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ABSTRACT
Hardware prefetchers are effective at recognizing streaming
memory access patterns and at moving data closer to the
processing units to hide memory latency. However, hard-
ware prefetchers can track only a limited number of data
streams due to finite hardware resources. In this paper, we
introduce the term streaming concurrency to characterize
the number of parallel, logical data streams in an applica-
tion. We present a simulation algorithm for understanding
the streaming concurrency at any point in an application,
and we show that this metric is a good predictor of the
number of memory requests initiated by streaming prefetch-
ers. Next, we try to understand the causes behind poor
prefetching performance. We identified four prefetch un-
friendly conditions and we show how to classify an appli-
cation’s memory references based on these conditions. We
evaluated our analysis using the SPEC CPU2006 benchmark
suite. We selected two benchmarks with unfavorable access
patterns and transformed them to improve their prefetching
effectiveness. Results show that making applications more
prefetcher friendly can yield meaningful performance gains.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Performance, Algorithms, Experimentation

Keywords
Stream prefetching, Performance modeling, Diagnosis

1. INTRODUCTION
The gap between CPU and memory speeds has constantly

increased over the last few decades. Efforts have been made
on both the hardware and software sides to improve sys-
tem throughput by hiding part of the memory latency. One
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of the techniques most effective at hiding memory latency
is to increase memory parallelism. Memory parallelism, or
memory concurrency, can be increased by different means.
One approach is to increase the number of processing cores
connected to the memory system, another approach is to
increase hardware threading concurrency through the use of
simultaneous multithreading techniques, and finally, we can
increase memory concurrency inside each thread.

Mandal et al. [11] empirically evaluate the level of memory
parallelism per core, socket and node, needed to saturate
the memory system of several current micro-architectures.
Increasing memory parallelism beyond the capacity of the
memory system does not bring direct performance benefits.
However, increasing the level of memory concurrency inside
each thread, ensures that an application runs efficiently in
both low-threading and high-threading environments.

Data prefetching, that is, identifying data that will be
needed in the near future and moving it closer to the pro-
cessing units so that it is available when required by a run-
ning application, is an effective optimization both for in-
creasing memory parallelism inside a thread and for overlap-
ping memory latency with computation. Prefetchers based
on Jouppi’s stream buffers [8] are nowadays commonly found
in modern micro-processors. These hardware structures rec-
ognize streaming memory access patterns and fetch the next
elements of the streams in advance to hide memory latency.
However, applications benefit differently from hardware pre-
fetching, because they either do not traverse memory in a
streaming pattern, or they exceed the resources provisioned
for the hardware prefetchers.

In this paper, we describe techniques for modeling the
streaming behavior of applications. We use these models to
explain why applications benefit differently from hardware
prefetching and to identify the causes behind poor prefetch-
ing performance. We use the SPEC CPU2006 benchmark
suite [7] to evaluate our analysis. We selected two bench-
marks with unfavorable access patterns, 436.CactusADM
and 470.LBM, and changed them to improve their prefetch-
ing coverage. Our results show that tuning for the hardware
prefetchers can yield meaningful performance benefits.

The rest of the paper is organized as follows. Section 2
provides a brief overview of related work. Section 3 presents
background information on the AMD 10H hardware pre-
fetchers. Section 4 describes a simulation algorithm for com-
puting the streaming concurrency of applications, and eval-
uates its predictive power. Section 5 refines the simulation
results using static analysis to identify the causes of poor
prefetching performance. Section 6 presents the results of
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our analysis applied to the SPEC CPU2006 benchmark suite
and describes two tuning case studies. Section 7 summarizes
the findings of this study and concludes the paper.

2. RELATED WORK
Prefetching comes in two main flavors, software prefetch-

ing and hardware prefetching. Both techniques have been
extensively studied in the past. Literature on software pre-
fetching focuses primarily on algorithms for understanding
where compilers should automatically insert prefetch instruc-
tions [4, 15, 10]. Work regarding hardware prefetching tends
to focus on new ideas for prefetching structures and im-
plementations. The ideas are implemented in simulators
and evaluated using benchmarks, or portions of benchmarks,
meant to represent full applications [5, 17, 6].

Palacharla and Kessler [14] describe an algorithm for de-
tecting streams as part of a stream buffer simulator. We
improved on this algorithm and extended it to recognize
streams with non-unit strides, and to compute the num-
ber of live data streams at any point in an application. We
use streaming concurrency results in combination with static
program analysis to understand which memory access pat-
terns of an application are not effectively prefetched.

Williams et al. [19] have recognized the importance of
writing code that is friendly to the hardware prefetchers.
However, their optimizations are based on manual inspec-
tion of the code. We describe an analysis technique and
tool implementation that abstractly understands streaming
behavior in applications and provides insight into prefetch
unfriendly memory access patterns. To our knowledge, this
is the first description of such a tool.

3. BACKGROUND
The AMD 10H micro-architecture, represented by the Bar-

celona, Shanghai and Istanbul chips, has two streaming hard-
ware prefetchers. The first prefetcher is associated with the
data cache level and is replicated across all the cores of a
microprocessor. We call it the DC prefetcher. The DC
prefetcher monitors memory accesses that miss in the L1
cache. It tries to detect streaming data access patterns, and
speculatively fetches the memory addresses predicted to be
accessed in the near future. The second prefetcher is asso-
ciated with the memory controller. Therefore, we call it the
MC prefetcher. The MC prefetcher operates on the stream
of memory addresses generated by misses in the last level
of cache from all the cores connected to that memory con-
troller. Because it operates on memory accesses that are
filtered by the L3 cache, typically, it can discover a differ-
ent set of data streams than the DC prefetcher, even when
only a single core is active and generating addresses. The
MC prefetcher fetches data into a separate prefetch buffer
to avoid conflicts with the data loaded into the CPU caches.

Based on micro-benchmark testing, we found that the DC
prefetcher recognizes streams with a maximum stride of one
cache line, while the MC prefetcher understands streams
with a stride of up to four cache lines. Both prefetchers
recognize streams with either positive or negative strides.
Hardware prefetching structures have limitations similar to
other caching mechanisms. They keep track of streaming ac-
cesses that reference consecutive or nearby lines. However,
successive accesses to nearby lines must exhibit a certain
level of temporal locality, because the hardware structures
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Figure 1: Prefetch requests as a function of stream
count.
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Figure 2: Diagram of the stream simulation tool.

used by the prefetchers have finite capacities. Again, we
used micro-benchmarks to empirically understand the max-
imum number of data streams that can be handled by each
AMD 10H hardware prefetcher.

We wrote a micro-benchmark that streams over a block of
memory using a configurable number of concurrent streams.
Figure 1 presents the fraction of memory requests that have
been initiated by each of the hardware prefetchers as we
varied the stream count. We measured these numbers using
the hardware performance counters available on the AMD
10H architecture. The data in Figure 1 shows that the MC
prefetcher is effective for up to 16 concurrent streams. This
suggests the presence of a 16-entries hardware structure.
The effectiveness of the DC prefetcher seems less stable.
Overall, it stays relatively high up to a concurrency level
of 16, and then decreases slowly up to a concurrency of 21
streams. However, its overall effectiveness is lower than that
of the MC prefetcher for up to 16 streams.

4. STREAMING CONCURRENCY
Applications benefit from hardware prefetching in differ-

ent degrees. To explain these differences, we developed a
tool for identifying streaming behavior and for building a
streaming concurrency model of an application. Our thesis
is that the streaming concurrency model of an application
can explain its observed prefetching performance.

We implemented a PIN [9] based tool to detect streaming
behavior in optimized x86 binaries. Figure 2 shows the main
components of our simulation tool. First, memory references
are processed by a cache simulator, because the stream-
ing hardware prefetchers on current micro-architectures are
placed behind one or more levels of cache, with the cache
acting as a filter on the address stream. Our cache simula-
tor uses a true least recently used (LRU) replacement policy,
but its capacity, block size and associativity are fully cus-
tomizable otherwise. Accesses that miss in cache are further
processed by a stream detection module, which is explained
in the next section.
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4.1 Stream Detection
Our stream detection algorithm is based on the stream

buffer simulation algorithm described in [14]. We added
extensions for detecting streaming behavior with non-unit
strides. Because this algorithm is implemented in software,
we could use a more general solution that does not require
either knowing the PC of the instructions that perform mem-
ory accesses [1], or partitioning the address space and limit-
ing stride detection within each partition [14].

Our stream detection algorithm uses two primary data
structures, a Stream Table that stores information about
streams already recognized, and a History Buffer that keeps
track of memory locations recently accessed. The latter data
structure is used to recognize new streams. A new stream
is formed when two strided accesses, with the same stride,
are detected. That is, the program must access locations i,
i + s and i + 2s to form a new stream with stride s, whose
next access is expected to be at location i + 3s.

The history table is a hybrid ring buffer / balanced search
tree data structure. The ring buffer organization maintains
a FIFO ordering of the entries. The balanced search tree or-
ganization is used to efficiently locate entries corresponding
to nearby locations in memory for a history table that may
be large in size. The history table entries are C structures
with the following fields: loc - stores the memory location
associated with an entry and is also the sorting key for the
balanced search tree; pstrides and nstrides are two bit sets
that keep track of positive and negative strides, respectively,
of potential streams that include this memory location.

The stream table is also a hybrid data structure, organized
both as a doubly linked list to maintain an LRU ordering
between entries, and as a hash table to enable rapid detec-
tion of a stream hit. A stream table entry has the following
fields: next loc stores the next memory location expected to
be accessed by a stream and is also the key used for hash-
ing; stride stores the stride associated with a stream and is
used to advance the stream on a stream hit; prev and next
are pointers to other stream table entries, which are used to
implement the doubly linked list view of the table.

Algorithm 1 shows the outline of the stream detection al-
gorithm. On a memory access, we first check if the accessed
memory location is predicted by any of the streams already
stored in the Stream Table. If the location has been pre-
dicted by one of the streams, we call the access a stream
hit. In this case, we only have to advance the stream, which
consists of deleting its current entry from the hash table, up-
dating the expected memory location field using the stride
information, rehashing the entry based on the new value of
the next loc field, and updating the next and prev point-
ers to move the accessed stream into the most recently used
(MRU) position. In addition, on a stream hit, we compute
the instantaneous streaming concurrency value (see §4.2).

In case of a stream miss, we must check if the new memory
access appears to be in a streaming pattern with other re-
cently accessed locations stored in the history buffer (lines 10-
31), allocate a new stream in the stream table if a stream is
detected (lines 33-37), and finally, add a record of the newly
accessed memory location to the history buffer (lines 38-44).

4.2 Concurrency Detection
On a stream hit, we want to understand how many other

data streams are active at the same time. We call this met-
ric the streaming concurrency of an application. Previous

Algorithm 1 Stream detection algorithm.

1: HistoryEntry histBuffer[H]
2: Tree<HistoryEntry*> histTree
3: function StreamDetect(mloc, sstride)
4: # mloc - accessed memory location
5: # sstride - stream stride (output parameter)
6: stream← FindStream(mloc, sstride)
7: if stream 6= 0 then
8: return AdvanceStream(stream)
9: else # stream miss, add to the history table
10: uElem← histTree.upper bound(mloc + M)
11: lElem← histTree.lower bound(mloc−M)
12: pstrides← 0
13: nstrides← 0
14: min stride←MAX INT
15: min elem← 0
16: for all lElem ≤ elem < uElem do
17: s← mloc− elem.loc
18: if s > 0 then
19: pstrides.Set(s)
20: if elem.pstrides.IsSet(s) && s <

abs(min stride) then
21: min stride← s
22: min elem← elem
23: end if
24: else if s < 0 then
25: nstrides.Set(−s)
26: if elem.nstrides.IsSet(−s) && −s <

abs(min stride) then
27: min stride← s
28: min elem← elem
29: end if
30: end if
31: end for
32: status← NO STREAM
33: if min elem 6= 0 then
34: status← NEW STREAM
35: sstride← min stride
36: AllocateStream(mloc, sstride)
37: end if
38: if histBuffer.IsFull() then
39: histTree.Erase(histBuffer[lastIdx])
40: lastIdx← (lastIdx + 1) mod H
41: end if
42: histBuffer[top]← {mloc, pstrides, nstrides}
43: histTree.Insert(histBuffer[top])
44: top← (top + 1) mod H
45: return status
46: end if
47: end function

stream buffer simulations matched an existing or proposed
hardware implementation. They were using a predefined
number of buffer streams, and were only interested in find-
ing how many accesses have been stream hits (prefetchable)
or stream misses. While we also use stream tables and his-
tory buffers of predetermined sizes during simulation, these
sizes can be large, and have no relationship to any existing
micro-architecture. We use simulation to build a model of
an application’s memory access patterns.

On each stream hit, we compute a streaming concurrency
value for that memory access. We define the concurrency
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Table 1: Simulation parameters.

Param Description DCsim MCsim

C Cache capacity (in KB) 64 6144
L Cache line size (in bytes) 64 64
A Cache associativity 2 48
M Max stream stride(lines) 1 4
H History buffer size 256 256
T Stream table size 128 128

of a stream hit as the number of streams that have been
advanced more recently than the previous hit on the cur-
rent stream. This metric captures how many other streams
are advancing concurrently with the current stream, which
corresponds to the number of data arrays that are being
streamed over by an application. This metric is also equiva-
lent to computing the LRU stack distance [13, 2] for streams.

We compute the LRU stack distance using a balanced bi-
nary tree [3], which provides an O(log(T )) execution time
per access, where T is the size of the tree. Our implementa-
tion, based on [12], uses a splay tree [16], and because we use
a fixed size stream table during the simulation, the balanced
tree size is upper bounded by the table size.

We aggregate application profiles at the memory instruc-
tion level. We process this profile information in a post-
mortem step to compute different statistics at instruction,
loop and routine level.

4.3 Simulation Results
We compare our histograms of streaming concurrency a-

gainst hardware counter measurements of prefetching re-
quests initiated by the two AMD 10H streaming hardware
prefetchers. Our motivation for this work is to explain ob-
served differences in prefetching performance and to identify
opportunities for tuning in scientific applications. For this
evaluation, we use the full SPEC CPU2006 benchmark suite
because it provides a broad set of applications and it elim-
inates the temptation of cherry picking a small number of
HPC applications that reflect better on our analysis.

We use the train input set instead of the ref input set
for our evaluation because despite a careful implementation,
simulating each memory access causes ≈60x execution slow-
down. In addition, we believe that performance diagnosis
based on performance modeling does not need to be done at
scale to be useful. Our models capture features of an appli-
cation, such as streaming behavior, that are true at different
scales. Our tuning results in §6 include data for ref inputs.

The stream detection algorithm abstractly identifies the
number of concurrent streams in an application. This mea-
sure is a machine independent application characteristic.
However, on most micro-architectures, including the AMD
10H architecture, stream buffers are placed after one or more
levels of cache. Caches act as filters on the stream of mem-
ory addresses. Therefore, we configured our simulation tool
with an architecture dependent cache simulator in the first
stage, as shown in Figure 2. We used a dual-socket AMD Is-
tanbul based machine, with two 6-core processors running at
2.6GHz and 12GB of main memory for both our simulations
and our hardware counter measurement results.

We performed two simulation runs, using the configura-
tions shown in Table 1: 1) one simulation targeting the DC
prefetcher uses a 64KB, 2-way set-associative cache in the

Table 2: SPEC benchmark names.
Index Name Index Name

400 perlbench 401 bzip2
403 gcc 410 bwaves
416 gamess 429 mcf
433 milc 434 zeusmp
435 gromacs 436 cactusADM
437 leslie3d 444 namd
445 gobmk 447 dealII
450 soplex 453 povray
454 calculix 456 hmmer
458 sjeng 459 GemsFDTD
462 libquantum 464 h264ref
465 tonto 470 lbm
471 omnetpp 473 astar
481 wrf 482 sphinx3
483 xalancbmk

first stage and detects streams with a stride of +/- one cache
line; 2) a second simulation targeting the MC prefetcher de-
tects streams with a stride of up to four cache lines, and
accesses are filtered by a 6MB, 48-way set-associative cache.

Figure 3a shows the streaming concurrency results side
by side with the hardware counter measurements of prefetch
requests initiated by the DC prefetcher, for all the bench-
marks and all the train inputs. On the x axis we show the
benchmark index followed by a colon and the name of the
input file, as it was captured by our automated script. For
some benchmarks, no input file could be detected, so that
information is missing. For brevity, we did not include the
benchmark names in the figure labels. Table 2 shows the
benchmark names associated with each benchmark index.

For each benchmark, we show a stacked histogram of the
streaming simulation results aggregated at the entire pro-
gram level. The bin values are normalized by the number
of cache misses observed for each benchmark. Only cache
misses are processed by the stream detection simulation, and
thus, the bins of the histograms stack up to 1. The bins la-
beled as New reflect the fraction of cache misses that resulted
in new streams being created. The streaming concurrency
values, measured only for stream hits, have been aggregated
into 11 distinct bins, with increasingly coarser resolutions.
Finally, the Not bins show the fraction of non-streaming ac-
cesses observed for each benchmark. The DC_PF metric, mea-
sured using hardware counters, shows the fraction of data
accesses to the L2 cache initiated by the DC prefetcher.

The bins are color coded for easier inspection, and use dif-
ferent hash patterns to be legible in black and white. Thus,
low streaming concurrency bins, 1 to 4 streams, use dot pat-
terns and are colored in black. Medium concurrency bins,
5 to 16 streams, use diagonal hash lines and are colored in
red. Finally, high concurrency bins, 17 streams and higher,
use horizontal or vertical hash lines and are colored in blue.
Non-streaming accesses are plotted with a grid hash, and are
also colored in blue. We specifically decided to make these
distinctions between the different concurrency levels.

When a new stream is detected, the hardware prefetcher
will attempt to fetch the next location predicted to be part
of the stream. Similarly, when a stream is advanced on
a stream hit, the hardware prefetcher will fetch the next
location predicted by the stream. Based on the prefetching
effectiveness profile shown in Figure 1, we expect that most
accesses with a streaming concurrency of up to 16 will hit
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(b) MC prefetcher

Figure 3: Streaming concurrency and prefetching measurements for the two AMD 10H hardware prefetchers.
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in the hardware prefetcher’s own hardware structures, and
thus result in a new prefetch request to the L2 cache. The
differences in color and filling patterns between streaming
concurrencies below 16 and those of 17 and higher, make it
easier to compare the simulation and measurement results.

We opted to present a graphical, qualitative comparison of
these two metrics, because first, the streaming concurrency
histograms include more information than a single quanti-
tative prediction of prefetch requests computed by summing
up the New bin and the bins with a concurrency of up to
16, and second, we want to show that the streaming con-
currency metric provides a good explanation of prefetching
effectiveness, even as we do not fully understand the precise
implementation of the AMD 10H hardware prefetchers. As
can be seen in Figure 1, the DC prefetcher is not 100% ef-
fective even when we generate clean streaming accesses at
low concurrency levels, using a synthetic micro-benchmark.

Overall, we believe the results in Figure 3a explain well
the measured prefetch counts. Across the entire suite, al-
most half of all DC cache misses are not streaming accesses.
However, for most benchmarks, memory accesses that have
streaming behavior are characterized by a low or medium
concurrency level, which means that they can be effectively
prefetched by the current hardware prefetchers. Only bench-
mark 436.cactusADM, and to a lesser extent benchmarks
447.dealII and 464.h264ref, have a significant fraction of
streaming accesses characterized by high concurrency. There
are also three outliers for which the measured number of pre-
fetch requests is lower than what we would expect based on
the concurrency histograms: benchmark 437.leslie3d, and
inputs atari_atari and blunder of benchmark 445.gobmk.
We note that in these cases, the number of accesses to the
L2 cache1, measured with hardware performance counters,
was 25% to 40% higher than the miss counts produced by
our L1 cache simulator. Benchmark gobmk is known to have
very poor branch predictability, which likely leads to many
wrong-path loads, not visible to our PIN based simulation.

Often, prefetchers may initiate unnecessary prefetch re-
quests, on one hand due to inaccurate predictions, but also
due to superfluous requests at the end of streams when appli-
cations stop accessing data along those same patterns. The
number of newly created streams computed by our simula-
tion is a good indicator of how many superfluous requests
are generated at the end of streams, because all the streams
that are created will stop advancing eventually. The num-
ber of unnecessary prefetch requests generated at the end of
streams depends also on how many lines are fetched in ad-
vance by each prefetcher. In the case of the DC prefetcher,
this number seems to be small.

Similarly, Figure 3b compares the simulated streaming
concurrency and the number of prefetch requests observed
for the MC prefetcher. The MC_PF metric represents the
fraction of memory requests initiated by the MC prefetcher,
measured using hardware counters. Most of the discussion
for the DC prefetcher applies to the MC prefetcher results as
well. However, evaluating the behavior of the MC prefetcher
is complicated by additional factors. Our simulation ana-
lyzes the stream of memory accesses generated by the ap-
plication and filtered by a cache with the characteristics of
the L3 cache on the target machine. However, in practice,
the DC prefetcher will generate additional memory requests

1This is the denominator used for computing the DC PF
metric.

that may be filtered or not by the intervening levels of cache.
Also, the three levels of cache of the AMD 10H architecture
are not in an inclusive relationship. Simulating only the last
cache level does not capture precisely the number of memory
accesses that are processed by the MC stream buffers.

The results in Figure 3b show once again that the stream-
ing concurrency metric explains well the measured MC pre-
fetch counts. Benchmarks 433.milc and 470.lbm stand out
with a high rate of stream creation. The high rate of stream
creation results in a high number of superfluous prefetch re-
quests at the end of the streams, which causes the measured
prefetch counts to be higher than what we would expect.
These results suggest that the MC prefetcher fetches mul-
tiple lines in advance, which is understandable considering
the higher memory latency that it must hide.

5. PERFORMANCE INSIGHT
The simulation algorithm introduced in the previous sec-

tion, abstractly identifies streaming behavior in applications.
We performed simulations with a larger stream table size,
to pinpoint cases when an application exhibits streaming
behavior, but the number of streams exceeds the size of the
hardware structures. However, even the data structures that
we use in our simulations are finite in size, for performance
reasons. Accesses with streaming concurrency levels higher
than the size of the Stream Table are labeled instead as hav-
ing non-streaming behavior. In this section, we refine the
simulation results using static analysis. Besides improving
the accuracy of the simulation results, we also want to iden-
tify opportunities for improving prefetching performance.

Our models assume that accesses that create new streams
and streaming accesses with concurrency of up to 16 are
prefetchable. We focus our attention on the other types of
accesses. We base our analysis on the following observations:

1) Streaming accesses are strided accesses with a stride
less than or equal to the maximum recognized stride, M .
We generally think of streaming accesses as being generated
by the loop immediately enclosing a memory instruction.
However, consider the case of a two dimensional array laid
out in row major order, as in C, and a two level loop nest
where the inner loop iterates over the rows, and the outer
loop iterates over the array’s columns. Every iteration of
the inner loop touches different rows, which are far apart in
memory. Therefore, the inner loop does not create streaming
accesses. However, on each iteration of the outer loop we
access consecutive elements of each row. Thus, the outer
loop advances a separate stream for each row of the array.
We know that such an access pattern is sub-optimal due to
long spatial reuse. However, it also creates a situation where,
potentially, a very large number of streams are accessed in
a round-robin fashion. We state that out of all the loops
enclosing an instruction, the loop that produces the smallest
access stride is the loop that creates streaming behavior.

2) Non-streaming accesses correspond either to non-strided
memory instructions, also known as irregular accesses, or
they correspond to strided accesses whose strides are larger
than the maximum recognized stride.

Recall that our simulation tool uses PIN to understand
streaming behavior in unmodified, optimized x86 binaries
and that we collect streaming concurrency profiles at the in-
struction level. We use static analysis on the same applica-
tion binaries to distinguish between the scenarios described
above. We perform data flow analysis on a routine’s control
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flow graph (CFG) to symbolically understand memory ac-
cess patterns in applications. For each memory instruction,
we build symbolic formulas that describe how the memory
location accessed by that instruction changes from one iter-
ation to the next of a particular loop. We compute one such
formula for every loop level that encloses that instruction.
These formulas describe the strides with which a memory in-
struction traverses over memory, with respect to each loop
enclosing it. The data flow analysis also detects cases when
the computed stride is not consistent across iterations, or
when a memory access is indirect with respect to a loop.
We classify these strides as irregular.

We use the derived stride formulas to further refine the
simulation results for each memory instruction. We look at
an instruction’s stride formulas in order, from the innermost
to the outermost loop, until we find an irregular stride, or
until we exhaust all the loop levels. We want to find the
smallest non-zero stride associated with an instruction and
record the loop level that creates it. The smallest stride cor-
responds to the loop level that has the potential to stream
over the associated source code data structure. We ignore
strides that are equal to zero, because they correspond to
loops whose index variables are not used to reference the
source data structure. Repeated accesses to the same loca-
tion do not create streaming behavior.

This first step of the analysis yields the following sce-
narios: 1) At least one loop creates a constant2 non-zero
stride. We record the loop that produces the smallest non-
zero stride. 2) We find only symbolic strides that depend
on run-time values. 3) We find an irregular stride before
finding any non-zero stride. 4) We find no non-zero strides.
Next, we look more closely at each of these scenarios.

1) If we find a smallest constant non-zero stride, S, we
check if S is larger than the maximum recognized stride, M .
If it is, then we classify all the non-streaming accesses pro-
duced by that instruction as being produced by an access
pattern with a large stride. If S ≤ M , this instruction has
streaming behavior. If the simulation determined that this
instruction produced any non-streaming accesses, it must be
because the streaming concurrency level was higher than the
size of the Stream Table data structure used in the simula-
tion. We further check the position of the loop producing
the smallest stride, S. If it is the loop immediately enclosing
the instruction, we say that any non-streaming accesses are
caused by a high inner concurrency level. Otherwise, we say
that high outer concurrency causes non-streaming accesses.

2) If we find only symbolic strides, we can assume that the
stride is too large to produce streaming behavior. However,
for now, we classify such accesses as having a symbolic stride,
to understand their rate of occurrence in real applications.

3) If the stride is irregular, we classify any non-streaming
accesses as being caused by an irregular access pattern.

4) Finally, it may happen that we do not find any non-
zero stride for a particular instruction, either because the
memory instruction accesses a fixed location, or because the
instruction is not enclosed in any loop. Our data flow anal-
ysis is performed only intra-procedurally at this time, and
we found many instances, especially in C++ code, where fre-
quently executed routines did not contain any loops, but
they accessed memory locations determined by the func-
tion input parameters. Currently, we cannot classify the

2constant in this context means that the stride can be de-
termined statically, it is not depended on run-time values.

non-streaming accesses produced by these instructions using
static analysis. This is a limitation of our current implemen-
tation, not a limitation of the approach. Understanding if
these accesses are strided or irregular requires at least partial
inter-procedural analysis. For completeness, in Section 6, we
classify such accesses as having no stride.

We use the above analysis to classify non-streaming mem-
ory accesses into four main categories: 1) accesses with ir-
regular strides; 2) accesses with large strides, with the added
sub-category of symbolic strides; 3) streaming accesses with
high concurrency levels produced by an innermost loop; 4)
streaming accesses with high concurrency levels produced
by an outer loop. In addition, we also classify streaming
accesses with a concurrency level higher than 16 into either
category (3) or category (4), depending on which loop level
produces the smallest stride.

6. EXPERIMENTAL RESULTS
We applied our post-mortem analysis to the SPEC CPU

2006 benchmark suite simulation results. Figure 4 presents
the distribution of prefetch unfriendly accesses with respect
to the DC prefetcher, for each of the benchmarks. As be-
fore, the labels on the x axis show the benchmark index and
the name of the input file. Benchmark names are listed in
Table 2. Most of the bin labels should be self explanatory.
The bins labeled as 17+ Inner and 17+ Outer correspond to
streaming accesses with high concurrency levels produced by
the innermost loop or by an outer loop, respectively.

Figure 4 shows the fraction of non-prefetchable L1 cache
misses for each of the categories described in Section 5. The
stacked histograms do not sum up to 100% this time. The
difference to 100% is represented by cache misses that were
determined to be prefetcher friendly. Many benchmarks in-
clude a significant fraction of accesses for which our intra-
procedural data flow analysis could not find an access stride.

If we focus on the accesses for which strides could be de-
termined, we notice that many benchmarks have a large
fraction of L1 cache misses that are produced by irregular
or indirect accesses. This is not such a surprise when we
look at the list of integer benchmarks included in the suite:
400.perlbench is a perl interpreter, 401.bzip2 is a compres-
sion program, 403.gcc is a C compiler, 429.mcf implements
a vehicle-depot scheduling algorithm, and 473.astar imple-
ments a path finding algorithm for a computer game. Even
among the floating point benchmarks we find a good fraction
of irregular memory access patterns. Benchmark 435.gro-

macs is a molecular dynamic code that uses a neighbor list
method to compute interactions between nearby particles.
While accesses to the neighbor list itself are strided, accesses
to the actual particle data are indirect and irregular.

Somewhat surprisingly, only three benchmarks have any
significant number of streaming accesses with high concur-
rency levels produces by an outer loop: 434.zeusmp - a mag-
netohydrodynamics code, 447.dealII - a partial differential
equations solver, and 459.GemsFDTD - a computational elec-
tromagnetic code. We think that such cases are not par-
ticularly interesting as targets for prefetching optimizations,
because the access patterns that generate them are also char-
acterized by long spatial reuse, and optimizing for data reuse
should improve streaming behavior as well.

On the other hand, accesses with high concurrency lev-
els produced by an inner loop are interesting for further
analysis and optimization, because they capture situations
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Figure 4: Distribution of prefetch unfriendly accesses with respect to the DC prefetcher.

where applications stream over many data arrays in an in-
ner loop. All accesses are performed with a small stride and
they should exhibit good spatial locality. However, stream-
ing over too many arrays at the same time makes hardware
prefetchers ineffective, which may significantly impact per-
formance. Such cases can be improved either by data layout
transformations such as fusing several arrays into one ar-
ray, interleaving their elements, or by code transformations
such as loop splitting, with each loop streaming over only
some of the arrays. Each of these approaches can have neg-
ative side effects, so they should be applied on a case by
case basis. Array fusion works best when the arrays that
are fused are always accessed together. If we fuse arrays
that are not always accessed by the same loops, we nega-
tively impact spatial reuse and increase memory bandwidth
use. Loop splitting should be applied when we do not create
data reuse between the resulting loops, in other words, when
the resulting loops access disjoint sets of arrays. We notice
that benchmark 436.cactusADM has a very large fraction of
accesses with high inner concurrency levels. In Section 6.1
we attempt to improve its streaming behavior.

We also find several benchmarks that have a meaningful
fraction of strided accesses where the stride is large. Bench-
mark 470.lbm stands out, with a very high fraction of ac-
cesses characterized by a large stride. We want to take a
closer look at this benchmark as well, because we do not
know exactly what to expect. We observe that, in the case
of the SPEC CPU benchmarks, only a small fraction of non-
streamable accesses are associated with symbolic strides.

6.1 Tuning of benchmark 436.cactusADM
CactusADM is based on the open source Cactus prob-

lem solving environment, and on the computational ker-
nel BenchADM. CactusADM solves the Einstein evolution
equations, which describe how space-time curves in response
to its matter content, using a set of ten coupled nonlinear
partial differential equations [7]. Our analysis of the Cac-
tusADM results revealed that almost all of its 17+ Inner

accesses are produced by two loops in routine Bench_Stag-

geredLeapfrog2. This Fortran routine has 135 input ar-
guments, and is called from within the Cactus framework.
Around half of its input parameters are arrays, many of them
three-dimensional arrays.

The Cactus framework auto generates a lot of the glue
code that allocates and initializes data arrays, based on a
custom input language. We could not determine how to
modify the Cactus framework to do the layout transforma-
tions that we wanted. Instead, we wrote a custom wrap-
per code in C that allocates and initializes all the arrays
expected by the Fortran routine, and then invokes the un-
modified Fortran code, just as the Cactus code does. We
call this version the CustomADM code.

Next, we created an optimized version of the code based
on our analysis results. We fused 69 of the input arrays into
13 larger arrays, using their names3 and their dimension
sizes to guide our transformations. An additional six arrays
locally declared in the Fortran routine were fused into a
single array. We call this code the OptimizedADM version.
We measured the performance of the three code versions, the
original SPEC ADM code, the custom ADM code, and the
optimized ADM code, using hardware performance counters.

Figure 5a shows the results for both the train and the
ref inputs. The first four metrics shown in the figure are
normalized to the performance of the Custom version. The
number of L2 prefetch requests is shown as a percentage of
the total number of L2 requests for each version of the code.
Similarly, the number of memory prefetch requests is shown
as a percentage of the total number of memory read requests
for each code version. We first compare the SPEC and the
custom versions of the code, to show that the custom version
is a good substitute for the SPEC Cactus code. While the
execution time of the custom version is 14% shorter than the
original execution time because some of the Cactus specific
code is not executed anymore, the measured metrics show
that the memory behaviors of the two versions are similar.

We then compare the optimized and the custom versions.
The fraction of L2 requests initiated by the DC hardware
prefetcher increases dramatically, from about 2% to about
79% for the train input, and to 71% for the ref input. As
a result, we see a similarly significant drop in the number of
L1 misses for the optimized version. The fraction of memory
requests initiated by the MC prefetcher also increases from
54% with the train input and 12% with the ref input, to
about 100% for the optimized version. This increase in pre-

3Related arrays were named with a common prefix.
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Figure 5: Tuning results for benchmarks CactusADM and LBM with the train and ref inputs.

fetching coverage yields a close to 19% and 32% reduction
in execution time for the two inputs, or a 23% and 47%
speed-up, respectively. The prefetch optimizations yield a
larger speed-up for the ref input because the original code’s
MC prefetching performance was lower with the larger in-
put. The ref input results show also an increase of 12-15%
in memory and L2 traffic for the optimized version due to
superfluous prefetch requests, mentioned in §4.3.

6.2 Tuning of benchmark 470.lbm
The SPEC LBM benchmark implements the Lattice Boltz-

mann Method to simulate incompressible fluids. We ana-
lyzed the results obtained for the LBM benchmark and we
found that all the prefetch unfriendly accesses with a large
stride were produced by routine LBM_performStreamCollide.
The benchmark performs sweeps over a three-dimensional
lattice, implemented as a one-dimensional array in the SPEC
version of the code. The state of each lattice site is defined
by a set of double precision floating-point numbers that rep-
resent the distribution functions with respect to the discrete
directions of velocities [18]. Thus, the lattice data structure
in the 470.lbm benchmark is implemented as an array of
records with 20 double precision floating point fields.

Routine LBM_performStreamCollide performs a 19-point
Stencil 3D calculation using separate source and destination
lattices. Only some of the fields of the destination lattice
grid are updated for each of the sites. Each lattice element is
a record with 20 double precision floating point values, thus,
160 bytes in size. Although all the lattice sites are traversed
in sequential order, the type of sparse updating performed
by the LBM code, results in accesses with strides larger than
a cache line (64 bytes), and therefore, are not recognized as
streaming accesses by the AMD 10H DC prefetcher.

To improve streaming behavior, we created an optimized
version by splitting the array of records into three separate
arrays of smaller sized records, each record’s size being less
than or equal to one cache line. Performance results for the
train and ref inputs are summarized in Figure 5b. The
first four metrics are normalized to the performance of the
SPEC version. The number of L2 prefetch requests is shown
as a percentage of the total number of L2 requests for each
version of the code. Similarly, the number of memory pre-
fetch requests is shown as a percentage of the total number
of memory read requests for each code version. LBM’s ref

and train inputs differ mainly in the number of executed
time steps. Thus, the performance profiles of the two inputs
are very similar. The comments below apply to both.

We compare the SPEC and the Optimized versions of the
code. The optimized version’s execution time is 35% smaller
than the SPEC LBM version, or in other words, it achieves
a 54% speed-up. However, we immediately notice that the
optimized version has much better data locality. The num-
ber of L2 requests and the number of memory reads dropped
by 54% and 30%, respectively. We also observe a significant
increase in the fraction of L2 requests that are initiated by
the DC hardware prefetcher, on top of the overall reduction
in L2 requests. Unfortunately, the transformation that im-
proved prefetching effectiveness also improved data locality,
and we cannot separate or evaluate their effects individually.

Instead, we created a new version of the code, where we
split each state variable into its own array. The transfor-
mation consists of transposing the array of records into a
record of arrays. Hence, we named this code the Trans-
posed version. Naturally, this transformation produces the
best data locality among all versions, as can be seen by
looking at the counts of L2 requests and memory reads in
Figure 5b. However, creating a separate array for each state
variable increases the code’s streaming concurrency beyond
what the two AMD 10H hardware prefetchers can handle.
As a result, this code version exhibits almost no DC or MC
prefetches. We also notice that despite the incrementally
improved data locality, the transposed version runs much
slower, 46.5% slower than the optimized version.

7. CONCLUSIONS
Streaming hardware prefetchers can have an important

beneficial effect on application performance, if applications
traverse memory with the right access patterns. However,
these hardware structures are largely hidden from users. Un-
like cache memories for which a large number of analysis and
tuning techniques have been proposed and studied, there has
been little previous work that focused on application analy-
sis techniques specifically targeted at identifying tuning op-
portunities for the hardware prefetchers.

In this paper, we introduced the metric streaming con-
currency to characterize the number of parallel, logical data
streams in applications. Our experiments show that the
streaming concurrency metric explains well the number of
prefetch requests initiated by the two AMD 10H hardware
prefetchers for the SPEC CPU2006 benchmark suite. While
not the focus of this paper, the streaming concurrency met-
ric can also be used to guide the design of the hardware
structures so that they handle well a particular workload.
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We described an approach based on static analysis and
simulation to understand if the memory access patterns of
applications are amenable to hardware prefetching, and to
identify opportunities for improving their prefetch friendli-
ness. We identified four situations that make the stream-
ing hardware prefetchers ineffective and we provided insight
into the code transformations that are needed to increase
the prefetching effectiveness in each of the four situations.
We used this insight to tune the prefetching performance of
two SPEC CPU2006 benchmarks. While some of the perfor-
mance gains observed in Section 6 can be attributed to data
locality improvements, our tuning results show that it is im-
portant to write prefetch friendly code whenever possible,
to minimize unfulfilled performance.

We do not advocate prefetching optimizations at any cost,
for example at the expense of data locality. A balanced
approach is needed in most cases. Moreover, increasing data
reuse and eliminating data movement between the different
levels of the memory hierarchy altogether, can also improve
the energy efficiency of an application. Our tuning results
with the LBM benchmark show, however, that we should
not pursue data reuse improvements exclusively, at the cost
of prefetching effectiveness, because such an approach can
negatively impact performance.
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