errors in workflows.

The remainder of this paper is organized as follows.
Section2 introduces a class of Petri nets called P/T nets
and summarizes some well-known results. Section3 in-
troduces workflow management, a subclass of P/T nets
called WF nets for modeling workflows, and a sound-
ness property on these WF nets. Section4 introduces
version 1.2 of the tool Woflan that uses standard P/T-net
techniques to analyze WF nets. Using these techniques,
Woflan can decide whether or not a WF net satisfies
the soundness property. However, sometimes Woflan
1.2 does not guide a designer towards locating errors; it
will only tell that they exist. In Section5, we propose a
behavioral technique that guides a user towards correct-
ing these errors. This technique has been implemented
yielding the current version 1.3 of Woflan. Woflan 1.3
has been tested using a case study, which is presented in
Section6. The results from this case study are used in
Section7, where we introduce a method for diagnosing
and correcting workflow nets. Section8 presents con-
clusions and topics for future work, among which im-
plementing the method in Woflan is an important one.
The informal description of the workflow used in the
case study and a formal model in Protos can be found
in AppendixA.

2 P/T nets

2.1 Introduction

Woflan is based on Petri nets. As indicated in the in-
troduction, there are several reasons for using Petri nets
for the verification of workflow process definitions. The
interested reader is referred to [3, 5] for a more elabo-
rate discussion on the use of Petri nets in the workflow
domain. In this section, we introduce a standard class
of Petri nets called P/T nets. First, we introduce some
basic definitions and useful properties. Second, we in-
troduce some analysis techniques on P/T nets. Readers
familiar with Petri nets can browse through this section
to become familiar with the notations used. An exten-
sive treatment of Petri nets can be found in [15, 30].

2.2 Basic definitions

2.2.1 Net structure

A P/T net is a directed graph with two kinds of nodes:
transitionsandplaces. Arcs in the graph always con-
nect a node of one kind to a node of the other kind. To

Figure 1: The example P/T netN

identify the elements in a P/T net, we introduce the set
of identifiersU .

Definition I (P/T net)
The tripleN ∈ (P, T, F) is a P/T net iff:

i. P ⊆ U is a finite, non-empty, set of places.

ii. T ⊆ U is a finite, non-empty, set of transitions
such thatP ∩ T = ∅.

iii. F ⊆ (P × T) ∪ (T × P) is a set of directed arcs,
called the flow relation.

It is common practice to draw places by circles and
transitions by squares. An example of a P/T net can be
seen in Figure1. A P/T net models thestructureof a
process. The class of Petri nets introduced in Definition
I is sometimes referred to as the class ofordinary P/T
nets to distinguish it from the class of Petri nets that
allows more than one arc between a pair of nodes. In
this paper, we allow at most one arc between any two
nodes of a P/T net.

2.2.2 Systems

Places in a P/T net may contain so-calledtokens. The
distribution of tokens over the places determines the
stateof the P/T net, also called themarkingof the P/T
net. Graphically, tokens are typically represented by
small dots. For example, if we add the marking consist-
ing of a token in the place labeledi to our example P/T
net N of Figure1, we get the marked P/T net (or sys-
tem) as shown in Figure2. Since a place may contain
multiple tokens, a marking can be represented as a bag
or finite multi-set.
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Figure 2: An example systemS for netN

Notation (Bags)
A bag over some alphabetA is defined as a function
from A to the set of natural numbers. For a bagX over
alphabetA anda ∈ A, X(a) denotes the number of oc-
currences ofa in X, often called the cardinality of a in
X. Note that asetof elements fromA is also a bag over
alphabetA, namely the function yielding 1 for every el-
ement in the set and 0 otherwise. The set of all bags over
an alphabetA is denotedB(A). We use brackets to ex-
plicitly enumerate a bag and superscripts to denote the
cardinalities of the elements. For example, [a2,b3, c]
denotes the bag with two elementsa, three elements
b, and one elementc; the bag [a2

|P(a)], where P is
a predicate onA, contains two elementsa for everya
such thatP(a) holds. To denote individual elements of
a bag, the same symbol ”∈” is used as for sets. The
sum (addition) of two bagsX andY, denotedX + Y,
is defined as [an

|a ∈ A ∧ n = X(a) + Y(a)]. The
difference (subtraction) ofX andY, denotedX − Y, is
defined as [an

|a ∈ A∧ n = (X(a)−Y(a))max0]. Bag
X is a subbag of bagY, denotedX ≤ Y, iff, for all
a ∈ A, X(a) ≤ Y(a).

Definition II (Marking)
A bag M ∈ B(P) is called a marking of a P/T net
(P, T, F).

Definition III (System)
The pairS= (N,M) is a system iffN is a P/T net and
M is a marking ofN (called the initial marking ofS).

2.2.3 Behavior of systems

Using a system, we can model a process structure as
well as the current state of the process. However, we

do not know yet how the process behaves dynamically.
We need a way to get from one state to another. For this
reason, we define the so-called firing rule.

Definition IV (Preset, postset)
Let N = (P, T, F) be a P/T net. Forn ∈ P ∪ T :

• •n = {n0 ∈ P ∪ T |(n0,n) ∈ F} (the preset of n)
and

• n• = {n0 ∈ P ∪ T |(n,n0) ∈ F} (the postset of n)

For a node (a place or a transition)n, its preset•n cor-
responds to the set of nodes (calledinput nodes) from
which there is an arc (called aninput arc) to n, its post-
set n• corresponds to the set of nodes (calledoutput
nodes) to which there is an arc (called anoutput arc)
from n.

Definition V (Firing rule)
Let N = (P, T, F) be a P/T net,M a marking ofN,
andt ∈ T .

i. M enablest iff •t ≤ M .

ii. M1 is reached fromM by firing t (denotedM
t
−→

M1) iff M enablest andM1 = M − •t + t•.

So, a transition isenablediff its preset is a subbag
of the actual marking. Note that we use the fact that
the preset is a set and hence a bag. When a transition
is enabled, we can reach a new marking byfiring this
transition. This new marking can be constructed by re-
moving the transition’s preset from the actual state and
adding the transition’s postset. For example, in our sys-
tem of Figure2, only theregister transition is en-
abled. Whenregister fires, the new marking be-
comes [c1 , c2 ]: The token from placei is removed
and new tokens are added to placesc1 andc2 .

2.3 Analysis of nets

Petri nets are known for the availability of many analy-
sis techniques. Clearly, this is a great asset in favor of
the use of Petri nets for workflow modeling. The anal-
ysis techniques can be used to prove qualitative proper-
ties (safety properties, invariance properties, deadlock,
etc.) and to calculate performance measures (response
times, waiting times, occupation rates, etc.). In this pa-
per, the primary focus is on qualitative verification.

2.3.1 Structural analysis

A structural property of a P/T net is a property that does
not depend on the marking of the net. Therefore, it can
be defined on P/T nets rather than on systems. In pro-
cess modeling, the simple combination of places and
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transitions can be used to devise various routing con-
structs ranging from a simple sequence to a delicate
mixture of choice and synchronization. In the context
of workflow design, certain, more advanced, constructs
are considered to be suspicious and a potential source
of errors. Therefore, we review the standard structural
properties for P/T nets. A strong point of structural
properties is that most of them can be computed effi-
ciently. All the structural properties we consider in this
paper can be computed in polynomial time (with respect
to the number of nodes of the net).

Nodes in a P/T net are connected by paths, which are
sequences of arcs.

Definition VI (Directed path)
Let N = (P, T, F) be a P/T net. The sequences =
(n0,n1, . . . ,nk), for some natural numberk, is called
a (directed) path fromn0 to nk iff ∀i,0 ≤ i < k :
(ni ,ni+1) ∈ F .

Definition VII (Undirected path)
Let N = (P, T, F) be a P/T net. The sequences =
(n0,n1, . . . ,nk), for some natural numberk, is called
an undirectedpath fromn0 to nk iff ∀i,0 ≤ i < k :
(ni ,ni+1) ∈ F ∪ F−1.

The set of nodesn0,n1, . . . ,nk in a (directed or undi-
rected) paths = (n0,n1, . . . ,nk) is called the alphabet
of s, denoteda(s).

A path is called elementary iff all nodes in the path
are different.

Definition VIII (Elementary path)
Let N = (P, T, F) be a P/T net, and lets =
(n0,n1, . . . ,nk), for some natural numberk, be a (di-
rected or undirected) path fromn0 to nk. Paths is called
elementaryiff ∀i,0≤ i ≤ k : ∀ j,0≤ j ≤ k : i 6= j ⇒
ni 6= n j . The set of all elementary directed (undirected)
paths fromn0 to nk is denotedEd(n0,nk) (Eu(n0,nk)).

A P/T net is called (strongly) connected iff there ex-
ists a (directed) path between every two nodes.

Definition IX ((Strongly) connected)
Let N = (P, T, F) be a P/T net. NetN is connected
iff ∀n0,n1 ∈ P ∪ T : Eu(n0,n1) 6= ∅. It is strongly
connected iff∀n0,n1 ∈ P ∪ T : Ed(n0,n1) 6= ∅.

The P/T netN of Figure 1 is connected, but not
strongly connected: For instance, there is no directed
path fromo to i . Figure4 shows a net that is strongly
connected.

A place-transition pair is called a PT-handle iff there
exist different elementary paths from the place to the
transition; a transition-place pair is called a TP-handle
iff there exist different elementary paths from the tran-
sition to the place [17].

Definition X (PT-handle, TP-handle)
Let N = (P, T, F) be a P/T net and letp ∈ P, t ∈ T
be nodes ofN. The pair(p, t) is called a PT-handle
iff ∃s0, s1 ∈ Ed(p, t) : s0 6= s1 ∧ a(s0) ∩ a(s1) =

{p, t}. The pair(t, p) is called a TP-handle iff∃s0, s1 ∈

Ed(t, p) : s0 6= s1 ∧ a(s0) ∩ a(s1) = {p, t}.

Since PT-handles and TP-handles can easily intro-
duce design flaws [4], we name nets without these
potentially correctness-threatening constructs well-
handled. The P/T netNof Figure1 is not well-handled,
because it contains one PT-handle (see Figure12) and
two TP-handles (see Figure9 and Figure24).

Definition XI (Well-handled)
A P/T net(P, T, F) is called well-handled iff it has no
PT-handles and no TP-handles.

A P/T net is calledfree-choiceiff for every two tran-
sitionst0 andt1 their presets are either disjoint or iden-
tical. NetNof Figure1 is free-choice.

Definition XII (Free-choice)
A P/T net(P, T, F) is free-choice iff∀t0, t1 ∈ T : •t0∩
•t1 = ∅ ∨ •t0 = •t1.

A net is called a state machine iff all transitions have
exactly one input and one output place.

Definition XIII (State machine)
A P/T net (P, T, F) is a state machine iff∀t ∈ T :
| • t | = |t • | = 1.

Definition XIV (Subnet)
Let N = (P, T, F) andN0 = (P0, T0, F0) be P/T nets.
Net N0 is a subnet of netN iff P0 ⊆ P, T0 ⊆ T , and
F0 = F ∩ ((P0× T0) ∪ (T0× P0)).

Definition XV (S-component)
Let N = (P, T, F) be a P/T net; letN0 = (P0, T0, F0)

be a subnet ofN such thatP0 6= ∅ and let• denote
the preset and postset functions ofN. SubnetN0 is an
S-component ofN iff N0 is a strongly connected state
machine such that∀p ∈ P0 : •p∪ p• ⊆ T0.

If a P/T net corresponds to a set of strongly con-
nected state machines, it is S-coverable. The P/T net
N of Figure1 has no S-components. The P/T netN of
Figure4 has two S-components (see Figure10) but is
not S-coverable: placec8 is not covered by these S-
components.

Definition XVI (S-coverable)
A P/T net (P, T, F) is S-coverable iff for each place
p ∈ P there is an S-component(P0, T0, F0) such that
p ∈ P0.
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A place-invariant is a weighted sum over the places
of which the outcome is invariant under each possible
transition firing.

Definition XVII (Place-invariant)
Let N = (P, T, F) be a P/T net and letw be a weight
function fromP to the set of integer numbers. Function
w is a place-invariant ofN iff ∀t ∈ T :

∑
p ∈ •t :

w(p) =
∑

p ∈ t• : w(p).

Note that despite the fact that the above explanation
of a place-invariant is in terms of transition firings, a
place-invariant is a structural property: It is indepen-
dent of the marking of the net. For example, a place-
invariant of netNof Figure1 is the function that assigns
the weight 1 to the placesi , c1 , c3 , c5 , ando and 0
to the other places. A convenient way to represent this
function isi + c1 + c3 + c5 + o.

It is not difficult to see that ifw0 andw1 are place-
invariants,w0+w1 andw0−w1 are place-invariants too.
As a result, a net has only the place-invariant containing
only weights 0 or it has infinitely many place-invariants.

Exchanging the roles of places and transitions in the
notion of a place-invariant yields the concept of a so-
called transition invariant.

Definition XVIII (Transition-invariant)
Let N = (P, T, F) be a P/T net and letw be a weight
function fromT to the set of integer numbers. Function
w is a transition-invariant ofN iff ∀p ∈ P :

∑
t ∈ •p :

w(t) =
∑

t ∈ p• : w(t).

For example, a transition-invariant of netNof Figure
1 is rec + process + redo − timeout .

As with place-invariants, summation and subtraction
of transition-invariants yields new transition-invariants.

2.3.2 Occurrence sequences

Behavioral analysis techniques are those techniques
that use the initial marking of a P/T net. Therefore,
these techniques use systems instead of P/T nets. An
elementary behavioral technique is the analysis of the
so-calledoccurrence sequencesof a system. An occur-
rence sequence is simply a chain of transition firings.

Definition XIX (Occurrence sequences)
Let S= (N,M0) be a system, letM0,M1, . . . ,Mn, for
some natural numbern, be markings ofN = (P, T, F),
and lett0, t1, . . . , tn−1 be transitions inT .

i. s = M0t0M1 . . . tn−1Mn is an occurrence se-

quence ofS iff ∀i,0≤ i < n : Mi
ti
−→ Mi+1.

ii. By f irst (s), we denote the first marking ofs =
M0t0M1 . . . tn−1Mn, i.e., M0. By last(s), we de-
note the last marking ofs, i.e., Mn.

The set of all occurrence sequences of a systemS is
denotedSs.

An occurrence sequence of a system can be projected
onto the set of transitions, yielding a so-calledfiring
sequence.

Notation (Firing sequences)
The restriction of occurrence sequences to sequences
of transitions:s = M0t0M1t1M2t2 . . . tn−1Mn → t =
t0t1t2 . . . tn−1 is called the firing sequence associated to
s. The set of all firing sequences of a systemS is de-
notedSt .

Consider again P/T netN of Figure 1. For the
system(N, [c5 , c7 , c8 ]), St equals{archive }. If
our initial marking is [c4 , c5 , c8 ], then St equals
{process , process redo , process done ,

process done archive }. Note thatSt (andSs) are
prefix-closed, i.e., every prefix of a firing (occurrence)
sequence is also a firing (occurrence) sequence.

2.3.3 Occurrence graph

Given a systemS= (N,M0), its set of occurrence se-
quencesSs can be embedded into a graph. Every occur-
rence sequence corresponds to some path in that graph
and vice versa.

Notation (Reachability)
Let N = (P, T, F) be a P/T net; letM0 and M1 be
markings ofN and letS= (N,M0). The markingM1
is reachable from markingM0, denotedM0 −→ M1,
iff there exists an occurrence sequences ∈ Ss such that
f irst (s) = M0 andlast(s) = M1.

In the system S of Figure 2, the marking
[c4 , c5 , c8 ] is reachable from the initial marking [i ],
while from [c4 , c5 , c8 ] both [c4 , c5 ] and [o] are
reachable.

Definition XX (Occurrence graph)
Let S = ((P, T, F),M0) be a system; letH ⊆ B(P)
be a set of markings, letA ⊆ (H × T × H) be a set of
T-labeled arcs, and letG = (H, A) be a graph which
satisfies the following requirements:

• H = {M ∈ B(P)|M0 −→ M};

• A = {(M, t,M1) ∈ (H × T × H)|M
t
−→ M1}.

GraphG is called the occurrence (or reachability) graph
(OG) of S.

The construction of this graph is straightforward, al-
though termination is not guaranteed.
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Figure 3: The OG of systemS

Construction (Occurrence graph)
Let S = ((P, T, F),M0) be a system; letH ⊆ B(P)
be a set of markings, letA ⊆ (H × T × H) be a set
of T-labeled arcs. The OGG = (H, A) of S can be
constructed as follows:

i. Initially, H = {M0} andA = ∅.

ii. Take an M from H and a t from T such that
M enablest and such that noM1 exists with
(M, t,M1) ∈ A. Let M2 = M − •t + t•. Add
M2 to H and (M, t,M2) to A. Repeat this step
until no new arcs can be added.

For our example systemS of Figure2, the OG looks
as in Figure3.

The OG embeds exactly all possible behaviors of the
system. However, for some systems, the OG is infinite-
and can thus not be finitely constructed. For exam-
ple, if we short-circuit netN in our systemS of Fig-
ure2 with theshortcircuit transition fromo to i ,
as is shown in Figure4, we get an OG which has in-
finitely many nodes. In this extended system, firing the
transitionsregister send rec dont archive
shortcircuit over and over again, leads to in-
finitely many markings [o, c8 n], for arbitrary n > 0.
After one firing of these transitions, there is one token
in c8 , after two firings there are two, and so on. There
is no limit to the number of tokens inc8 ; therefore, this
place is calledunbounded. As a result, the number of
markings in the OG is infinite.

2.3.4 Coverability graph

A solution to cope with unbounded places is the notion
of a so-called coverability graph. A coverability graph
is a variant of the occurrence graph that is finite in size.
However, we have to pay a price: First, we must al-
low markings to be infinite to deal with unbounded be-
havior. Second, a P/T system may have a number of

Figure 4: The short-circuited systemS= (N, [i ])

possible coverability graphs, whereas it always has one
unique OG.

Notation (Infinity)
Infinity is denoted byω. For every natural numbern, it
holds thatn ≤ ω, ω+n = ω, andω−n = ω. For every
natural numbern > 0, it holds thatnω = ωn = ω.

Notation (Extended bags)
An extended bag over some alphabetA is defined as a
function fromA to the set of natural numbers extended
with ω. The set of all extended bags over an alphabetA
is denotedBω(A).

All operations on bags can be defined for extended
bags in a straightforward way.

Definition XXI (Finite, extended, infinite markings)
An extended bagM ∈ Bω(P) is called anextended
marking of a P/T net(P, T, F). The set of extended
markings can be partitioned in a set offinite markings
(B(P)) and a set ofinfinitemarkings (Bω(P) \ B(P)).

The markings as we have used them before are now
called finite markings.

A coverability graph of a system is a variant of the
OG, where paths containing infinitely many different
markings in the OG are represented by a finite num-
ber of infinite markings. An infinite marking is intro-
duced in a coverability graph if we encounter a mark-
ing that has a smaller marking as one of its predeces-
sors. Suppose we have the markingsM1 and M2 such
that in the occurrence graph there is a path fromM1
to M2 and M1 < M2. Then, there has to be a path
from M2 to the markingM2 + (M2 − M1) that corre-
sponds to firing all the transitions on the path fromM1
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to M2. Consequently, there also is a path from marking
M2 + (M2 − M1) to M2 + 2(M2 − M1), from mark-
ing M2 + 2(M2 − M1) to M2 + 3(M2 − M1), and so
on. We conclude that places which occur in the mark-
ing M2−M1 are unbounded. Whereas the OG of a P/T
net contains infinitely many finite markings of the form
M2+n(M2−M1), for n > 0, a coverability graph con-
tains one infinite marking withω-values for each place
in M2 − M1. It is a known fact ([30], p. 70) that a cov-
erability graph of a system is always finite and can thus
be constructed.

Definition XXII (Coverability graph)
Let S= ((P, T, F),M0) be a system, letH ⊆ Bω(P)
be a set of extended markings, letA ⊆ (H ×T×H) be
a set ofT-labeled arcs, and letG = (H, A) be a graph
which can be constructed as follows:

i. Initially, H = M0 andA = ∅.

ii. Take an M from H and a t from T such that
M enablest and such that noM1 exists with
(M, t,M1) ∈ A. Let M2 = M − •t + t•. Add M3
to H and(M, t,M3) to A, where for everyp ∈ P:

(a) M3(p) = ω, if there exists a nodeM1 in H
such thatM1 ≤ M2, M1(p) < M2(p), and
there exists a path fromM1 to M in G;

(b) M3(p) = M2(p), otherwise.

Repeat this step until no new arcs can be added.

G is called a coverability graph (CG) ofS.

The result of this algorithm may vary depending on
the order in which markings are considered in the sec-
ond step (see [30] for more details). Nevertheless, a
CG of a system can be used to analyze the behavior of
the system. The short-circuited netS of Figure4 has a
unique CG which is shown in Figure5.

Given a system and a CG of this system, every oc-
currence sequence of the system corresponds to some
path in the CG and is thus embedded in it. The con-
verse is not necessarily true: There may be paths in the
CG that do not correspond to any occurrence sequence.
However, a path that contains only finite markings does
correspond to some occurrence sequence. This is in ac-
cordance with the fact that the CG is identical to the
OG if there are no infinite markings in the CG. The the-
oretical worst-case complexity of generating a CG is
non-primitive recursive space. Nevertheless, for small
to medium size systems, which includes many exam-
ples in workflow practice, the performance of the CG-
generation algorithm is acceptable. In Sections5 and6,
we return to this point.

Figure 5: The CG for the short-circuitedS

2.3.5 Behavioral properties

Behavioral properties of a P/T net are those properties
that depend on the marking of the P/T net. Therefore,
these properties are defined on systems, not on P/T nets.
In the remainder, we do not go into detail about the pre-
cise complexities of the algorithms to determine behav-
ioral properties (see [17] for more information on this
topic). For the purpose of this paper, it suffices to know
that the theoretical complexity of computing behavioral
properties is often much worse than the complexity of
computing structural properties.

A transition isdeadiff it is never enabled.

Definition XXIII (Dead transition)
A transitiont ∈ T of a system((P, T, F),M0) is dead
iff ∀M ∈ B(P),M0 −→ M : t is not enabled inM .

A transition is live iff it can always fire again. A sys-
tem is called live iff every transition is live.

Definition XXIV (Live)
A transitiont ∈ T of a system((P, T, F),M0) is live
iff ∀M ∈ B(P),M0 −→ M : ∃M1 ∈ B(P),M −→
M1 : M1 enablest . A system((P, T, F),M0) is live iff
∀t ∈ T : t is live.

The systemS of Figure2 is not live: For instance,
no more transition firings are possible from reachable
marking [o] (see Figure3). The short-circuited system
S of Figure4 is also not live: No more transition fir-
ings are possible from reachable marking [c4 , c5 ] (see
Figure5).
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A system is called bounded iff all places are bounded.
A system is called safe iff all places in any reachable
marking contain at most one token.

Definition XXV (Bounded, safe)
A system ((P, T, F),M0) is bounded iff ∀M ∈

B(P),M0 −→ M : ∀M1 ∈ B(P),M −→ M1 :
¬(M < M1). A system((P, T, F),M0) is safe iff
∀M ∈ B(P),M0 −→ M : ∀p ∈ P : M(p) ≤ 1.

An alternative definition for boundedness is to re-
quire that the number of reachable markings is finite.
Note that, for a bounded P/T system, the CG-generation
algorithm of DefinitionXXII yields the OG of the sys-
tem.

The systemS of Figure2 is bounded and safe. The
latter is straightforward to see in its OG: In each mark-
ing, every place occurs at most once. However, the
short-circuited systemS of Figure 4 is unbounded,
which follows directly from the fact that there are in-
finite markings in the CG of Figure5.

3 Workflow management

3.1 Introduction

In the last decade,workflow management systemshave
become a popular tool to support the logistics of busi-
ness processes in banks, insurance companies, and gov-
ernmental institutions [5, 20, 22, 25, 26, 31, 32]. Be-
fore, there were no generic tools to support workflow
management. As a result, parts of the business process
were hard-coded in the applications. For example, an
application to support taskX triggers another applica-
tion to support taskY. This means that one applica-
tion knows about the existence of another application.
This is undesirable, because every time the underly-
ing business process is changed, applications need to be
modified. Moreover, similar constructs need to be im-
plemented in several applications and it is not possible
to monitor and control the entire workflow. Therefore,
several software vendors recognized the need for work-
flow management systems. A workflow management
system is a generic software tool that allows for the
definition, execution, registration, and control of busi-
ness processes orworkflows. At the moment, many ven-
dors are offering a workflow management system. This
shows that the software industry recognizes the poten-
tial of workflow management tools.

As indicated in the introduction (see also [3, 5, 16]),
P/T nets constitute a good starting point for a solid
theoretical foundation of workflow management. We
use P/T nets to specify the partial ordering of tasks in
a workflow. Based on a P/T-net representation of the
workflow process, we tackle the problem of verifica-
tion.

3.2 Workflow processes

The fundamental property of a workflow process is that
it is case-based. This means that every piece of work
is executed for a specificcase. Examples of cases are
an insurance claim, a tax declaration, a customer com-
plaint, a mortgage, an order, or a request for informa-
tion. Thus, handling an insurance claim, a tax decla-
ration, or a customer complaint are typical examples
of workflow processes. Cases are often generated by
an external customer. However, it is also possible that
a case is generated by another department within the
same organization (internal customer). A typical exam-
ple of a process that is not case-based, and hence not a
workflow process, is a production process such as the
assembly of bicycles. The task of putting a tire on a
wheel is independent of the specific bicycle for which
the wheel will be used.

The goal of workflow management is to handle cases
as efficient and effective as possible. A workflow pro-
cess is designed to handle large numbers of similar
cases. Handling one customer complaint usually does
not differ much from handling another customer com-
plaint. The most important aspect of a workflow pro-
cess is therouting definition. The routing definition
specifies whichtasksneed to be executed in whator-
der. Alternative terms for routing definition are: ’proce-
dure’, ’flow diagram’ and ’workflow process definition’.
Tasks are ordered by specifying for each task thecondi-
tionsthat need to be fulfilled before it may be executed.
In addition, it is specified which conditions are fulfilled
by executing a specific task. Thus, a partial ordering
of tasks is obtained. In a workflow process definition,
standard routing elements are used to describe sequen-
tial, alternative, parallel, and iterative routing thus spec-
ifying the appropriate route of a case. The workflow
management coalition (WfMC) has standardized a few
basic building blocks for constructing workflow process
definitions [26]. A so-calledOR-splitis used to specify
a choice between several alternatives; anOR-joinspec-
ifies that several alternatives in the workflow process
definition come together. AnAND-split and anAND-
join can be used to specify the beginning and the end
of parallel branches in the workflow process definition.
The routing decisions in OR-splits are often based on
so-calledworkflow attributes. A workflow attribute is a
specific piece of information used for the routing of a
case. One can think of a workflow attribute as a control
variable or a logistic parameter. A workflow attribute
may be the age of a customer, the department responsi-
ble, or the registration date. Routing decisions may also
be based on other data than workflow attributes, such as
for example the contents of a letter from the customer.

Many cases can be handled by following the same
workflow process definition. As a result, the same task
has to be executed for many cases. A task that needs
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to be executed for a specific case is called awork item.
An example of a work item is the order to execute task
’send refund form to customer’ for case ’complaint of
customer Baker’. Most work items need aresourcein
order to be executed. A resource is either a machine
(e.g., a printer or a fax) or a person (participant, worker,
or employee). In office environments, where workflow
management systems are typically used, the resources
are mainly human. However, because workflow man-
agement is not restricted to offices, we prefer the term
resource. To facilitate the allocation of work items to re-
sources, resources are grouped into classes. Aresource
classis a group of resources with similar characteristics.
There may be many resources in the same class and a
resource may be a member of multiple resource classes.
If a resource class is based on the capabilities (i.e., func-
tional requirements) of its members, it is called arole. If
the classification is based on the structure of the organi-
zation, such a resource class is called anorganizational
unit (e.g., team, branch, or department). The resource
classification is another important part of a workflow
process. Besides a resource, a work item often needs
a trigger. A trigger specifies who or what initiates the
execution of a work item. Often, the trigger for a work
item is the resource that must execute the work item.
Other common triggers are external triggers and time
triggers. An example of an external trigger is an in-
coming phone call of a customer; an example of a time
trigger is the expiration of a deadline. A work item that
is being executed is called anactivity. If we take a pho-
tograph of the state of a workflow, we see cases, work
items, and activities. Work items link cases and tasks.
Activities link cases, tasks, triggers, and resources.

A thorough investigation of the business processes in
a company that results in a complete set of definitions
of efficient and effective workflow processes is the ba-
sis of the successful introduction of a workflow system.
Formal verification can be a useful aid in obtaining the
desired effectiveness and efficiency.

3.3 Verification of workflows

Our work is aimed at the verification ofworkflow pro-
cess definitions. Two types of verification are possible,
namely qualitative verification and quantitative verifi-
cation. Qualitative verification focuses on functional
properties of a workflow process definition, whereas
quantitative verification focuses on the performance of
the workflow process. Examples of functional proper-
ties are the existence or absence of deadlocks or live-
locks. Examples of performance properties are average
throughput times and service levels. The current ver-
sion of the tool Woflan only implements techniques for
qualitative verification, although we are considering ex-
tending Woflan with techniques for quantitative verifi-
cation as well.

The focus on qualitative verification allows us to ab-
stract from resources and triggers. The allocation of re-
sources to work items and the occurrence of triggers is
a crucial factor in theperformanceof a workflow pro-
cess. However, for qualitative verification, it suffices
to assume that sufficient resources are available to exe-
cute all the required tasks and that any trigger will occur
eventually. Another abstraction is that we consider only
one case in isolation. The only way cases interact with
each other is via the competition for resources. There-
fore, if we abstract from resources, it also suffices to
consider only one case in isolation. Finally, we abstract
from workflow attributes and other data. This means
that we consider each choice (OR-split) to be a non-
deterministic one. The reason is the following. If we
are able to prove certain desirable properties in the situ-
ation where all choices are taken non-deterministically,
they will also be satisfied in the situation where choices
are based on workflow attributes or other data. An im-
portant consequence of these abstractions is that they
allow us to use P/T nets rather than Petri nets with data
and time. From an analysis point of view, the class of
P/T nets is preferable because of the availability of effi-
cient algorithms and powerful analysis tools.

3.4 Workflow nets

In this subsection, we introduce a subclass of P/T nets,
namely the class ofworkflow nets(WF nets). In addi-
tion, we formalize the so-calledsoundnessproperty for
WF nets. The soundness property is the least require-
ment that a WF net must satisfy in order to model a cor-
rect workflow process definition. As explained, a WF
net is an abstraction of a workflow process. A work-
flow process contains for example information about
applications, workflow attributes, triggers, case data,
and resource constraints. We do not propose WF nets
as a complete modeling language. They are merely in-
troduced for the purpose of (qualitative) verification.
When importing a workflow process definition from
some workflow tool, our verification tool Woflan distills
the aspects it needs from the workflow process defini-
tion and translates this information to a WF net.

3.4.1 P/T-net representation

The P/T netN in Figure1 models a typical workflow
process, namely the processing of complaints. Assume
that the initial marking is [i ], thus obtaining the system
of Figure2. This initial marking [i ] corresponds to the
fact that a new complaint has been received. First, the
complaint is registered (register ). The taskreg-
ister is an example of an AND-split. Upon comple-
tion of this task, in parallel, a form is sent (send ) to
the complainant and the complaint is evaluated to de-
termine whether it needs to be processed (do) or not
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(dont ). The two transitionsdo and dont together
form an OR-split. The two transitions model a sin-
gle task in the real workflow which might be called
something like ’evaluate complaint’. If the form that
is sent to the complainant is received in time (rec ),
the complaint can be processed. If it is not received
in time (timeout ), the form cannot be used for the
processing of the complaint. After the complaint has
been processed (process ), a check is made to deter-
mine whether it has been processed correctly (done )
or not (redo ) (another OR-split). If not, it needs to
be processed again. Placec7 is an example of an OR-
join: Two alternative process branches are joined. In the
end, the complaint is archived (archive ). Transition
archive is an example of an AND-join.

We see that the P/T-net representation of a workflow
process definition is straightforward: Tasks are repre-
sented bytransitionsand conditions byplaces. If a task
fulfils a condition when it is completed successfully, an
arc is drawn from the corresponding transition to the
corresponding place. If a task needs a condition to be
fulfilled before it can start, anarc is drawn from the cor-
responding place to the corresponding transition. Two
special places are added, one to indicate that a new case
has been created, placei , and another to indicate that a
case has been completed, placeo. It is clear that stan-
dard building blocks such as the AND-split, AND-join,
OR-split, and OR-join (see [26, 35]) can be modeled by
P/T nets.

By verifying the behavior of a P/T net modeling a
workflow, we can verify some properties of the work-
flow in reality. Not every P/T net corresponds to a work-
flow. A P/T net modeling a workflow must satisfy sev-
eral structural properties. It must, for example, have
a well-defined beginning and end, a s in the example
described above. Therefore, in the next paragraph, we
impose some structural restrictions on P/T nets yielding
so-calledworkflow nets(WF) nets. In Section3.4.3,
we impose restrictions on thebehavior of WF nets,
defining so-calledsoundworkflow nets. As mentioned,
soundness is the least requirement that a WF net must
satisfy in order to be a proper abstraction of a workflow
process definition.

3.4.2 Structural restrictions

We want a P/T-net model of a workflow process to have
one place indicating the condition that a case has been
created and one place indicating that a case has been
completed. In the example of Figure1, these places are
called i and o, but they also could have been called
start andfinish . From now on, we assume thati
(in) ando (out) identify these places in the universeU .

There can be no tasks that fulfill the condition cor-
responding toi : The workflow cannot generate cases.
Also, there can be no tasks for which the condition cor-

responding too has to be fulfilled: Once a case has been
completed, no more tasks should be executed for this
case.

Furthermore, there is not much use in having a task
that can never be executed or in having a task from
which the case cannot be completed. This means that
the structure of a workflow net must satisfy at least the
following requirement: For every transitiont in a work-
flow net, there must be a path (see DefinitionVI) from
i to t and a path fromt to o. In P/T-net terms, this con-
forms to strongly connectedness (see DefinitionIX) un-
der the assumption that there is a path fromo to i . This
assumption can be fulfilled if we short-circuit the net as
in Figure4. Nets that satisfy the above restrictions are
called workflow nets or WF nets.

Definition XXVI (Workflow net)
A P/T net N = (P, T, F) is a workflow net (WF net)
iff

i. i ∈ P ∧ •i = ∅,

ii. o ∈ P ∧ o• = ∅, and

iii. the short-circuited P/T net(P, T ∪ {t}, F ∪
{(o, t), (t, i )}), denotedN, is strongly connected,
wheret ∈ U \ T .

The example P/T netN of Figure1 satisfies all three
conditions, using placei as input placei ando as out-
put placeo. Therefore, it is a WF net.

3.4.3 Behavioral restrictions

To analyze the behavioral correctness of a workflow, we
are interested in its behavior for one case. Under the
assumption that the workflow system can distinguish
cases, it is an obvious choice to have [i ] as the ini-
tial marking, because it corresponds to the creation of
a new case. So, ifN = (P, T, F) is a WF net, then
S = (N, [i ]) is the corresponding WF system that we
are interested in.

The behavioral restrictions we impose on a WF sys-
tem in its initial state are straightforward:

i. It should always be possible to complete a case
(option to complete).

ii. It should not be possible to complete a case
improperly (proper completion), where improper
completion means that there is still work in
progress after completion of the case.

iii. For every task, there should be an execution of the
workflow that executes it (no dead tasks).

Completion of a case is signaled by a token in the spe-
cial placeo. Thus, rulei means that it must always be
possible to put a token ino. The second rule means
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that, as soon as a token is put ino, all other places must
be empty. The third rule strengthens the third structural
requirement of DefinitionXXVI . It simply means that
a WF system may not have any dead transitions (see
DefinitionXXIII ).

If a WF system in its initial state behaves according
to the above rules, then the corresponding WF net is
calledsound.

Definition XXVII (Soundness)
A workflow net N = (P, T, F) is sound iff

i. ∀M ∈ B(P), [i ] −→ M : ∃M1 ∈ B(P),M −→
M1 : M1 ≥ [o] (option to complete),

ii. ∀M ∈ B(P), [i ] −→ M : M ≥ [o] ⇒ M = [o]
(proper completion), and

iii. no transitiont ∈ T is dead in(N, [i ]) (no dead
tasks).

Soundness is originally defined in [1], where it says
that it should always be possible to complete the case
properly (option to complete properly). Our definition
is slightly different, but it is not difficult to prove that
they are equivalent.

Soundness of a WF netN can be determined from a
CG of the WF system(N, [i ]). If we take a look at our
WF systemS in Figure2 and its OG in Figure3 (which
is also a CG ofS), we see thatN is not sound because
the first two restrictions are not satisfied:

• In [c4 , c5 ], there is no option to complete;

• in [c8 ,o], we have improper completion.

The third restriction is satisfied, because for every tran-
sition we have at least one arc labeled with it in the CG.

In [1], it has been shown that soundness of a WF net
corresponds to liveness and boundedness of the short-
circuited WF system. Recall that, for a WF netN, the
short-circuited net(P, T ∪ {t}, F ∪ {(o, t), (t, i )}) with
t ∈ U \ T is denotedN.

Theorem I (Soundness vs. boundedness and liveness)
A WF net N = (P, T, F) is sound iff the short-
circuited WF system(N, [i ]) is bounded and live.

Proof
See [1].

From the CG in Figure5, we conclude that the short-
circuited WF systemS of Figure 4 is not bounded
and not live. It is not bounded, because we have in-
finite markings in the CG; it is not live, because we
for instance cannot escape from the marking [c4 , c5 ].
Hence, the WF netN of Figure1 is not sound, which
conforms to our earlier conclusion.

TheoremI is an interesting result, because the Petri-
net literature contains many results on liveness and
boundedness of systems. These results form the basis
for the efficient verification of WF nets. In the remain-
der of this section, we present the most important results
that are used in Woflan.

3.4.4 Properties

For free-choice WF nets (see DefinitionXII ), there is
an efficient algorithm to decide soundness.

Theorem II (Free-choice vs. soundness)
Given a free-choice WF net, it can be decided in poly-
nomial time whether or not the net is sound.

Proof
Let N be a WF net. It is possible to verify in polynomial
time whether the short-circuited WF system(N, [i ]) is
live and bounded [15].

Theorem III (Soundness and free-choice vs. S-
coverability)
Let N be a sound, free-choice WF net. The short-
circuited WF netN is S-coverable.

Proof
This follows directly from TheoremI and the fact that
a net which is free-choice, live, and bounded must be
S-coverable ([15]).

In the analysis of WF nets, this theorem can be used
as follows. If N is a free-choice WF net such thatN is
not S-coverable, thenN cannot be sound. Places that
are not part of any S-component are a potential source
of the error. TheoremII and TheoremIII show that the
class of free-choice WF nets is an interesting class from
a viewpoint of analysis.

Another interesting class is the class of so-called
well-structured WF nets. A WF net is well-structured
iff the short-circuited net is well-handled, i.e., the short-
circuited net has no PT-handles and TP-handles (see
DefinitionXI).

Definition XXVIII (Well-structured)
A WF net N is well-structured iffN is well-handled.

Theorem IV (Well-structuredness vs. soundness)
Given a well-structured WF net, it can be decided in
polynomial time whether or not the WF net is sound.
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Proof
See [4]. The proof uses the fact that short-circuited WF
nets without PT-handles and TP-handles are elementary
extended non-self controlling [10].

A sound well-structured WF net is S-coverable.

Theorem V (Soundness and well-structuredness vs. S-
coverability)
Let N be a sound, well-structured WF net. The short-
circuited WF netN is S-coverable.

Proof
See [4].

TheoremV can be used in the analysis of WF nets in
a similar way as TheoremIII can be used.

If a short-circuited WF netN is S-coverable, then
the short-circuited WF system(N, [i ]) is safe (and
bounded).

Theorem VI (S-coverability vs. boundedness)
Let N be a WF net and let the short-circuited WF netN
be S-coverable. The short-circuited WF system(N, [i ])
is safe and bounded.

Proof
It follows from DefinitionXV that the number of tokens
in any reachable marking of(N, [i ]) in an S-component
of N is constant. Because we initially have one token
(in i ), the number of tokens in any S-component is ei-
ther zero or one. Therefore, the number of tokens in
any S-coverable place is either zero or one. Because all
places inN are S-coverable,(N, [i ]) is safe and thus
bounded.

A consequence of TheoremVI is that both sound
free-choice WF nets and sound well-structured WF nets
correspond to safe WF systems. So, a free-choice or
well-structured WF net of which the corresponding sys-
tem is not safe cannot be sound.

Improper termination of a WF netN always leads
to an unbounded short-circuited WF system(N, [i ]).
Thus, an unbounded place in a short-circuited WF sys-
tem may be a sign of improper completion.

Theorem VII (Improper completion vs. unbounded-
ness)
Let Nbe a WF net that can complete improperly. Then
the short-circuited WF system(N, [i ]) has unbounded
places.

Proof
It follows from the assumption and the definition of
proper completion (DefinitionXXVII ) that there exists

a non-empty markingM ∈ B(P) such that [i ] −→
M+ [o] in N. Then, [i ] −→ M+ [o] in N and, because
of the short-circuiting transitiont , [i ] −→ M + [i ] in
N. We conclude that all places inM are unbounded in
(N, [i ]).

A WF net N that has no option to complete always
has a short-circuited WF system(N, [i ]) containing
non-live transitions. Thus, in case of non-liveness of
the short-circuited system, the WF net may not have the
option to complete. Thus, non-live transitions are a po-
tential sign of errors.

Theorem VIII (Option to complete vs. liveness)
Let N = (P, T, F) be a WF net that does not satisfy the
completion option. Then the short-circuited WF system
(N, [i ]), with N = (P, T, F), has non-live transitions.

Proof
Suppose(N, [i ]) has only live transitions. Then,
the short-circuiting transition t is live, i.e.,∀M ∈

B(P), [i ] −→ M : ∃M1 ∈ B(P),M −→ M1 : M1
enablest . Since•t = {o} andP = P, we conclude that
∀M ∈ B(P), [i ] −→ M : ∃M1 ∈ B(P),M −→ M1 :
M1 ≥ [o], i.e., N has the option to complete.

4 Woflan

4.1 Introduction

This section describesWoflan(WOrkFLow ANalyzer),
a tool that analyzes workflow process definitions spec-
ified in terms of Petri nets. Woflan has been designed
to verify process definitions that are downloaded from a
workflow management system (cf. [5, 7]). As indicated
in the introduction, there is a clear need for such a ver-
ification tool. Today’s workflow management systems
do not verify the correctness of workflow process defi-
nitions. Therefore, errors made at design time such as
deadlocks and livelocks may remain undetected. This
means that an erroneous workflow may go into produc-
tion, thus causing dramatic problems for the organiza-
tion. To avoid these costly problems, it is important to
verify the correctness of a workflow process definition
before it becomes operational.

Based on the results presented in the previous sec-
tion, the development of the tool Woflan started at the
end of 1996 and the first version was released in 1997
[2, 19]. Basically, Woflan takes a workflow processes
definition imported from some workflow product, trans-
lates it into a P/T net, and tells whether or not: (1)
the net is a WF net and (2) the net is sound. Further-
more, using existing P/T net analysis routines, the tool
provides information about some properties in case it
is not a sound WF net. These properties can be either
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Figure 6: Woflan’s summary onN before it has gener-
ated a CG

structural or behavioral. The information on structural
properties is straightforward to compute; for the infor-
mation on behavioral properties Woflan first needs to
compute the behavior of the system. Woflan generates
a CG for the short-circuited system and checks whether
the short-circuited system is bounded and live. If so, the
WF net is sound.

This section reviews the basic functionality of Woflan
present in version 1.2. This version extends version 1.0
as described in [2, 19] with an import facilitiy for Cosa
and Protos. In the remaining sections of the paper, we
focus on the new features, the case study, and a method
to support the use of Woflan.

4.2 Structural properties

Figure 6 shows us the summary information on the
structural properties of WF netN of Figure1. The fol-
lowing information is available in this summary:

• WhetherN is a WF net;

• whetherN is free-choice;

• whetherN is well-structured;

• whether the short-circuited netN (see Figure4) is
S-coverable and

• the numbers of places, transitions, and arcs (con-
nections).

Net N is a WF net that is free-choice but not well-
structured; the short-circuited netN is not S-coverable.

Using the buttons on the left-hand side, detailed in-
formation on the properties becomes available.

Please note that we use the standard Petri-net termi-
nology to avoid confusion, i.e., we use the terms tran-
sition and place rather than task and condition. As in-
dicated in Section 3.4, the WF net is an abstraction of
the workflow process definition downloaded from the
workflow management system. One task in the work-
flow process definition may correspond to several tran-
sitions and the WF net abstracts from information about
applications, workflow attributes, triggers, case data,
and resources.

4.2.1 WF net

The detailed diagnostic information calculated by
Woflan on the WF-net property of some WF netN (see
DefinitionXXVI ) consists of six items:

1. The set of places with an empty preset, i.e., so-
called source places. Every case has to enter the
workflow at the same point, called the point of cre-
ation. Therefore, to satisfy the WF-net property,
there should be exactly one source place (denoted
i ), which corresponds to this point of creation.

2. The set of places with an empty postset, i.e., so-
called sink places. Every case has to leave the
workflow at the same point, called the point of
completion. Therefore, there should be exactly
one sink place (denotedo), which corresponds to
this point of completion.

3. The set of transitions with an empty preset, i.e., so-
called source transitions. A task that corresponds
to a source transition, does not have to wait for a
case to be created: there is no path from the point
of creationi to the task. Therefore, the task cannot
be related to a case. Note that, if a source transi-
tion exists, the short-circuited net is not strongly
connected.

4. The set of transitions with an empty postset, i.e.,
so-called sink transitions. A task that corresponds
to a sink transition does not help completing a
case: There is no path from the task to the point
of completiono. Therefore, the task cannot be re-
lated to the completion of the case. Note that, if a
sink transition exists, the short-circuited net is not
strongly connected.

5. The set of unconnected nodes. A node is uncon-
nected iff there is no undirected path in the short-
circuited netN to the short-circuiting transitiont .
The conditions and/or tasks corresponding to these
unconnected nodes cannot be related to the points
of creationi and completiono (because both are
by definition connected tot).
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Figure 7: A non-free-choice cluster

6. The set of strongly unconnected nodes. A node is
strongly unconnected iff there is no path inN from
that node tot or no path fromt to that node. There
should be no strongly unconnected nodes. The
conditions and/or tasks corresponding to strongly
unconnected nodes cannot be related to either the
point of creationi or the point of completiono (be-
cause both are by definition strongly connected to
t). Note that, if a node is unconnected, it is also
strongly unconnected.

If all the requirements are satisfied (one place corre-
sponding to a point of creation, one place corresponding
to a point of completion, and all nodes can be related to
both places), the net is a WF net. NetN is obviously a
WF net.

4.2.2 Free-choice property

The detailed information on the free-choice property
gives us the set of so-called non-free-choice clusters,
where a cluster is one of the connected components that
remain after all arcs from transitions to places are re-
moved from the net.

A cluster is non-free-choice iff it does not satisfy the
free-choice property of DefinitionXII . An example of
a non-free-choice cluster is shown in Figure7.

Two transitions that do not satisfy the free-choice
property have different presets that are not disjoint. In a
workflow context, this means that two tasks share some
but not all preconditions. Usually, tasks that share a pre-
condition start alternative branches: they form an OR-
split. Also, a task that has multiple preconditions (note
that at least one of the transitions has multiple precon-
ditions) usually ends a set of parallel branches: it is an
AND-join. A non-free-choice cluster (see Figure7) is
therefore often a mixture of an OR-split with an AND-
join. The OR-split is troubled by such an AND-join,
because one alternative may be enabled while the other
is not. The AND-join is troubled by the OR-split, be-
cause a fulfilled parallel branch may get unfulfilled be-
fore the AND-join is enabled. If possible, the OR-split
and AND-join must be separated.

There may be several reasons for warning for non-
free-choice constructs. Most of the workflow manage-
ment systems available at the moment abstract from
states between tasks, i.e., states are not represented
explicitly. These workflow management systems use
the AND-split, AND-join, OR-split, and OR-join as
standard building blocks to specify workflow proce-
dures. Because these systems abstract from states, ev-
ery choice is madeinsidean OR-split building block. If
we model such an OR-split in terms of a P/T net, the
OR-split corresponds to a number of transitions shar-
ing the same set of input places. This means that, for
these workflow management systems, a workflow pro-
cedure corresponds to a free-choice P/T net. Only a few
workflow management systems (e.g. COSA, INCOME,
LEU, and MOBILE) allow for constructs that yield a
non-free-choice WF net. Therefore, it makes sense to
consider free-choice P/T nets. Clearly, parallelism, se-
quential routing, conditional routing, and iteration can
be modeled without violating the free-choice property.
Another reason for restricting WF nets to free-choice
P/T nets is the following. If we allow non-free-choice
P/T nets, then the choice between conflicting tasks may
be influenced by the order in which the preceding tasks
are executed. (In P/T-net terminology, this is called
confusion.) The routing of a case should be indepen-
dent of the order in which tasks are executed. As in-
dicated before, a situation where the free-choice prop-
erty is violated is often a mixture of parallelism and
choice. Therefore, Woflan supplies diagnostics for trac-
ing non-free-choice constructs. However, note that non-
free-choice clusters are not always incorrect. Some-
times, complex routing constructs cannot be modeled
with free-choice WF nets; in other occasions, non-free-
choice constructs might yield more concise models.

NetNof Figure1 has no non-free-choice clusters and
is hence free-choice.

4.2.3 Well-structuredness

A balance between AND/OR-splits and AND/OR-joins
characterizes a good workflow design. Clearly, two
parallel flows initiated by an AND-split, should not be
joined by an OR-join. Two alternative flows created via
an OR-split, should not be synchronized by an AND-
join. From a workflow point of view, the situations as
depicted in Figure8 are suspicious.

In the leftmost situation, an AND-split is terminated
by an OR-join. Tasks of a case are executed in parallel,
but, after one branch gets fulfilled, both branches are
fulfilled. The condition corresponding to placeP can
even be fulfilled twice. In a workflow such a condition
is often an error. In P/T-net terminology, this means
that usually all places of a WF net should be safe. Note
that this kind of error may lead to unboundedness of the
short-circuited net and hence to unsoundness.
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Figure 8: AND/OR mismatches

Figure 9: A non-well-handled pair inN

In the rightmost situation, an OR-split is terminated
by an AND-join. One of the alternative tasks will be
executed for the case. However, the task corresponding
to transitionT synchronizes both branches and needs
both its preconditions to be fulfilled; it will never be
executed. Note that this kind of error may lead to a
non-live short-circuited net and hence to unsoundness.

Both situations describe a so-called non-well-
handled pair (see DefinitionXI): A transition-place pair
with two disjoint paths leading from one to the other.
The leftmost situation describes a TP-handle, the right-
most a PT-handle (see DefinitionX).

Recall from DefinitionXXVIII that a WF netN is
well-structured iff the short-circuited netN is well-
handled. Although a non-well-handled pair inN is of-
ten a sign of potential errors, a WF net that is not well-
structured can still be sound.

According to the analysis of Woflan depicted in Fig-
ure6, our example netN is not well-structured. The de-
tailed diagnostic information provided by Woflan shows
that there are three non-well-handled pairs. One of them
is displayed graphically by the P/T net in Figure9,
where the non-well-handled pair is(register , c4 ).
Note that, because of the non-well-handled pair, the
condition c4 might get fulfilled twice, which endan-
gers the boundedness of system(N, [i ]) and thus the
soundness of netN.

Well-structured WF nets and free-choice WF nets
have similar properties. In both cases, soundness can
be verified in polynomial time and soundness implies
safeness (see Section3.4.4). In spite of these similari-

ties, there are sound well-structured WF-nets which are
not free-choice and there are sound free-choice WF-
nets which are not well-structured. In fact, it is pos-
sible to have a sound WF-net that is neither free-choice
nor well-structured. Notwithstanding these observa-
tions, the two structural characterizations (free-choice
and well-structuredness) turn out to be very useful for
the analysis of workflow process definitions. Both well-
structuredness and the free-choice property correspond
to desirable properties of a workflow. A WF net satis-
fying one of these properties can be analyzed very effi-
ciently and is easy to interpret. However, for more ad-
vanced routing constructs non-free-choice nets and/or
non-well-structured nets are inevitable. In such nets,
soundness-endangering constructs are compensated by
other constructs.

4.2.4 S-coverability

From a workflow point of view, we would like to see a
case as a set of parallelthreads. Each such thread spec-
ifies that certain tasks have to be executed in a certain
order to get a certain piece of work completed. In our
example, we have two such threads:

1. The first thread handles the piece of work associ-
ated with the complaint form: After registration,
we first have to send the form to the complainant.
Second, we can either receive it back or a timeout
occurs. Finally, the returned form or the fact that it
was not returned in time is archived.

2. The second thread handles the piece of work as-
sociated with the complaint itself: After registra-
tion, we first have to evaluate the complaint. Sec-
ond, depending on the evaluation (do or dont ),
we process it followed by a check. Third, depend-
ing on the result of the check (done or redo ), we
process it again. Finally, we archive it.

A place that does not belong to one of these threads
is a suspicious place, because it cannot be related to a
logical piece of work.

The idea of threads is reflected by the S-components
in the short-circuited WF net: Every S-component in
that short-circuited net corresponds to a logical piece of
work in the workflow. Recall that an S-component is
a (strongly connected) state machine which is embed-
ded in a P/T net (see DefinitionXV) and that for each
S-component in a P/T net the number of tokens in its
places is always constant. From the strongly connect-
edness of S-components and the structure of WF nets, it
follows that an S-component in a short-circuited sound
WF net always contains the short-circuiting transitiont
and the two special placesi ando. Assuming the ini-
tial marking [i ], every place in an S-component is safe
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Figure 10: S-components in the short-circuited netN

and bounded, and the system corresponding to a short-
circuited WF net that is S-coverable is safe and thus
bounded too (see TheoremVI). In addition, sincei is
an element of all S-components in an S-coverable net,
every S-component contains exactly one token in every
marking reachable from [i ]. This observation conforms
to the intuitive notion of threads.

It appears that any WF net should satisfy the require-
ment that its short-circuited net is S-coverable ([4]). Al-
though it is possible to construct a sound WF net with
a short-circuited net that is not S-coverable, the places
that are not S-coverable in sound WF nets typically do
not restrict transitions from being enabled and are thus
superfluous. Note that S-coverability is not a sufficient
requirement: It is possible to construct an unsound WF
net with an S-coverable short-circuited net.

The detailed information that Woflan provides on
S-coverability consists of the set of all S-components
(in textual format) and the set of all nodes which are
not covered by these S-components. (For readability,
the short-circuiting transitiont , which is part of all S-
components, is not listed.) Figure10 shows us both
S-components for the short-circuited netN. Note that
placec8 is not covered by any of them and is thus not
S-coverable.

4.2.5 Invariants

Woflan provides detailed information on place- and
transition-invariants of a WF net.

Place-invariants can provide useful information in
case a WF net does not satisfy the proper-completion
property. As mentioned before, the net of Figure1 has
a place-invarianti + c1 + c3 + c5 + o. Because
we know that initially there is one token in placei and
upon completion there is one token ino, we conclude
that c1 , c3 , andc5 are empty upon completion. The
only place which does not occur in any place-invariant

is placec8 . Therefore, this place is suspicious: It may
be unbounded. In general, place-invariants provide ad-
ditional information when compared to S-components.
In our example, the information thatc8 may be un-
bounded was already deduced in the previous paragraph
from the fact that it is not S-coverable.

Transition-invariants provide useful information
about cycles and alternative routes. Consider for in-
stance the invariantrec + process + redo −
timeout . From this invariant, we deduce that per-
forming the tasktimeout (all negative weighted tran-
sitions) results in the same state of the workflow as per-
forming the tasksrec , process , andredo (all pos-
itive weighted transitions). Note that an invariant con-
taining only nonnegative weights corresponds to a cy-
cle in the workflow: The state of the workflow does not
change when all the tasks with a positive weight in the
invariant are performed (as many times as indicated by
their weight). Therefore, in our example of Figure1, we
would expect the invariantprocess + redo . How-
ever, this is not an invariant of the net, which suggests
thatprocess andredo do not form a cycle. Clearly,
this is a sign of a potential error.

As mentioned in Section2, a P/T net has either no
place-(transition-)invariants or it has infinitely many
place-(transition-)invariants. It is impossible to dis-
play infinitely many invariants. Therefore, we have to
make a representative selection out of these invariants.
Woflan offers three of such selections: base, extended,
and semi-positive invariants.

• The base invariants as computed by Woflan form
a minimal set of invariants needed to construct all
invariants using addition and subtraction as opera-
tors.

• For the extended invariants as computed by
Woflan, every possible set of places and transitions
is checked whether there is an invariant for them.

• An invariant is called semi-positive iff all its
weights are nonnegative. The semi-positive invari-
ants as computed by Woflan form a minimal set
of invariants, needed to construct all semi-positive
invariants.

4.3 Behavioral properties

To determine the behavioral properties of a WF netN,
Woflan computes a CG of the short-circuited WF sys-
tem (N, [i ]). The construction of a CG requires, in
the worst case, non-primitive recursive space. It is un-
known what the exact complexity of deciding sound-
ness for an arbitrary WF net is. Since soundness
corresponds to liveness and boundedness, it is likely
that the complexity of deciding soundness is at least
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Figure 11: Woflan’s summary after the CG has been
generated

EXPSPACE-hard. See [11(Section 4.3),17] for point-
ers to literature on this topic.

Woflan generates a CG for the short-circuited WF
system when the buttonGenerate graph in Figure
6 is pressed. After generating the CG, the summary dis-
play looks as in Figure11. The number of markings in
the graph (States ) is reported and so is an indication
of the graph’s complexity. This complexity is given by
the following formula:

Complexity=
Places

5
+

Transitions

10
+

Connections

10
+

10(10log(States))

This formula is based on experience with practical
workflow processes. It is an indicator for the complex-
ity of the routing. The more tasks and connections there
are and the more reachable states there are, the higher
the complexity. Workflow processes with a complexity
of less than 25 are easy to understand. Processes with
a complexity of more than 100 are really difficult to
grasp. Furthermore, Woflan reports information on four
behavioral properties of theshort-circuitedWF system
S= (N, [i ]) and on the soundness ofN itself:

i. WhetherS is bounded;

ii. whetherS is safe;

iii. whetherS is live;

iv. whetherScontains dead transitions and

v. whetherN is sound.

Recall that the WF netN is sound iff S is bounded
and live (TheoremI).

4.3.1 Boundedness

The detailed information on the boundedness property
provided by Woflan consists of the set of unbounded
places. An unbounded place inS always indicates a
soundness error inN. Most likely, this error is due
to improper completion: Improper completion ofN al-
ways results in unbounded places inS (TheoremVII ).

In our systemS of Figure4, the placec8 turns out
to be unbounded. As a result, the WF netNof Figure1
cannot be sound. Note that this place is the only place
that is not S-coverable (see Section4.2.4).

4.3.2 Safeness

The detailed information on the safeness property con-
sists of the set of unsafe places. Recall that an un-
bounded place is also unsafe. We already know that un-
bounded places always indicate errors. However, also a
bounded place which is unsafe is suspicious, although
the WF net may still be sound. Note that such sound
WF nets cannot be free-choice (TheoremIII and The-
oremVI) or well-structured (TheoremV and Theorem
VI).

From a workflow point of view, an unsafe place cor-
responds to a condition that can be fulfilled more than
once at a single point in time, which is often an abnor-
mal situation.

In systemS of Figure4, only the (unbounded) place
c8 is unsafe. Because netN is free-choice, we know
thatNcannot be sound.

4.3.3 Deadness

The detailed information on the deadness property con-
sists of the set of dead transitions inS. As a work-
flow designer, we are interested in the transitions that
are dead inS = (N, [i ]). A dead transition inS cor-
responds to a task in the workflow that can never be
executed. A transition that is dead inS is also dead in
S. However, a transition that is dead inS might not be
dead in the short-circuited systemS. This means that
the information provided by Woflan is useful but not
necessarily complete. The reason that Woflan provides
the dead transitions inS is that it uses the CG it has
computed forS to calculate these transitions. However,
under the assumption of boundedness, a transition that
is dead inS is also dead inS (see TheoremXII in Sec-
tion 7.2.3). In this case, the information provided by
Woflan is complete and accurate.

Our example systemS of Figure4 contains no dead
transitions. However, becauseS is not bounded, we
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may not conclude that netN contains no tasks that can-
not be executed.

4.3.4 Liveness

The detailed information of Woflan on the liveness
property consists of a (sub)set of the transitions that
are not live in the short-circuited systemS. Woflan de-
termines these transitions from the computed CG ofS.
As a result, Woflan may not find the complete set of
non-live transitions. However, under the assumption of
boundedness, which means that the CG ofS equals its
OG, the set is complete.

Recall that soundness of a netN is equivalent to the
boundedness and liveness of the short-circuited system
S = (N, [i ]). Thus, a non-live transition inS always
indicates a soundness error inN. Most likely, this er-
ror is caused becauseN lacks the option to complete
(TheoremVIII ).

In systemS of Figure4, all transitions are non-live,
while none of them is reported dead. Although we now
know that there are liveness errors, the set of non-live
transitions does not help us towards locating the error:
The information that all transitions inS are non-live is
not sufficiently specific.

4.4 Diagnosing the example net

As we have seen, the netN of Figure 1 is a WF net
that is not sound, because the short-circuited systemS
is unbounded and non-live. Woflan’s diagnosis clearly
indicates that there is something wrong with placec8 :
It is not S-coverable in the short-circuited netNand it is
unbounded in the systemS. This unbounded behavior
can be caused only when transitionprocess is not ex-
ecuted as many times as transitionrec . This is clearly
the case, because we do not have to process a complaint
even if the form has been returned in time. Adding an
arc fromc8 to archive can solve this problem. In
case a complaint is not processed,archive removes
the token inc8 , thus guaranteeing proper termination.

Recall that PT-handles endanger liveness, whereas
TP-handles endanger boundedness. If we take a look
at the TP-handle of Figure9, we must ask ourselves the
question howc8 can be unbounded, whilec4 andc6
are safe. There appears to be something wrong with
transitionprocess . The arc connectingc4 to process
preventsc4 andc6 from being unsafe, but introduces
a cyclic pathprocess c6 redo c4 . This path needs
c8 as input, butc8 does not get any output from the cy-
cle. Such a cycle cannot function correctly: It can only
be executed once. Adding an arc fromprocess to c8
can solve this error. Informally, conditionc8 means
that the complainant has returned the form. In the origi-
nal process, taskprocess falsifies this condition by
removing the token inc8 : This is clearly incorrect.

Figure 12: The only PT-handle in netN

Figure 13: The corrected example net

The correction suggested above means that process only
checks the condition modeled byc8 .

Woflan also diagnoses that all transitions in the short-
circuited systemS are non-live. To solve this error,
we take a look at the only PT-handle(c3 ,archive )

that Woflan reports, which is displayed in Figure12.
From this PT-handle, we conclude that a problem oc-
curs when a form is not received in time (timeout )
while it needs to be processed (process ). Accord-
ing to the original workflow, a complaint can only be
processed if we receive the form of the complainant in
time! It is obvious that we must be able to process even
in case of a time-out. Adding an arc fromtimeout to
c8 can solve this problem.

After adding the arcs mentioned above, the net looks
as in Figure13 and is sound. In general, a workflow
net need not be sound after one correction iteration, but
in this case it is. Note that the non-well-handled pair
(register , c4 ) is still present in Figure13. Sound-
ness does not imply well-structuredness.

Although the net in Figure13is sound, it may still be
worthwhile to have a closer look at Woflan’s diagnosis.
The net in Figure13has a place-invariantc5 −c8 . Be-
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Figure 14: The corrected net withc8 removed

causec5 andc8 initially have the same number of to-
kens (initially, they are both empty), this invariant tells
us thatc5 andc8 will always have the same number
of tokens. So, if there is a token inc8 , there also must
be a token inc5 . As a result, we can add arcs from
process to c5 and vice versa without changing the
behavior of the net. After these arcs have been added,
the placesc5 andc8 share their preset and their post-
set: they have become equivalent places. Therefore, one
of them can be removed without changing the behavior.
If we removec8 , the net becomes as is shown in Fig-
ure14. The net of Figure14 has the same behavior as
the net of Figure13, assuming [i ] as the initial mark-
ing. This example shows that Woflan can also be used
to simplify WF nets that are already sound.

4.5 Concluding remarks

Woflan can tell whether a given P/T net is a WF net
and whether a WF net is sound. However, there are two
points that can be improved.

First, in case of a behavioral error, i.e., a violation
of the requirements of DefinitionXXVII , Woflan’s di-
agnosis might not always be helpful inlocating the er-
ror. In the example netN, it was detected that the short-
circuited systemS= (N, [i ]) was not live, but all tran-
sitions were reported to be non-live. We may have a
similar situation with unboundedness: if a net is un-
bounded, all places may be unbounded. The diagnosis
of the running example also shows that the interpreta-
tion of structural properties to solve behavioral errors,
like unboundedness and non-liveness, is not straight-
forward. This problem becomes worse for workflow
processes with a larger complexity than the example.
Based on these observations, we would like to have ad-
ditional properties that guide us towards locating behav-

ioral errors.
Second, some errors are easier to detect and to cor-

rect than others. It might be the case that correcting
one simple error solves several, possibly hard to detect,
other errors. For instance, structural errors are often a
source for behavioral errors. Thus, if Woflan detects
a structural error, there is no need to try to solve be-
havioral errors: Solving the structural error affects the
behavior of the system and might solve the behavioral
errors. In case of several related errors in a WF net, we
need Woflan to guide us to finding and correcting that
error that is most likely the source of the other errors.

To obtain the desired improvements, in the remainder
of this paper, we

• introduce behavioral error sequences to help us lo-
cate behavioral errors,

• report on a case study which was used to investi-
gate whether these sequences are useful in obtain-
ing the above mentioned goals, and

• introduce a method based on the results of the
case study and incorporating behavioral error se-
quences.

For more information on (older versions of) Woflan,
we refer to [2, 5, 7, 19]. The architecture and a brief
overview of the functionality of Woflan 1.0 is given in
[2, 19]. More information on the interfaces with work-
flow products such as COSA and Protos can be found
in [5, 7].

5 Behavioral error sequences

5.1 Introduction

Structural errors in a P/T net modeling a workflow, i.e.,
violations of the requirements of DefinitionXXVI , are
generally easy to find and to correct. Behavioral er-
rors, i.e., violations of DefinitionXXVII , are more dif-
ficult to locate and to correct. To overcome this prob-
lem, we introduce so-called behavioral error sequences.
The idea for these sequences is relatively simple: De-
termine firing sequences of minimal length, such that
everycontinuation of that sequence leads to an error.
One can think of behavioral error sequences asscenar-
ios that capture the essence of errors made in the work-
flow design. Depending on the kind of error a workflow
designer is interested in, different types of behavioral
error sequences can be helpful to diagnose the design.
In this section, we introduce a type of behavioral error
sequences calledunsound sequencesthat are particular
useful for diagnosing soundness-related behavioral er-
rors.

21



Figure 15: [o] reachable in OG, but not present in CG

5.2 Unsound sequences

In a WF system, a soundness-related behavioral error
means that either the case cannot be completed or it can
be completed but not properly. Recall that the mark-
ing [o] corresponds to proper completion. For defin-
ing unsound sequences, we would like to use the OG
of the WF system. Given the OG of a WF system
S= (N, [i ]), an unsound sequence is a firing sequence
of minimal length from which it is impossible to com-
plete properly, i.e., from which it is impossible to reach
the state [o].

However, as mentioned earlier, the OG of a system
may be infinite and thus cannot always be constructed.
As a result, unsound sequences as defined above cannot
always be computed from the OG. In Section2.3.4, we
have introduced the notion of a CG of a system as an al-
ternative for its OG that is always finite. Unfortunately,
a CG cannot be used to compute the unsound sequences
accurately, as the example system of Figure15 shows.
It is straightforward to see that, in this example system,
the firing sequenceT U V Wleads to state [o] and that
the firing sequenceT U V Vis unsound. However, the
state [o] does not even occur in its (only) CG, as can be
seen in Figure16. In this CG, firing sequenceT U V W
leads to state [c1ω, c2ω,oω] and not to [o]! According
to the CG, proper completion is not possible.

Despite the above observation, we have decided to
compute unsound sequences of a WF system from a CG
of this system. The CG-generation algorithm is already
available in Woflan and there is no straightforward alter-
native to calculate unsound sequences as defined above
accurately. Furthermore, in many cases, a CG is a suffi-
ciently accurate approximation of the OG of a WF sys-
tem to provide the proper set of unsound sequences.

Let S be a WF system andG a coverability graph of
this system. In the remainder we define an (non-empty)
unsound sequence as a firing sequence that ends in a
markingM

• from which there is no path inG to [o] and

• that has an immediate predecessorM1 from which
there is a path inG to [o].

Figure 16: CG of the example from Figure15

Apparently, the transition which led from markingM1
to markingM removes the option to complete properly
(according to the CGG). To determine which markings
in G can act asM and M1, we partition the markings
into three parts:

i. red markings, from which there is no path to [o],

ii. green markings, from which all paths lead to [o],
and

iii. yellow marking, from which some but not all paths
lead to [o].

Only a red marking can possibly act asM , whereas only
a yellow marking can possibly act asM1. All we need
to do now is to find arcs inG which connect a yellow
marking to a red marking. The label of such an arc gives
us the name of the transition whose firing removes the
option to complete properly. Any minimal path from
the initial marking [i ] to M in G corresponds to an un-
sound sequence.

Notation (CG reachability)
Let S= (N, [i ]) be a WF system; letG = (H, A) be a
CG of S and letM,M1 ∈ H be extended markings of
N. The markingM is CG reachable from markingM1,
denotedM1 H⇒ M , iff there exists a path inG from
M1 to M .

Definition XXIX (CG partitions for soundness)
Let S= (N, [i ]) be a WF system; letG = (H, A) be a
CG of S. We partitionH into three parts:

i. HR = {M ∈ H |¬(M H⇒ [o])},
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ii. HG = {M ∈ H |M H⇒ [o] ∧ ¬∃MR ∈ HR :
M H⇒ MR}, and

iii. HY = H \ (HG ∪ HR).

Remarks:

• If there are no red markings, there can be no yellow
markings:HR = ∅ implies HY = ∅.

• If there are no green markings, there can be no yel-
low markings:HG = ∅ implies HY = ∅.

• Successors of an infinite marking are always in-
finite; so, from an infinite marking, [o] is never
reachable. All infinite markings are red, which
means that all green and yellow markings are fi-
nite: HG ∪ HY ⊆ B(P).

• Soundness of a WF net implies that all markings
are green:H = HG, but not vice versa (there still
may be dead transitions!).

• If there is no way to complete properly, then all
markings are red: [o] 6∈ H implies H = HR.

• If there is a way to complete properly, then the tar-
get marking is green (becauseo• = ∅): [o] ∈ H
implies [o] ∈ HG.

Given a CG of a WF system and the above partition-
ing of this CG, we can define the unsound sequences
formally.

Definition XXX (Unsound sequences)
Let (N, [i ]) be a WF system with CGG = (H, A).
Let HR and HY be defined as in DefinitionXXIX .
If [ i ] ∈ HR, then the occurrence sequence [i ]
is called unsound. An occurrence sequences =
[i ]t0M1 . . . tn−2Mn−1tn−1Mn, for some positive natu-
ral numbern, is called unsound iffMn ∈ HR and
Mn−1 ∈ HY. A firing sequence of a WF system is
called unsound iff its associated occurrence sequence
is unsound.

By examining unsound sequences of a WF system,
we can correct the WF net.

Theorem IX (Unsound sequences vs. soundness)
Let (N, [i ]) be a WF system without dead transitions.
Then,N is sound iff(N, [i ]) has no unsound sequences.

Proof This follows immediately from Definition
XXVII (soundness) and DefinitionXXX (unsound se-
quences).

The most valuable information in an unsound se-
quence is the combination of its last two markings
(Mn−1 ∈ HY and Mn ∈ HR) and its last transition
(tn−1). The only interest we have in the sequence’s
prefix ([i ]t0M1 . . . tn−2) is that it gives us a path which
leads to the last-but-one marking. Note that it is possi-
ble that several unsound sequences have the same suffix
Mn−1tn−1Mn.

5.3 Diagnosing the example net

Using the technique of unsound sequences, we diagnose
the WF systemS of Figure2. It is interesting to com-
pare this diagnosis with the diagnosis made in Section
4.4.

First, we compute and partition a CG, as is shown
in Figure 17. Note that it is not necessary to short-
circuit systemS for determining unsound sequences.
Also note that this CG equals the OG ofS, because it
contains no infinite markings. The meaning of the thick
arrows in Figure17 is explained in the next subsection.
Second, we compute from the partitioned CG the un-
sound sequences. In this case, there are nine unsound
sequences.

i. register send rec dont

ii. register send dont rec

iii. register dont send rec

iv. register send rec do process redo

v. register send do rec process redo

vi. register do send rec process redo

vii. register send timeout do

viii. register send do timeout

ix. register do send timeout

Observe that sequences that are

• permutations of the same set of transitions and

• end with the same last transition

all provide the same diagnostic information. In our ex-
ample, the sequencesii andiii provide identical infor-
mation, as well as sequencesiv, v, andvi and sequences
viii andix. Thus, it suffices to consider only a single se-
quence of such a set.

Sequencesi andii tell us that the combinationrec
anddont is fatal, because the token inc8 is not re-
moved, which results in the marking [c5 , c7 , c8 ]. Fir-
ing transitionarchive in that marking results in the
marking [c8 ,o]. Note that, due to this error, the place
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Figure 17: The partitioned CG for systemS

c8 is unbounded in the short-circuited system. Requir-
ing thatarchive removes the token inc8 can repair
this error.

Sequencesvii andviii tell us thattimeout has to
put a token inc8 ; otherwise, the complaint cannot be
processed in case the form is not received in time.

Sequenceiv tells us that a complaint can only be pro-
cessed once because no transition is putting a token
back inc8 once it is removed. Transitionprocess
could take care of this. Note that the pairredo /dont
could also take care of this.

The net that results of the suggested corrections is
the sound WF net of Figure13. The above examples
clearly indicate that the unsound sequences can be seen
as doomsday scenarios. As such, they are particularly
useful for tracing the source of an error. They are a
useful technique that is complementary to the analysis
techniques already implemented in Woflan 1.2 (see Sec-
tion 4).

5.4 Implementation

The technique of unsound sequences is implemented in
a new version of Woflan, namely version 1.3. This ver-
sion incorporates all the functionality of version 1.2, ex-
tending it with information on unsound sequences of a
WF system. Based on the observation made in the pre-
vious subsection that there may be unsound sequences
that provide identical diagnostic information, Woflan
1.3 provides only one of those unsound sequences. In
this subsection, we discuss implementation issues con-
cerning Woflan 1.3. When performing the case study
as presented in Section 6 with a prototype of Woflan
1.3, we encountered problems with the size of the CGs
of workflow systems. Therefore, we implemented in
the final release of Woflan 1.3 a restricted CG that still
contains sufficient information to compute behavioral
properties.

5.4.1 Restricted CG

During the case study, problems arose when trying to
construct CGs for the short-circuited WF systems. In
particular forunboundedshort-circuited WF systems,
the CGs could be too large to handle by the prototype
of Woflan 1.3. As a result, behavioral properties could
not be determined. In Woflan 1.3, three kinds of be-
havioral properties are provided: boundedness-related
properties (boundedness and safeness), liveness-related
properties (liveness and dead transitions), and behav-
ioral error sequences (unsound sequences).

A simple observation partly alleviates the problem of
large CGs: Infinite markings have only infinite succes-
sors. For determining boundedness-related properties
and behavioral error sequences, it is not necessary to
consider successors of infinite markings. This observa-
tion leads to the following notion of a restricted CG.

Definition XXXI (Restricted CG) Let S =

((P, T, F),M0) be a system, letH ∈ Bω(P) be
a set of extended markings, letA ⊆ (H × T × H) be
a set ofT-labeled arcs, and letG = (H, A) be a graph
which can be constructed as follows:

i. Initially, H = {M0} andA = ∅.

ii. Take afinite M from H and a t from T such
that M enablest and such that noM1 exists with
(M, t,M−1) ∈ A. Let M2 = M−•t+t•. Add M3
to H and(M, t,M3) to A, where for everyp ∈ P:

(a) M3(p) = ω, if there exists a nodeM1 in H
such thatM1 ≤ M2, M1(p) < M2(p), and
there exists a path fromM1 to M in G;

(b) M3(p) = M2(p), otherwise.

Repeat this step until no new arcs can be added.

G is called a restricted CG (RCG) ofS.

Note that the only difference with the construction of
a CG of Section2.3.4is that we restrict the markingM
in stepii to be finite. As an example, compare the CG of
the short-circuited system of Figure4depicted in Figure
5 with the RCG of Figure18. For this simple example,
the RCG is approximately half the size of the CG. Note
that if a system is bounded the RCG-generation algo-
rithm and the CG-generation algorithm both yield the
OG of the system.

Woflan 1.3 uses an RCG of a short-circuited system
S to compute boundedness-related and liveness-related
properties ofS, whereas Woflan 1.2 uses a CG ofS.
This has several consequences.

First, it is clear thatS is bounded iff there are no infi-
nite markings in the computed RCG. This means that an
RCG is sufficient to accurately compute the bounded-
ness property. The same is true for safeness. Recall that
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Figure 18: The RCG of the short-circuited example net

Woflan 1.2 also provides detailed information about un-
bounded places and unsafe places. When the same sys-
tem is analyzed by Woflan 1.2 and Woflan 1.3, the set of
unbounded places found by Woflan 1.3 is a subset of the
set found by Woflan 1.2. The reason is that Woflan 1.3
does not find places that are only unbounded because
other places are unbounded. This is a positive effect
when considering the goals set out in Section4.4. It is
also possible that Woflan 1.3 does not find some places
that are unsafe. However, in such cases the unsafeness
is always caused by another error.

Second, in case a system is unbounded, Woflan 1.3
omits liveness-related information, because the RCG
is not usable to determine non-live transitions or dead
transitions. Recall that in case of unbounded systems
the liveness property, as presented by Woflan 1.2, is
not always accurate in the sense that the set of non-live
transitions found by Woflan 1.2 might not be complete.
Since for bounded systems the RCG equals the CG and
the OG, Woflan 1.3 presents liveness-related informa-
tion in this case (which is identical to the information
as presented by Woflan 1.2).

Finally, it is straightforward to see that an RCG can
be used to compute the unsound sequences of a WF sys-
tem. Consider the partitioning of a CG given in Defini-
tion XXIX . Since infinite markings are always red, it is
clear that successors of infinite markings are also red.
Therefore, the part of a CG that is omitted in an RCG
is not used when constructing unsound sequences. This
means that unsound sequences can be computed by ap-
plying the partitioning of DefinitionXXIX to an RCG.

Summarizing, by using an RCG instead of a CG,
boundedness-related information becomes more accu-
rate, liveness-related information is unusable in case a
system is unbounded, and behavioral error sequences
do not change. A clear advantage of using an RCG in-
stead of a CG is that for unbounded systems an RCG is
often much smaller than a CG.

5.4.2 Generating an RCG

The routines needed for generating CGs are already
available in Woflan 1.2. For navigating a CG, Woflan
builds aspanning treefor every CG. In general, a span-
ning tree of a graph is a connected subgraph in the form
of a tree that contains all the nodes. The tree-constraint
means that between every two nodes there is exactly one
undirected path. A spanning tree of a CG can be con-
structed in a straightforward way during the construc-
tion of the CG. An example of a spanning tree can be
found in Figure17: The thick arcs constitute a spanning
tree.

It is straightforward to adapt the existing routines in
Woflan 1.2 such that an RCG (with a spanning tree) is
constructed instead of a CG. To compute possible un-
sound sequences of a systemS, Woflan 1.3 first com-
putes an RCG ofS. Second, it partitions the computed
RCG. Third, it computes the unsound sequences, us-
ing the spanning tree to determine a minimal set of se-
quences as explained in Section5.3. Finally, to com-
pute boundedness-related and liveness-related proper-
ties, Woflan 1.3 extends the RCG ofS to an RCG of the
short-circuited systemS.

5.4.3 Computing unsound sequences

The algorithm for partitioning an RCG as implemented
in Woflan 1.3 is linear in the size (nodes+arcs) of the
RCG. An RCG is partitioned by the following steps.

1. Color all markings red.

2. Search for marking [o]; if it is found, color it
green and, repeatedly, color all red predecessors
of ’fresh’ green markings green. After this step,
which consist of at most two complete traversals
of the RCG, the red markings are exactly those
markings from which [o] is not reachable (HR of
Definition XXIX ); the green markings correspond
to the union of the setsHG and HY of Definition
XXIX .

3. Search for red markings with an immediate green
predecessor; for each such a marking found,
color its green predecessors yellow and, repeat-
edly, color all green predecessors of ’fresh’ yellow
markings yellow as well. After this step, which
also consists of at most two complete traversals of
the RCG, the yellow markings are exactly those
markings, from which [o] is reachable and a red
marking is reachable (HY of DefinitionXXIX ). As
a result, the green markings are exactly the mark-
ings from which it is always possible to reach [o]
(HG of DefinitionXXIX ).

As mentioned before, Woflan uses the spanning tree
of an RCG to compute a minimal set of unsound se-
quences. In general, a CG has many possible spanning
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Figure 19: Unsound sequences for systemS

trees. Theroot of a spanning tree is the only node that
has no incoming arcs. For our application, it is unim-
portant which spanning tree is used, as long as node [i ]
is the root. The example spanning tree as depicted in
Figure17satisfies this requirement.

Given a partitioning of an RCG and a spanning tree
with root [i ], unsound sequences can be calculated by at
most two complete traversals of the RCG. First, Woflan
searches for red markings with an immediate yellow
predecessor. Second, if it finds such a pair, it traces
the path from the yellow marking back to [i ] using the
spanning tree. This path together with the transition that
connects the yellow to the red node forms an unsound
firing sequence.

Consider the CG of Figure17, which is also an RCG,
because it contains no infinite markings. Given the de-
picted spanning tree, we can minimize the set of nine
unsound sequences given in Section5.3 to a set of five
unsound sequences, namely the set containingi, ii , iv,
vii , andviii . Figure19 shows sequencei as presented
by Woflan 1.3.

5.5 Concluding remarks

The technique for behavioral error sequences appears
to be useful in the analysis of WF nets. The technique
of unsound sequences is implemented in Woflan 1.3.
Woflan 1.3 uses a variant of a CG called a restricted
CG (RCG) to compute behavioral properties of a WF
system. The main reason for using an RCG is that it
improves performance when compared to using a CG.
The complexity of the algorithm to compute unsound
sequences for a system is linear in the size of the com-
puted RCG of the system.

An interesting future extension of Woflan is the visu-

alization of behavioral error sequences. A good way to
visualize sequences is by using so-calledruns[12]. The
set of runs of a P/T net is a compact partial-order-based
representation of the semantics of the P/T net. An inter-
esting aspect of a run is that it can be visualized in an
intuitive way as a P/T net itself.

In the running example, the five sequences calculated
by Woflan 1.3 (sequencesi, ii , iv, vii , andviii of Section
5.3) can be displayed graphically by only three runs,
which are shown in Figure20. The first run embeds
the sequencesi and ii ; the second one corresponds to
sequenceiv and the third run embeds the sequencesvii
andviii . At the moment, work is being done on an in-
terface between Woflan and VIPtool. VIPtool [14] is
a software package developed by members of AIFB of
the University of Karlsruhe that is capable of generating
and visualizing runs for both P/T systems and colored-
Petri-net systems.

6 Case study: travel agency

6.1 Introduction

To test the applicability of Woflan 1.3 in general and
its extension with unsound sequences in particular, we
performed a case study. Given a description of a
travel agency at a university (see AppendixA.1), twenty
groups of students had to model the workflow as a fi-
nal assignment for a course on workflow management.
Fourteen of these groups consisted of industrial engi-
neers from the Eindhoven University of Technology;
the other six consisted of computing-science engineers
of the University of Karlsruhe. For this assignment, the
students involved used Protos (Pallas Athena) as a mod-
eling tool (see Figure21).

Using Protos’ export facility to Woflan it is easy to
analyze a Protos model with Woflan (see Figure22).

From the Eindhoven collection of reports, we se-
lected eleven reasonably looking solutions; three re-
ports were so poor that analyzing the Protos model by
means of Woflan was not very meaningful. From the
Karlsruhe collection, all reports were selected. We ana-
lyzed the selected nets using Woflan 1.3 and tried to cor-
rect them if necessary, i.e., we tried to get them sound if
they were not. The number of transitions of the models
analyzed ranges from 54 to 89 and the complexity cal-
culated by Woflan ranges from 43 to 70. These numbers
show that the case study was performed on workflow
models of more than reasonable size. An example of a
sound Protos model can be found in AppendixA.2.

The case study was performed on a Pentium 200 PC
with 128 Mb of RAM running Windows NT 4.0.
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Figure 20: Three runs embedding all five unsound se-
quences

Figure 21: Example Protos model

Figure 22: Example Woflan diagnosis
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6.2 Diagnosis

The groups of Eindhoven consisted of industrial engi-
neers, which had only a little prior experience in model-
ing and no background in formal verification. Verifica-
tion of workflows was only a minor topic of the course
Workflow Management & Groupware(1R420) and the
students did not practice with Woflan. Although the
groups were told to simulate the system by hand (play
thetoken game) to test their model, not one of them was
able to produce a model which was sound.

In contrast to the groups of Eindhoven, the groups
taking the courseWorkflow Management: Models,
Methods, and Tools(25756) in Karlsruhe consisted of
computing-science engineers, which did have a back-
ground in modeling and verification. Furthermore, the
importance of making a correct workflow was empha-
sized and analysis techniques for P/T nets and WF nets
were treated in the course. In addition, they practiced
with Woflan 1.2 on small examples. However, none of
the groups used Woflan to check their solution to the
assignment. In the end, the Karlsruhe groups delivered
better nets than the Eindhoven groups. Of the seventeen
nets, five appeared to be sound, which were all from
Karlsruhe groups. Table1 shows an overview of our
efforts to diagnose the workflow processes in the seven-
teen reports. It contains the following information:

• The elapsed time, i.e., the estimated time it took to
produce a sound WF net.

• The number of iterations needed to produce a
sound WF net.

• Diagnostic information about the initial net.

• Diagnosis of the initial net.

For the diagnosis, the following keywords are used
(see also Section3.2):

• OR-split: an AND-split (start of parallel branches)
should have been an OR-split (alternative
branches).

• OR-join: an AND-join (end of parallel branches)
should have been an OR-join (end of alternative
branches).

• AND-join: an OR-join should have been an AND-
join.

• Attributes: attributes were used to keep different
but dependent choices consistent. Woflan cannot
handle attributes; they have to be modeled explic-
itly in the workflow.

• Flow error: Arcs had to be added or deleted be-
tween existing nodes.

Group Models Diagnosis
Elapsed Symptoms University
time (h:m)

1 0:11 3 Unbounded,
not live

Attributes,
flow error

Eindhoven

2 0:02 1 Unbounded OR-split Eindhoven
3 2:39 10 Unbounded,

not live
Attributes,
OR-split,
flow errors

Eindhoven

4 1:08 1 Unbounded,
not live

Attributes,
OR-joins

Eindhoven

5 1:04 7 Unbounded,
not live

Attributes,
flow errors

Eindhoven

6 0:20 3 Unbounded,
not live

Attributes,
OR-split,
flow error

Eindhoven

7 0:17 3 Not live Attributes,
OR-join

Eindhoven

8 0:52 6 Unbounded,
not live

Attributes,
OR-splits,
flow errors

Eindhoven

9 0:20 3 Unbounded,
not live

Attributes,
OR-join,
AND-join

Eindhoven

10 1:28 12 Not live Attributes,
OR-joins,
flow errors

Eindhoven

11 0:01 1 Unbounded OR-split Eindhoven
12 0:14 1 Not live Attributes Karlsruhe
13 0:00 0 None Sound Karlsruhe
14 0:00 0 None Sound Karlsruhe
15 0:00 0 None Sound Karlsruhe
16 0:00 0 None Sound Karlsruhe
17 0:00 0 None Sound Karlsruhe

Table 1: Overview of the results of the case study

In ten out of seventeen models, attributes were used
to keep dependent choices consistent: nine models of
Eindhoven and one of Karlsruhe. We had to incorporate
these attributes explicitly in the models. In the Eind-
hoven course, the use of attributes to keep dependent
choices consistent was explicitly allowed, which means
that it cannot be counted as a real mistake. However, all
nine Eindhoven models that used attributes in this way
also contained other errors. In the Karlsruhe course, the
use of attributes to keep dependent choices consistent
was explicitly disallowed.

The short-circuited systems corresponding to nine of
the models that students handed in appeared to be un-
bounded. As mentioned earlier, the first prototype of
Woflan 1.3 had problems constructing CGs of these sys-
tems. For this reason, it is interesting to have a look at
the number of extended markings in these CGs. The
prototype of Woflan 1.3, running on the computer used
for the case study, was able to handle at least 100000
markings in a CG. For the nine models with unbounded
short-circuited systems, Table2 shows the exact num-
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Group First
1 100000+
2 100000+
3 100000+
4 89138
5 8817
6 100000+
8 100000+
9 100000+

11 297

Table 2: Initial CG sizes for the initially unbounded sys-
tems

Group First RCG Factor
1 100000+ 3371 29+
2 100000+ 488 204+
3 100000+ 7388 13+
4 89138 257 346.84
5 8817 4568 1.93
6 100000+ 2585 38+
8 100000+ 452 221+
9 100000+ 619 161+

11 297 126 2.36

Table 3: CG size vs. RCG sizes for the initially un-
bounded systems

ber of markings in the CG as computed by the prototype
or the entry100000+ if the number of markings in the
computed CG exceeded 100000.

In Section5.4, we claimed that for unbounded sys-
tems the number of markings in an RCG is often signif-
icantly smaller than the number of markings in a CG.
Table3 confirms this claim.

Using Woflan 1.3, we were able to diagnose and
correct all the seventeen models in reasonable time
and with reasonable effort. An interesting observation
is that we mainly used the technique of unsound se-
quences, the main reason being that the complexity of
the models complicated the interpretation of the struc-
tural properties of the models.

6.3 Concluding remarks

The main conclusion is that Woflan 1.3 and in particu-
lar the technique of behavioral error sequences is very
useful in the analysis of complex workflow processes.
An interesting discovery during the case study was that
the size of a CG of the (short-circuited) systems cor-
responding to the workflow processes, although finite,
might still be a problem. Using an RCG instead of a
CG alleviated this problem. The workflow process that
is the basis of this case study is a fairly complex one. In
our practical experience with workflow modeling, most
workflows we encountered had simpler process defini-

tions. This means that the current techniques imple-
mented in Woflan 1.3 appear to be sufficiently powerful
to handle practical workflow processes, despite the the-
oretical complexity of the (R)CG algorithm.

As mentioned before, for bounded systems, all be-
havioral properties can be checked on an RCG. How-
ever, when a system is unbounded, some behavioral
properties cannot be checked using an RCG. Combined
with our experience with the case study, it is a good idea
to correct errors causing unboundedness before trying
to correct other types of behavioral errors. This obser-
vation is incorporated in our method, which is intro-
duced in the next section.

Another interesting observation is that many groups
used attributes to keep dependent choices consistent.
Recall that a workflow attribute is a specific piece of in-
formation used for the routing of a case. As explained
in Section 3.3, a WF net abstracts from workflow at-
tributes. One of the reasons for abstracting from work-
flow attributes is that properties of the WF net that are
valid under the assumption of non-deterministic choices
are also valid when choices are based on workflow at-
tributes. The case study shows that it is not always pos-
sible to prove soundness of a WF net assuming non-
deterministic choices. Our solution was to manually
encode the value of workflow attributes explicitly by
means of places. In real-world applications, informa-
tion about workflow attributes should be available in
the workflow definition made in for example Protos or
COSA. It is interesting to investigate whether it is pos-
sible to automate the encoding of workflow attributes in
WF nets to some extent when importing process defini-
tions in Woflan.

A final conclusion is that the industrial-engineering
students of Eindhoven did not produce a single correct
workflow, whereas the computing-science-engineering
students of Karlsruhe handed in only one flawed model,
which was straightforward to correct. In our opinion,
the different background of the students causes this
discrepancy. Industrial-engineering students have little
background in modeling and verification; computing-
science-engineering students are trained in both skills.
Many designers of workflow processes in practice have
also little experience in formal verification. Thus,
Woflan can be a useful aid in designing correct work-
flow processes that helps to prevent a lot of problems
caused by the implementation of erroneous workflow
processes.

7 Method

7.1 Introduction

As explained, we want to have a method that supports
Woflan in guiding the user towards the most basic er-
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rors in a net. Based on the results of our experiment,
we want to construct and use an RCG instead of a CG
to check behavioral properties. Therefore, it seems rea-
sonable to check whether a system is bounded as soon
as possible: If a system is bounded, the RCG-generation
algorithm yields the OG, which means that other behav-
ioral properties can be verified accurately. Boundedness
can easily be checked by means of an RCG. Although
an RCG is usually small enough to compute, we still
want to minimize its use. If possible, we want to use
structural properties instead, because they can be com-
puted much more efficiently.

The current version of Woflan provides an overview
of diagnostic information about a P/T net. The goal of
the method is to provide the workflow designer with ap-
propriate diagnostic information at the right time and in
the right order. Most of the diagnostic techniques used
in the method are already implemented in Woflan 1.3.
However, Woflan does not yet support the method it-
self. The order in which techniques are applied is based
on two criteria, namely efficiency of the technique and
usefulness of the information.

7.2 Milestones

Based on the above observations, our method consists
of the following three milestones. LetN be a P/T net.

1. The netN is a WF net.

2. The short-circuited system(N, [i ]) is bounded,
which implies proper completion ofN.

3. The short-circuited net(N, [i ]) is live, which im-
plies the option to complete forN and the absence
of dead tasks.

If we cannot achieve a milestone, we do not attempt to
achieve the next milestones. So, we will not attempt to
prove liveness, if we do not already have boundedness.

7.2.1 WF net

The first milestone is very straightforward. It covers
anything which is not in accordance with the given re-
quirements for a WF net (see DefinitionXXVI and Sec-
tion 4.2). Woflan guides the user towards correcting
these errors by providing the information explained in
Section4.2.1.

A special error is when the net is empty. In this case,
the conversion from the native file format to the TPN
file format (the format used by Woflan [34]) possibly
failed.

7.2.2 Boundedness

At this point, we know that the netN under consid-
eration is a WF net, because the WF-net milestone

is achieved. To achieve the boundedness milestone,
the short-circuited WF systemS = (N, [i ]) needs to
be bounded. As explained, structural analysis tech-
niques are generally more efficient than behavioral
ones. Therefore, we try to prove boundedness ofS
by means of the following structural property. A net is
structurallybounded iff for every possible initial mark-
ing the corresponding system is bounded.

Definition XXXII (Structurally bounded)
A P/T net N = (P, T, F) is structurally bounded iff
∀M ∈ B(P) : (N,M) is bounded.

To help us decide whether or notN is structurally
bounded, we have three structural properties at our dis-
posal:

i. WhetherN is S-coverable;

ii. whether N is covered by safe place-invariants
(place-invariants containing only weights 0 and 1);
and

iii. whether N is covered by semi-positive place-
invariants (see Section4.2.5).

S-coverability

It is possible to decide in polynomial time whether
or not netN is S-coverable. IfN is S-coverable, it is
structurally bounded, which means thatS is safe and
bounded (TheoremVI). Thus, we have proven the mile-
stone and we can continue with the third milestone.

A place that is not S-coverable is a suspicious place.
Such a place is calleduncovered. If a net is not S-
coverable, Woflan provides the following

Diagnostic information:

• Uncovered places (see Section4.2.4).

Recall TheoremIII which states thatN is S-
coverable if N is a sound, free-choice WF net. In
other words, ifN is not S-coverable, then eitherN is
not sound or it is not free-choice. So, ifN is not S-
coverable, it is a good moment to test the free-choice
property: IfN is free-choice, it cannot be sound. In this
case, Woflan provides the following

Diagnostic information:

• Non-free-choice clusters (see Section4.2.2).

In a similar way, using TheoremV, we test the well-
structuredness property: IfN is not S-coverable andN
is well-structured,N cannot be sound.
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Diagnostic information:

• TP-handles (see Section4.2.3).

If a correction is made based on the diagnostic in-
formation of Woflan, the diagnosis of the corrected net
starts again with the first step of the method. However,
if we deduce from one of the above steps thatN is not
sound, there is a good chance that we still do not know
why N is not sound. If this is the case, the diagnosis can
be continued with the next step.

Safe place-invariants

At this point, we know thatN is not S-coverable. The
next step is to decide whether or not all places in netN
occur in somesafeplace-invariant, which can be done
in polynomial time. A place iscoveredby a safe place
invariant iff it occurs in such an invariant with weight
one. If all places inN are covered by a safe place-
invariant, the netN is structurally bounded.

A place that is not covered by a safe place-invariant
might be unsafe. Such a place is called astructurally
unsafeplace. From a workflow point of view, this
means that a condition might be fulfilled more than
once at a single point in time. A structurally unsafe
place cannot be S-coverable: Every S-component cor-
responds to some safe place-invariant. However, a
place that is not S-coverable, might be structurally safe.
Therefore, this check is less selective than the check on
S-coverability.

Diagnostic information:

• Structurally unsafe places.

Semi-positive place-invariants

At this point, we know that there are structurally
unsafe places. The next step is to decide whether or
not all places in netN occur in somesemi-positive
place-invariant. If all places inN are covered by a
semi-positive place-invariant, the netN is structurally
bounded, which means thatS is bounded although it
need not be safe. BecauseS is not necessarily safe if
it satisfies this check, this check is less discriminating
than the previous two checks.

Places that are not covered by a semi-positive place-
invariant might be unbounded. From a workflow point
of view, this means that a conditionmight be fulfilled
an arbitrary number of times. Such a place is called
structurally unbounded.

Diagnostic information:

• Structurally unbounded places.

Unbounded sequences

If we cannot decide boundedness of our short-
circuited workflow systemS by proving structurally
boundedness of workflow netN, we have to decide
whether or notS is bounded by means of behavioral
properties. For this purpose, we introduce a new type
of behavioral error sequences calledunboundedse-
quences. The basis of unbounded sequences is the fol-
lowing theorem.

Theorem X (Boundedness of short-circuited WF sys-
tems)
Let S = ((P, T, F), [i ]) be a WF system. System
S= ((P, T, F), [i ]) is bounded iff systemS is bounded
∧∀M ∈ B(P), [i ] −→ M : ¬(M > [o]).

Proof
To prove the theorem, we prove thatS is unbounded iff
S is unbounded∨∃M ∈ B(P), [i ] −→ M : M > [o].
According to the definition of boundedness (Definition
XXV ), we have to prove that∃M,M1 ∈ B(P) : [i ] −→
M −→ M1 ∧ M1 > M iff ∃M,M1 ∈ B(P) : [i ] −→
M −→ M1 ∧ M1 > M ∨ ∃M ∈ B(P), [i ] −→ M :
M > [o]. The implication from right to left is straight-
forward (see also TheoremVII ). The other implication
is more involved. Assume thats = M0t1M1 . . . tnMn,
for some natural numbern, is an occurrence sequence
of S such thatM0 = [i ] and such that there exists a
k < n with Mk < Mn. Distinguish two cases. First, as-
sume that the short-circuiting transitiont is not an ele-
ment of{t1, . . . , tn}. In this case,s is also an occurrence
sequence ofS, which means thatS is unbounded. Sec-
ond, assume thatt is an element of{t1, . . . , tn}. Without
loss of generality, we may assume thats is minimal in
the following sense: First, all markingsM0, . . . ,Mn are
different; second, there are no natural numbersk andl
with k < l < n such thatMk < Ml . The first as-
sumption means thats contains no cycles; the second
assumption means thats contains no strict prefix from
which unboundedness can be derived. The crux of the
proof is thatt must betn. Suppose thatt equalstk, with
k < n. Then,Mk−1 ≥ [o], i.e., eitherM0 = [i ] = Mk

or M0 < Mk. In both cases, the minimality ofs is
violated. Thus,t equalstn. It follows from the defi-
nition of t and the minimality ofs that Mn > [i ] and
that the occurrence sequenceM0t1M1 . . . tn−1Mn−1 is
an occurrence sequence ofSsuch thatMn−1 > [o].

Intuitively, an unbounded sequence is a firing se-
quence ofS of minimal length which inevitably leads
either to an infinite marking in a given RCG ofS or
to a marking greater than [o] in that RCG. The above
theorem means that such a sequence corresponds to a
sequence ofS that inevitably leads to an infinite mark-
ing when the RCG ofS is extended to an RCG ofS.
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At this point in our method, unbounded sequences are
more appropriate than unsound sequences (see Section
5.2). Unbounded sequences provide only diagnostic
information on unboundedness, whereas unsound se-
quences provide mixed information on unboundedness
and non-liveness.

To calculate unbounded sequences, we have to parti-
tion a given RCG ofS in a way that is slightly different
from the partitioning given in DefinitionXXIX :

i. The green markings are those markings from
which infinite markings or markings greater than
[o] are not reachable;

ii. the red markings are those markings from which
infinite markings or markings greater than [o] are
unavoidable, i.e., those markings from which no
green marking is reachable;

iii. the yellow markings are those markings form
which infinite markings or markings greater than
[o] are reachable but avoidable.

Definition XXXIII (RCG partitions for unbounded-
ness)
Let N = (P, T, F) be a WF net, letG = (H, A) be an
RCG of WF system(N, [i ]), and letHω

= H \ B(P)
be the set of markings inH that are infinite or greater
than [o]. We partitionH into three parts:

i. Hω
G = {M ∈ H |¬∃M1 ∈ Hω : M H⇒ M1},

ii. Hω
R = {M ∈ H |¬∃M1 ∈ Hω

G : M H⇒ M1} and

iii. Hω
Y = H \ (Hω

G ∪ Hω
R).

Remarks:

• If there are no red markings, there can be no yellow
markings:Hω

R = ∅ implies Hω
Y = ∅.

• If there are no green markings, there can be no yel-
low markings:Hω

G = ∅ implies Hω
Y = ∅.

• Boundedness ofS implies that all markings are
green (H = Hω

G) and vice versa.

Given this partitioning of an RCG of a WF systemS,
we can compute the unbounded sequences.

Definition XXXIV (Unbounded sequences)
Let (N, [i ]) be a WF system with RCG(H, A). Let
Hω

R and Hω
Y be defined as in DefinitionXXXIII .

If [ i ] ∈ Hω
R, then the occurrence sequence [i ] is

called unbounded. An occurrence sequences =
[i ]t0M1 . . . tn−2Mn−1tn−1Mn, for some positive natu-
ral numbern, is called unbounded iffMn ∈ Hω

R and
Mn−1 ∈ Hω

Y . A firing sequence of a WF system is
called unbounded iff its associated occurrence sequence
is unbounded.

Figure 23: The RCG partitioned for unboundedness

Theorem XI (Unbounded sequences vs. boundedness)
A WF systemS is bounded iffS has no unbounded se-
quences.

Proof
This follows immediately from TheoremX (Bound-
edness of short-circuited WF systems) and Definition
XXXIV (Unbounded sequences).

Figure23 shows the partitioned RCG of the exam-
ple systemS of Figure2. Using the spanning tree of
this partitioned RCG, we compute the following mini-
mal set of (see Section5.3) unbounded sequences:

• register send rec dont and

• register send dont rec .

If a WF systemShas no unbounded sequences, then
S is bounded (TheoremX), which means that we have
achieved the second milestone. In this case, we can con-
tinue with the next milestone. IfS has unbounded se-
quences, Woflan provides the following

Diagnostic information:

• Unbounded sequences.

At this point, we have provenS to be unbounded.
Thus, we have to make a correction and start again
with the first step of the method. The technique of un-
bounded sequences is not yet implemented in Woflan
1.3. However, it is straightforward to adapt the algo-
rithm to compute unsound sequences as presented in
Section 5.

7.2.3 Liveness

At this point, we know that the systemS is a bounded,
short-circuited WF system. We have to decide whether
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or not S is live. The information that is already avail-
able is in some cases sufficient to deduce thatS is non-
live, namely in the case that the underlying netN is not
S-coverable (seeS-coverability). In this case, Woflan
continues with the stepFree-choice property; other-
wise Woflan skips the stepsFree-choice propertyand
Well-structurednessand continues with the stepOc-
currence graph. Currently, we do not know of any
structural technique to prove liveness.

Free-choice property

It follows from TheoremIII and the fact thatS is
bounded thatS cannot be live ifN is free-choice and
N is not S-coverable.

Diagnostic information:

• Uncovered places.

Well-structuredness

It follows from TheoremV and the fact thatS is
bounded thatS cannot be live ifN is well-structured
andN is not S-coverable.

Diagnostic information:

• Uncovered places.

• PT-handles.

In both cases, the diagnostic information might be
sufficient to correct the net, in which case we start
the method again with the corrected net. In case non-
liveness has been proved and the information so far
is not sufficient, Woflan continues with the stepDead
transitions.

Occurrence graph

At this point, we know that both systemsS and S
are bounded. Recall that the RCG-generation algorithm
yields the OG of a system if it is bounded. Furthermore,
note that the OG ofS might already be available from
the boundedness milestone. Also note that, becauseS is
bounded, either the OGs ofS andS are identical or the
OG of S extends the OG ofS with the arc([o], t, [i ]).
Thus, at this point, Woflan computes the OG ofS and
determines whether the liveness-property is satisfied.

In case liveness is proven, we have shown thatN is
sound, which means that our diagnosis is complete. In
caseS is not live, we are interested in detailed diagnos-
tic information on non-liveness.

Dead transitions

At this point, we know thatS is not live. In case non-
liveness is caused by dead transitions inS, we want to
remove these as soon as possible.

Theorem XII (Dead transitions in bounded WF sys-
tems)
Let S = ((P, T, F), [i ]) be a bounded WF system; let
t ∈ T . Transitiont is dead inS iff it is dead inS.

Proof
The result follows immediately from the earlier obser-
vation that either the OGs ofSandSare identical or the
OG of Sextends the OG ofSwith the arc([o], t, [i ]).

To decide whether there are dead transitions, the OG
of the systemS is necessary. If the OG is not already
available, it is calculated at this point.

Diagnostic information:

• Dead transitions.

Non-live sequences

At this point, we know thatS is bounded and con-
tains no dead transitions, but that it is not live. To
provide useful diagnostic information, we introduce an-
other type of behavioral error sequences, called non-live
sequences. These sequences are based on the following
theorem.

Theorem XIII (Liveness of bounded short-circuited
WF systems)
Let S = ((P, T, F), [i ]) be a WF system without
dead transitions such that the short-circuited systemS
is bounded. Then,S is live iff ∀M ∈ B(P), [i ] −→
M : M −→ [o].

Proof
The theorem follows in a straightforward way from
Definition XXVII (Soundness), TheoremI (Soundness
vs. boundedness and liveness), and TheoremX (Bound-
edness of short-circuited WF systems).

Intuitively, a non-live sequence is a firing sequence of
Sof minimal length that ends in a marking from which
it is no longer possible to reach [o]. To compute non-
live sequences, we partition the OG ofSas follows.

Definition XXXV (OG partitions for non-liveness)
Let N = (P, T, F) be a marked WF net, letG =
(H, A) be the OG of its WF system(N, [i ]). We parti-
tion H into three parts:
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i. Ho
R = {M ∈ H |¬(M H⇒ [o])},

ii. Ho
G = {M ∈ H |M H⇒ [o] ∧ ¬∃MR ∈ Ho

R :
M H⇒ MR} and

iii. Ho
Y = H \ (Ho

G ∪ Ho
R).

Definition XXXVI (Non-live sequences)
Let (N, [i ]) be a WF system with OGG = (H, A).
Let Ho

R and Ho
Y be defined as in DefinitionXXXV .

If [ i ] ∈ Ho
R, then the occurrence sequence [i ]

is called non-live. An occurrence sequences =
[i ]t0M1 . . . tn−2Mn−1tn−1Mn, for some positive natu-
ral numbern, is called non-live iff Mn ∈ Ho

R and
Mn−1 ∈ Ho

Y. A firing sequence of a WF system is
called non-live iff its associated occurrence sequence is
non-live.

Theorem XIV (Non-live sequences vs. liveness)
Let S = ((P, T, F), [i ]) be a WF system without
dead transitions such that the short-circuited systemS
is bounded. Then,S is live iff S has no non-live se-
quences.

Proof
The theorem follows immediately from TheoremXIII
(Liveness of bounded short-circuited WF systems) and
DefinitionXXVI (Non-live sequences).

Diagnostic information:

• Non-live sequences

Using non-live sequences, we have to correct the WF
net under consideration and start again with the first step
of our method. In the next subsection, we apply the
method to our running example. This subsection also
contains examples of non-live sequences.

7.3 Example

Although the method and the techniques of unbounded
sequences and non-live sequences have not been im-
plemented yet in Woflan 1.3, our running example of
Figure1 is small enough to apply the method by hand.
Note that this net is diagnosed in Section4.4 using
Woflan 1.2.

7.3.1 WF net

NetN is a WF net, which is straightforward to check.

Figure 24: A TP-handle inN

7.3.2 Boundedness

S-coverability

Net N is not S-coverable (see Figure10 for the S-
components).

Diagnostic information:

• Uncovered places:c8 .

NetN is free-choice, so it cannot be sound.

Diagnostic information:

• Non-free-choice clusters: None.

NetN is not well-structured.

Diagnostic information:

• TP-handles: See Figure9 and Figure24. Note that
both handles contain the uncovered placec8 .

There is obviously something wrong with placec8 .
At this point, we can either correct the net or continue
with our method. Suppose, we still do not know which
correction to make. We do observe that either the net
has to become S-coverable, or we have to introduce
non-free-choice clusters. We continue with the method.

Safe place-invariants

NetN is not covered by safe place-invariants.

Diagnostic information:

• Structurally unsafe places:c8 .

We already suspect placec8 because it is uncovered.
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Figure 25: NetNafter one correction iteration:N1

Semi-positive place-invariants Net N is not covered
by semi-positive place-invariants.

Diagnostic information:

• Structurally unbounded places:c8 .

Unbounded sequences SystemS has unbounded se-
quences, which meansS is unbounded.

Diagnostic information:

• Unbounded sequences:register send rec
dont andregister send dont rec .

Both sequences result in the marking [c5 , c7 , c8 ].
Firing transitionarchive from that marking results in
marking [c8 ,o]. A this point of our method, we have to
make a correction. Transitionarchive must remove
the token inc8 . After correcting the netN by adding
this arc, the resulting netN1 is shown in Figure25. We
start our method again on this net.

7.3.3 WF net

NetN1 is a WF net.

7.3.4 Boundedness

S-coverability

NetN1is not S-coverable.

Diagnostic information:

• Uncovered places:c8 .

NetN1 is not free-choice.

Figure 26: A non-free-choice cluster inN1

Diagnostic information:

• Non-free-choice clusters: See Figure26.

NetN1 is not well-structured.

Diagnostic information:

• TP-handles: See Figure9 and Figure24, both TP-
handles are still present inN1.

Safe place-invariants

NetN1 is not covered by safe place-invariants.

Diagnostic information:

• Structurally unsafe places:c8 .

Semi-positive place-invariants

Net N1 is not covered by semi-positive place-
invariants.

Diagnostic information:

• Structurally unbounded places:c8 .

Unbounded sequences

SystemS1 has no unbounded sequences. Therefore,
S1is bounded.

7.3.5 Liveness

Free-choice property

As mentioned before, netN1 does not satisfy the free-
choice property.

Diagnostic information:

• Uncovered places:c8 .
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Figure 27: Second PT-handle inN1

Well-structuredness

NetN1 is also not well-structured.

Diagnostic information:

• Uncovered places:c8 .

• PT-handles: See Figure12 and Figure27. Note
that the PT-handle displayed in Figure27 is not
present in the original netN.

Occurrence graph

The systemS1 is not live.

Dead transitions

SystemS1 has no dead transitions.

Diagnostic information:

• Dead transitions: None.

Non-live sequences

After partitioning the OG ofS1 according to Defini-
tion XXXV , it looks as in Figure28. Using the span-
ning tree, we deduce a minimal set of five non-live se-
quences:

i. register send rec do ,

ii. register send timeout ,

iii. register send dont timeout ,

iv. register send do , and

v. register do .

Figure 28: The OG ofS1 partitioned for non-live se-
quences

By examining these five firing sequences, we note
that iii provides almost the same information asii ,
where the combinationsend andtimeout is crucial
anddont is not important. From sequenceii , we con-
clude that, whatever happens, placec8 will not get a to-
ken. As a result, transitionsprocess andarchive
cannot fire. To correct this error, we add an arc from
timeout to c8 .

The sequencesi, iv, andv provide the same informa-
tion, namely that firing transitiondo always results in
an error. From sequencev, we conclude that the cycle
to which do leads might be the problem. Recall that
placec8 is uncovered. Considering the cycle and place
c8 leads to the observation that the cycle can only be
executed once, becausec8 is only an input place (and
not an output place) of the cycle. Also the PT-handle of
Figure27 suggests that there is a problem withc8 . We
correct the net by adding an arc fromprocess to c8 .

Applying the two corrections mentioned above re-
sults in the sound net we found earlier in Figure13.
Obviously, applying the method to this net shows that it
is sound.

8 Concluding remarks and future
work

Workflow-management technology is rapidly gaining
popularity in the support of business processes. A thor-
ough analysis of workflow processes before their ac-
tual implementation is necessary to guarantee effective-
ness and efficiency. To guide a workflow designer in
finding and correcting errors in a workflow process,
we developed the tool Woflan and a diagnosis method
that are both based on Petri-net techniques. Although
the method has not yet been implemented in Woflan,
it looks promising and most of the necessary diagnos-
tics are already available in Woflan 1.3. We have tested
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Woflan in a case study involving seventeen models of a
fairly complex workflow designed by students. A novel
analysis technique of behavioral error sequences proved
to be a useful aid in diagnosing the workflows. Twelve
unsound workflows could be corrected in reasonable
time with reasonable effort. The experience with the
case study was a source of inspiration for the method.

An interesting conclusion of the case study is that
a coverability graph of a system representing an erro-
neous workflow can be too large to handle by Woflan.
By introducing and using arestricted coverability
graph, we have alleviated this problem.

In version 2 of Woflan, we want to implement the
method presented in Section7. Furthermore, we would
like to test the method on more, practical, examples.

We are also working on extending the set of work-
flow tools Woflan can interface with. The current ver-
sion of Woflan (Woflan 1.3) can import workflow pro-
cess definitions of COSA and Protos. On paper, we
have also designed translations from BaanERP/DEM
(BaaN), Staffware (Staffware), SAP/Workflow (SAP
AG), and ARIS (IDS Prof. Scheer) to Woflan. The Dy-
namic Enterprise Modeler (DEM) of BaanERP is based
on a subclass of Petri nets; which means that the trans-
lation is straightforward. The translation of Staffware to
WF nets is described in [6]. SAP/Workflow and ARIS
are both based on event-driven process chains. A trans-
lation of event-driven process chains to WF nets is de-
scribed in [8]. In the future, we plan to build the corre-
sponding interfaces.

Furthermore, we want to visualize Woflan’s output in
a graphical way. There are several ways to display the
diagnostics in a graphical manner: either via diagrams
shown directly by Woflan, via dedicated tools such as
VIPtool [14], or via an interface in the workflow tool
used to design the workflow process.

A direction for future research is the use of the
inheritance-preserving transformation rules presented
in [11] for incremental design and verification of work-
flows. Starting from a correct workflow template [27] or
an already verified existing workflow process definition,
these rules allow for safe extensions which preserve the
soundness property. Correctness by design is obviously
preferable over the approach where correctness is veri-
fied only after the design of the complete workflow has
been completed.

As a final remark, note that Woflan can be helpful in
the design and verification of correct workflow process
definitions. However, this does not mean that the entire
workflow is correct. It is still possible that errors are
made in the implementation of the workflow process or
that the process suffers bottlenecks in the performance
due to a poor allocation of resources. To prevent such
kinds of errors, other techniques are needed to comple-
ment Woflan.

Acknowledgements

The authors whish to thank Geert-Jan Houben, Marc
Voorhoeve, and Jaap van der Woude for their fruitful
comments.

A Travel agency

SectionA.1 contains the description of a travel agency
at a university. The models mentioned in the case study
(Section6) are all based on this description. Section
A.2 gives one possible formalization of the workflow
process used in the travel agency. The model is made in
Protos.

A.1 Informal description

Some time ago the board of Somewhere University
(SU) decided to open a travel agency at the campus.
The new agency is supposed to organize both business
and private trips for employees of SU. However, the
service is not as the board expected. The most impor-
tant complaint is that both the organization of a trip and
the financial settlement take too long. Therefore, the
board has started an investigation. Interviews with sev-
eral people involved have provided the following pro-
cess description. (To avoid confusion between employ-
ees of SU that want to book a trip and employees that
are involved in the organization of the trip, in the re-
mainder, the former are called clients.)

The whole process starts when someone drops in
at the travel agency to book a trip. An employee of
the agency registers all the relevant information of the
client. The agency maintains a separate file for each
trip. An important issue is whether the client wants to
book a private trip, a business trip, or a combination of
both. Approximately 20 percent of all the trips orga-
nized by the agency is private.

Private trips are easy. The agency has one employee
dedicated to the organization of private trips. As soon
as the wishes of a client are registered, she can start with
the organization of the trip.

Business trips are more complicated. The agency has
two employees for the organization of business trips (al-
though one of them works only three days a week). For
each trip, there is always a single employee responsi-
ble, who also carries out as many tasks as possible for
this trip. In this way, the service to clients should be
guaranteed. For business trips, a client needs a travel
permit. Usually, clients that are familiar with the pro-
cess have already filled out a permit. Clients that arrive
without a permit are given a blank permit that they can
fill out later, after which they must return the permit
to the agency. Travel permits are always checked be-
fore any other action is taken. If a permit is not filled
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out properly, it is returned to the client with the request
to provide the missing information and send the permit
back as soon as possible. In case a permit is not re-
turned in time, the travel agency can no longer guaran-
tee a timely organization of the trip. In the rare occasion
that this happens, a notification is sent to the client and
the file is closed. If a travel permit is okay, it is filed
and the actual organization of the trip can start. First,
however, a copy of the file is sent to the finance depart-
ment of SU, because this department is responsible for
the financial aspects of the trip.

An employee of the finance department of SU checks
whether the client is allowed to make business trips paid
by SU. The results of this check are sent to the travel
agency in an internal memo. If the result is negative for
the client, which is hardly ever the case because clients
usually know when they are permitted to make business
trips, the finance department does not make any pay-
ments. If the result is positive, the finance department
makes an advance payment on the bank account of the
client. It also pays any registration fees that might need
to be paid in case of conference visits. Finally, it pays
those flights of the trip that are made for business pur-
poses. However, these payments can only be made af-
ter the finance department has received detailed pricing
information from the travel agency. After all the nec-
essary payments have been made, the finance depart-
ment is no longer involved in the preparations of the
trip. However, after the client returns, the finance de-
partment handles the client’s declaration (see below).

To prepare a trip (private or business), the travel
agency always starts with flight arrangements. If a trip
involves one or more flights, the responsible employee
of the travel agency starts by preparing a flight schedule
that includes departure and arrival times of all flights as
well as pricing information. Then, the client is called
to approve the schedule. If the client does not approve
the schedule, a new proposal is prepared and the client
is contacted again. When a client approves the sched-
ule, arrangements must be made to pay the flight(s). In
case the trip is private, an appointment is made with
the client to pay cash or by credit card. In case the
trip is (partly) business, the travel agency has to wait
for the memo of the finance department which states
whether or not the client is allowed to make business
trips for SU. If the memo is negative, the employee of
the travel agency responsible for the trip calls the client
to explain the problem. If the client still wants to make
the trip, he or she has to pay all the costs and an appoint-
ment is made to pay for the flights. However, often the
client decides to cancel the trip, in which case the file
is closed. If the memo is positive, the travel agency
determines the costs of business flights and, if applica-
ble, the costs of private flights. Relevant information
on business flights is sent to the finance department that
handles the actual payment. In case of private flights,

the client is contacted to make an appointment to ar-
range the payment.

The internal memo that the travel agency receives
from the finance department, is also used to determine
whether a request must be sent to the in-house bank
office (which is situated at the campus close to the
travel agency) to prepare cash and travel cheques for
the client. Such a request is always made when a busi-
ness trip is allowed. (In case of private trips, the client
has to take care of acquiring cash and cheques him- or
herself.)

The task of the bank in the process is very straight-
forward. Upon receipt of a request, a bank employee
prepares cash and travel cheques and sends them to the
travel agency. If a client returns cash and/or cheques
after the trip, information about the exact amount that
is used by the client is sent to the finance department.
The finance department needs this information to pro-
cess the client’s declaration. In case a client does not
return cash or cheques in time, the amount supposedly
spent by the client is fixed to the value of the cash and
cheques handed out to the client before the trip.

After flight arrangements have been made and any
private flights have been paid, the responsible employee
of the travel agency books hotels and makes reserva-
tions for local transportation (train, car, etc.). She also
prints vouchers for any hotels that are booked. When
cash and cheques have been received from the bank and
all flight tickets have been received from the central of-
fice of the travel agency in SomewhereElse where they
are printed, the employee puts all the documents to-
gether in a handy folder for the client. The agency has
to make sure that everything is ready at least three work-
ing days before the trip starts, because, then, the client
picks up the documents. At that point, the involvement
of the agency with the trip is finished. In case of a pri-
vate trip, this also means that the process is complete.
In case of a business trip, however, the declaration of
the client still needs to be processed.

As mentioned, the finance department takes care of
processing declarations. When it has received a client’s
declaration and the necessary information of the bank,
an employee of the finance department processes the
declaration and calculates the balance. The result must
be approved by the director of the finance department.
In case of mistakes, the employee must make the nec-
essary corrections. After the declaration has been ap-
proved by the director, the balance is settled with the
next salary payment of the client. In addition, the total
cost of the trip is deducted from the travel budget of the
faculty or other unit where the client is employed. If
a client does not hand in his or her declaration in time
(within a month after completion of the trip), the finance
department assumes that the total cost of the trip equals
the sum of the advance payment and the value of the
cash and cheques given to the client.
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Figure 29: An example Protos model
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The board of SU thinks that the main reason why the
above process takes so long is that the co-ordination be-
tween the three departments involved is poor. It believes
that a workflow system might provide a solution. As a
starting point, it would like to receive a report covering
the following subjects.

1. A resource classification of all the resources in-
volved in the current process, distinguishing roles
and groups.

2. A process model of the current situation developed
in Protos, including information about roles and
triggers.

3. An analysis of the resource classification and the
process model, using the guidelines for process
(re-)design discussed in the book and the slides.

4. An improved resource classification/process
model developed in Protos, based on the results of
the analysis. (Include only the graphical represen-
tation of the resource classification/process model
and any information which is new compared to the
original resource classification/process model.)

A.2 Protos model

See Figure29.
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