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ABSTRACT 
The back-propagation neural network algorithm was applied to 

the analysis of regional patterns in cerebral function, a~ demonstrated in 
positron emission tomography (PET). A trained network was able to 
successfully distinguish PET scans of normal subjects from PET scans of 
Alzheimer's Disease patients. It is concluded that the combination of 
PET and neural networks is a useful diagnostic tool for Alzheimer's 
Disease. A new paradigm for back-propagation learning is discussed 
which emphasizes its similarity to template matching. It is demonstrated 
that, under certain circumstances, the back-propagation network can be 
used as an estimation tool, as weB as a classification tool, i.e., a trained 
neural network can indicate the criteria by which its classifications are 
performed. 

INTRODUCTION 
The recent wave of interest in neural networks has spread across 

several disciplines, including the diverse fields of mathematics, 
psychology, artificial inteBigence and signal processing. Neural network 
algorithms such as the back·propagation network [11 are now being 
widely applied, even though the means by which they work are often not 
completely understood. 
Back·Propagation Neural Networks: The back·propagation algorithm 
can be successfully applied with relative ease and generality; these factors 
have made it a very popular approach to pattern recognition problems. 
With this algorithm, the user is not required to perform prior statistical 
analyses or to devise classification rules. The network, in a sense, 
performs these tasks itself, "learning" to cIa,sify by example. During the 
supervised learning phase, examples of previously· classified patterns are 
repeatedly presented, and network connection weights are adjusted until 
an appropriate input· output mapping is achieved. 
Functional Imaging and Cerebral Disea,e: Positron emission 
tomography (PET) has greatly enl1anced studies of the functional effects 
of various brain disorders. PET images are ba~ed on cerebral 
metabolism, and thus enable regional quantification of brain function. 
The diagnostic power of PET depends on its ability to indicate deficits 
or other abnormalities in function. 

Recent work [2,3] has been directed toward the discovery of 
characteristic functional abnormalities in PET scans of patients with 
Alzheimer's Disease (AD). The abnormalities exhibited in such 
problems, involving the complex and little· understood interactions of 
multiple brain regions, can be expected to be rather complicated. To 
date, no distinguishing pattern of abnormality in AD cases has been 
found. Considerable variability exists in the patterns of regional 
metabolism in normal PET scans, making it difficult to distinguish 
between a "normal" and "abnormal" scan when using standard statistical 
methods. 

THEORY 
Back-propagation networks can perform impressive feats of 

learning. If viewed as a "black box" process, this learning ability can 
seem quite mysterious. Though the learning process is seen as somewhat 
heuristic, it is essentially based on statistical associations [4,5]. This 
statistical basis is a non-parametric one; no assumptions regarding the 
shape of input distributions (e.g. gaussian) are made. This property can 
be advantageous, allowing back-propagation classifiers to be robust in the 
face of non-gaussian distributions. 

There are a few accepted paradigms for the back·propagation 
network's learning process. The learning process of networks with back­
propagation architecture has been compared to multiple regression 
analysis[4]. From another perspective, the network learns to synthesize 
hyperplanes of separation, thus partitioning the input space into 
hypervolumes which form regions containing the separate classes [5]. 
From a "mapping" perspective, points in the "input space" are mapped, 
by successive transformations of coordinate systems, into a space in 
which linear discrimination can be performed. These paradigms describe 
the network's learning process from different, equally valid point of view. 

A main objective of the work presented here is to investigate the 
power and utility of an additional paradigm; i.e., a perspective from 
which the network's processing can be viewed as a correlation analysis 
or template matching process. From this point of view, the weights 
a5sociated with individual hidden units serve as "templates" whose 
features are appropriately adjusted during back-propagation learning. 

The back-propagation algorithm, based on the generalized delta 
rule, is described elsewhere[l,5]. The main topic of interest here is the 
interaction between the frrst "hidden" layer and the input layer. In the 
notation of Rumelhart, et at.[l], the output of a hidden unit (after 
presentation of a given pattern) is obtained by applying a semi-linear 
transfer function f to its input, i.e. 

0pj-fj (netpj ) Eq.l 

where the subscript j refers to the unit number and the subscript p 
designates the pth pattern. The input is given by 

netpj - L Wji Opi +8 j' Eq. 2 

where wji refers to the wei~ht from the /h unit to the ith input 
component, 0pi refers to the it component of the pth pattern, and Elj is 
a bias, or threshold. 

The input to the transfer function of each hidden unit can be 
expressed as the inner product of the unit's current weight vector W with 
an input pattern vector X, i.e., 

Eq.3 

This relationship accommodates the usual practice of including a bias, or 
threshold, since each of the above vectors is considered to have been 
augmented by an additional component. The additional component of 
X is set equal to one. The additional component (weight) included in W 
is applied to the extra "input" component (equal to one) and is adjusted 
just like the other weights. 

The common practice in implementing the back-propagation 
network is to have one output unit per class, and to train the network so 
that output values are high (close to one) when a pattern of the 
appropriate class is presented, and low (close to zero) otherwise. If each 
hidden unit is considered to be a "template matching" device, then tlus 
would provide the network with a basis for detection based on high or 
low outputs. Vector theory says that the inner product of two vectors is 
maximized when the vectors are parallel. If a hidden unit is presented 
with an input pattern representing an n·dimensional vector in the input 
space, the unit's output will be maximized when its weight vector is 
similar in "direction" to the input. In this way, a network with N hidden 
units can serve as a detector of N features, with the output of each 
feature detector weighted, in the next layer, according to that feature's 
importance to the classification process. 

The geometric interpretation of the above paradigm is as 
follows: each set of weights specifies a hypersurface (a semi·linear 
hyperplane). The unaugmented weight vector (not including the 
threshold weight) points in a direction normal to the hyperplane, and the 
threshold or bias serves to specify the hyperplane's "intercepts". It can 
be shown that the analogy to template matching is most exact for zero­
mean input vectors. Zero·mean input patterns will reside in a 
hyperplane that passes through the origin. In this case, if a network 
synthesizes hyperplanes which separate the input space according to 
-classes, it will also synthesize vectors that will point either toward or 
away from the patterns thus separated. The template matclung model 
breaks down somewhat when more than one class region lie along the 
same "direction" from the origin. In this case, the threshold value (which 
serves to "translate" the separation hyperplane) becomes more influential. 
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The above discussion points to the ability of the back­
propagation network to perform as an "estimation" tool, ~ addition to its 
proven value as a classification tool. In a sense, It can perform 
"supervised clustering". The network algorithm has an advantage ov~r 
simple, unsupervised clustering in its ability. t~ accom.modate cases III 

which single classes occupy more than one dlstlllCt regiOn. 

Data was ob­
tained from [F-18] FOG 
PET scans of normal and 
AD subjects. Data sets 
were prepared from stud­
ies of fifty-two subjects: 
twenty-two subjects who 
had been clinically diag­
nosed with Alzheimer's 
Disease, and thirty age­
matched normal subjects. 
Duara, el af. [2] describe 
the methods of data prep­
aration. Data for each 
patient consisted of eight 
values, representing cere­
bral glucose metabolism in 
the eight lobes of the 
brain: left and right fron­
tal, parietal, temporal and 
occipital. The mean of 
each data set was calculat­

METHODS 

Figure 1: Illustration of the method by 
which data from brain PET studies is 
presented to the neural network. 

ed and removed, and the resulting eight-dimensional pattern vecto.rs were 
used to train a two-layer back-propagation neural network With two 
hidden units, as shown in Figure 1. 

For classification purposes, the network was trained with data 
from twenty-six subjects (fifteen normal, eleven AD), representing one­
half of the above subject group. The trained network was then tested on 
the remaining half. 

The back-propa­
gation neural network 
classifier proved to be 
successful in distinguish­
ing normal PET scans 
from those of patients 
diagnosed as "probable 
AD". Within the test 
group, the trained net­
work's classification 
agreed with the clinical 
diagnosis in 24 of 26 
cases. One patient from 
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the networ s c asSI lca-
tion is compared to that 
of more traditional methods in Figure 2. As shown in this figure, the 
Ileural network is more immune to false positives, as indicated by the 
higher specificity values, thall are the other metl:ods.. . 

To test the network's usefulness as an estImatiOn tool, the entIre 
group of subjects, with the exception of the two subjects which had been 
mis-classified, was used to train the network. This larger group was used 
to achieve greater generality. The weight vectors of hidden units were 
examined after the network had converged to a high degree, i.e. outputs 
were close to their target values for all subjects. 

It should be noted that weight vectors will repeatedly converge 
to the same values only under these fairly strict conditions. Results 
indicate that weight vectors will consistently converge to the same pattern 
only when (1) all inputs have zero mean, and (2) the network has 
converged for all input patterns. 
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For the network. 
trained with the above 
group of subjects,. the 
weight vectors of the two 
hidden units consistently 
converged to the patterns 
shown in Figure 3. It is 
interesting to note that 
each of these patterns 
contains attributes that 
had been previously ob­
served clinically, such as 
asymmetry with left im­
pairment, decrease in 
parietal function, and 
sparing of the occipital 
region[2]. The network 
can be seen to have 
"learned" which attributes 
and combinations of at­
tributes were important 
for diagnosis. 

Figure 3: Plots of weight vectors of 
hidden units 1 (above) and 2 (below) 
within the trained network. 

Figure 4 demon­
strates that the mean 
statistical correlation of 
both weight vectors with 
AD patterns are higher 
than correlations of like 
weight vectors with normal 
patterns. Thus, each of 
these weight vectors can 
be regarded as "features" 
likely to be found in AD 
PET scans. Results such 
as these may prove to be 
useful for "modelling" AD 
and other cerebral diseas­
es, i.e. investigating their 
physiological nature and 
origins. 
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Figure 4: Comparisons of feature 
correlations with normal and AD 
patterns. 
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