
DIAGNOSIS BASED ON DESCRIPTION OF STRUCTURE AND FUNCTION

Randall Davis*, Howard Shrobe*, Walter Hamscher*

Ksren Wieckert * , Mark Shirley*, Steve Polit * *

* The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract
While expert systems have traditionally been built using

large coliections of rules based on empirlcal associations, interest
has grown recently in the use of systems that reason from
representations of structure and function. Our work explores the
use of such models in troubleshooting digital electronics.

We describe our work to date on (i) a language for
describing structure, (ii) a language for describing function, and
(i/i) a set of prlnctples for troubleshooting that uses the two
descriptions to guide its investigation.

In discussing troubleshooting we show why the
traditional approach --- test generation --- solves a different
[JrdJklll dnti vve &SCllSS a Ilumber of its pIdC,hd ShOrt~Olllill~S.

We consider next the style of debugging known as violated
expectations and demonstrate why it is a fundclmental advance
over traditional test generation. Further exploration of this
approach. however, demonstrates that it is incapable of dealing
with commonly known classes of faults. We explain the
shortcoming as arisirlg from the use of a fault model that is both
implicit and inseparable from the basic troubleshooting
metl~odology. We argue for the importance of fault models that
are explicit, separated from the troubleshooting mechanism, and
retractable in much the same sense that inferences are retracted
in current systems.

Introduction
While expert systems have traditionally been built using

large collections of rules based on empirical associations (e.g.,
[S]) interest has grown recently in the use of systems that reason
from representations of structure and function (e.g., [8], [7], [5]).
Our work explores the use of such models in troubleshooting
digital electronics.

We view the task as a process of reasoning from
oenavlor to structure, or more precisely, from misbehavior to
structural defect. We are typically presented with a machine
c-xhibitmg some form of incorrect behavior and must infer the
structural abberation that is producing it. The task is interesting
nnd difficult because the devices we want to examine are complex
and because there IS no well developed theory of diagnosis for
them.

Our ultimata goal is to provide a level of performance
comparabie to that of an experienced engineer, including reading
and reasoning from schematics; selecting, running, and

This report describes research done at the Artificial lntclligencc
Laboratory of the Massachusetts Institute of Technology. Support for
the labora!ory’s artificial intclllgcnce research on electronic
Croubleshoot~ng is provided in part by the Digital Equipment
Corporation.

**Digital Equipment Corp.

interpreting the results of diagnostics: selecting and interpreting
the results of input test patterns, etc. The Initial focus of our work
has been to develop three elements that appear to be fundamental
to all of these capabilities. We require (i) a language for
describing structure, (ii) a language for describing function, and
(/;I) a set of prlnciplcs for troublesllooting that uses the two
descriptions to guide its invosligation. This paper describes our
progress to date on each of tnuse elements.

In discussing iroubleshosi;ng we St IOW why tire

traditional approach to reasoni,lg ahout digital electronics --- test
generation - .- solves a diflercnt problem and we discuss a number
of its prPctic.31 shortcomings. We considar pext the style of

c!ebugging known as violated expectations and demonstrate why
it is a fundamental advance over traditional test generation.
Further explcration of the violated expectation approach,
however, demonstrates that it is incapable of dealing with
commonly known classes of faults. We explain the shortcoming
as arising from the us c of a fault model that is both implicit and
inseparable from the basic troubleshooting methodology. We
argue for the importance of fault models that are explicit,
separated from the troubleshooting mechanism, and retractable in
InUCh the same sense that inferences are retracted in current
systems.

Structure Description
By structtire description we mean topology --- the

connectivity of components. A number of structure description
languages have been developed, but most, having originated in
work or; machine design, deal exclusively with fu~~tiOff~/

components, rarely making any provision for describing pl~y~ical
organization.’ In doing machine diagnosis. however, we are
dealing with a collection of hardware whose functional and

physical organizations are both important. The same gate may be
both (i) functionally a part of a multlplexor, which is functionally a
part of a datapath, etc.. and (ii) physically a part of chip E67,
which is physically part of board 5, etc. Both of theso hierarchies
are relevant at different times in the diagnosis and both are
included in our language.

We use the functional hierarchy as the primary
organizing principle because, as noted, our basic task involves
rensonirlg from function to structure rather than the other way
around.’ The functional organization is also typically richer than
the structural (more levels to the hierarchy, more terms in the

1. This is curiously true even for languages billing themselves as
computer hardware descripfron languages. They rarely mention a piece
of physical hardware.
2. ‘Gc arti iypicnliy confronted with a machine that misbehaves, not one

that has visible structural damage.

137

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

vocabulary), and hence provides a useful organizing principle for
the largc number of individual physical compol\ents. Compare,
for example, the functional orqanization of a board (e.g., a
memory controller with cache, address translation hardware, etc.)
with the physical organization (1 pc board, 137 chips).

The most basic level of our description vocabulary is built
on three concepts: modules, ports, and ternjinals (Fig. 1). A
module can be thought of as a standard black box. A module has
at least two ports; ports are the place where information flows into
or out of a module. Every port has at least two terminals, one
terminal on the outside of the port and one or more inside.
Terminals are primitive elements; they store logic levels
representing the information flowing into or out of a device
through their port, but are otherwise devoid of substructure.

dinput-k4D”~ -1 sum”“”

Figure 1 - The basic terms used in structure description.

Two modules are attached to one another by
superimposing their terminals. In Fig. 1, for example, wire A is a
module that has been attached to input-l of the adder rnodule in
this fashion.

The language is hierarchical in the usual sense; modules
ai any level rnay have substructure. In practice, our descriptions
terminate at the gate level in the functional hierarchy and the chip
level in the physical hierarchy. since for ollr purposes these are
black boxes --- only their behavior (or misbehavior) matters. Fig. 2
shows the next level of structure of the adder and illustrates why
ports rnay have multiple terminals on their inside: ports provide the
important function of shifting level of abstraction. It may be useful
to think of the information flowing along wire A as an integer
between 0 and 15, yet we need to be able to map those four bits
Into the four single-bit lines insider the adder. Ports are the place
where such infornlation is kept. T&y have machinery (described
below) that allows them to map information arriving at their outer
terminal onto their Inner terminals. The default provided in the
system accomplishes the sirnple rnap required in Fig. 2.

Since our ultimate intent is to deal with hardware on the
scale of a mainframe computer, we need terms in the vocabulary
capable of describing levels of organization mole substantial than
the terms used at the circuit level. We can, for example, refer to
horizontal, vertical, and hitslice organizations, describing a
memory, for instance, as “two rows of five 1K ram’s”. We use
these specifications in two ways: as a description of the
organization of the device and a specification for the pattern of
interconnections among the components.

Our eventual aim is to provide an integrated set of

descriptions that span the lebels of hardware organization ranging
from interconnection of individual modules, through higher level
of organization of modules, and eventually on up through the
register transfer and PMS level [2]. Some of this requires
inventing vocabulary like that above, in other places (e.g., PMS)

Figure 2 - Next level of structue of the adder.

we may able to make use of existing terminology and concepts.
The structural description of a module is expressed as a

set of commands for building the module. Hence the adder of Fig.
2 is described by indicating how to “build” it (Fig. 3). These
commands are then executed by the system, causing it to build
data structures that model all the components and connections
shown. The resultmg data structures are organized around the
individual components. Executing the first expression of Fig. 3,
for example, produces 4 data structures that model the individual
slices of the adder.

(def i nernodul e adder
(repeat 4 i

(part sl ice-i adder-s1 ice)
(run-wire (input-l adder) (input-l slice-i))
(run-wire (input-2 adder) (input-2 slice-i))
(run-wire (output slice-i) (suln adder))

(repeat 3 i
(run-wire (carry-out slice-i)

(carry-in sl ice-[i f-l]))))

Figure 3 - Parts are described by a palhname through the part
hierarchy, e.g., (input-l adder). (This dcscrlptlon can be abbreviated as
a bitslrce organization, but IS expanded here for illustration.)

This approach to structure description offers two
interesting properties: (a) a natural merging of procedural and
object-oriented descriptions, and (b) the use of analogic
representations.

To see the merging of descriptions, note that we have two
different ways of thinking about structure. We describe a device
by indicating how to build it (the procedural view), but then want
to think about it as a collection of individual objects (the
object-oriented view). The first view is convenient for describing
structure, the second makes it easy to answer questions about it,
questions like connectivity, location, etc., that are irnportant in
signal tracing and other troubleshooting techniques. The two
descriptions are unified because the system simply “runs” the
procedural description to produce the data structures modeling

138

the device. This gives us the benefit of both approaches with no
additional effort and no chance that the two will get out of sync.

The representation is analogic because the data
structures that are built are isomorphic to the structure being
described. “Superimposing” two terminals, for instance, is
implemented as a merging of the structure representing the
terminals. The resulting data structures are thus connected in the
LISP sense in the same ways that the objects are connected in
Fig. 2. The benefit here is primarily conceptual, it simply makes
the resulting structures somewhat easier to understand.

Our description language has been built on a foundation
provided by a subset of DPL [l]. While DPL as originally
implemented was specific to VLSI design, it proved relatively easy
to “peel off” the top level of language (which dealt with chip
layout) and rebuild on that base the new layers of language
described above.

Since pictures are a fast, easy and natural way to
describe structure, we have developed a simple circuit drawing
system that permits interactive entry of pictures like those in Figs.
2 and 4. Circuits are entered with a combination of mouse
movements and key strokes: the resulting structures are then
“parsed” into the language shown in Fig. 3.

Behavior Description
A variety of techniques have been explored in describing

behavtor, including simple rules for mapping inputs to outputs,
petri nets, and unrestricted chunks of code. Simple rules are
useful where device behavior is uncomplicated, petri nets are
USC Lit f %‘hcre the fclcus is on modeling parallel events, and
unrestricted code is often the last resort when more structured
forms of expression prove too limited or awkward. Various
combmations of these three have also been explored.

Our initial implementation uses constraints [lo] to
represent behavior. Conceptually a constraint is simply a
relationship. The behavior of the adder of Fig. 1, for example, can
be expressed by saying that the logic levels of the terminals on
ports inpu!- 1, input-2 and sum are related in the obvious fashion.
This is an expression of a relationship, not a commitment to a
particular computation --- the logic level at any one of the
terminals can be computed given the other two.

In practice, this is accomplished by defining a set of rules
covering all different computations (the three for the adder are
shown below) and setting them up as demons that watch the
appropriate terminals. A complete description of a module, then,
is composed of its structural description as outlined earlier and a
behavior description in the form of rules that interrelate the logic
levels at its terminals.

to get sum from (input-l input-2) do (+ input-l input-2)
toget input-l from (sum input-2) do (- sum input-2)
to get input-2 from (sum input-l) do (- sum input-l)

A set of rules like these is in keeping with the original
conception of constraints, which emphasized the non-directional,
relationship character of the information. When we attempt to use
it to model causality and function, however, we have to be careful.
This approach is well suited to modeling causality and behavior in
the world of analog circuits, where devices are largely
non-directional. But we can hardly say that the last two rules
above are a good description of the f~havior of an adder chip ---
the device docsn’: do subtraction; putting logic levels zt its output
and one input does not cause a logic level to appear on its other
input.

The last two rules really model the inferences we make
about t/le devrce. Hence we find it useful to distinguish between
rules representing flow of electrrclfy (digital behavior, the first rule
above) and rules representing flow of inference (conclusions we
can make about the device, the next two rules). This not only
keeps the representation “clean”, but as we will see, it provides
part of the foundation for the troubleshooting mechanism.

A set of constraints is a relatively simple mechanism for
specifying behavior, in that it offers no obvious support for
expressing behavior that falls outside the “relation between
terminals” view. The approach also has known limits. For
example, constraints work well when dealing with simple
quan?itizs like pumbcrs o: logic levels, but :Kn into difficulties if it
becomes necessary to work with symbolic expressions.3

The approach has, nevertheless, provided a good
starting point for our work and offers two important advantages.
First, the DPL and constraint machinery includes mechanisms for
keeping track of dependency information --- an indication of how
the system determined !he value at a terminal --- expressed in
terms of what rule computed the value and what other values the
rule used in performing its computation. This is very useful in
tracing backward to the source of the misbehavior.

Second, the system provides machinery for detecting and
unwinding contradictions. A contradiction arises if two rules try to
set different values for the same terminal. As we illustrate below,
the combination of dependency information and the detection of
contradictions provides a useful starting place for
troubleshooting.

Our system design OfferS a number of features which,
while not necessarily novel, do provide useful performance. For
example, our approach offers a unity of device description and
simulation, since the descriptions themselves are “runnable”.
That is, the behavior descriptions associated with a given module
allow LJS to simulate the behavior of that module; the
interconnection of modules specified in the structure description
then causes results computed by one module to propagate to
another. Thus we don’t need a separate description or body of
code as the basis for the simulation, we can simply “run” the
description itself. This ensures that our description of a device
and the machinery that simulates it can never disagree about what
to do, as can be the case if the simulation is produced by a
separately maintained body of code.

Our use of a hierarchic approach and the terminal, port,
module vocabulary makes multi-level simulation very easy. In
simulating any module we can either run the constraint associated
with the terrninals of that module (simulating the module in a
single step), or “run the substructure” of that module, simulating
the device according to its next level of structure. Since the
abstraction shifting behavior of ports is also implemented with the
constraint mechanism, we have a convenient uniformity and
economy of machinery: we can enable either the constraint that
spans the entire module or the constraint that spans the port.

Varying the level of simulation is useful for speed (no
need to simulate verified substructure), and provides as well a
simple chock on structure and b-zhavior specification: we can
compare the results generated by the module’s behavior
soecification with those aenerated by the next lower Ievei of

3. What, for example, do we do if we know that the output of an or-gate is
1 but we don’t know the value at either input? We can refrain from
making any conclusion about the inputs, which makes the rules easy to
write but misses some information. Or we can write a rule which express
the value on one input in terms of the value on the other input. This
captures the infolmalrou but produces problems when trying to use the
resulting symbolic expression elsewhere.

simulntion. Mismatches typically mean a mistake in structure
specification at the lower level.

We believe it is important in this undertaking to include
descriptions of both design and implementation, and to
distinguish carefully between them. A wire, for example, is a
device whose behavior is specified simply as the guarantee that a
logic level imposed on one of its terminals will be propagated to
the other terminal. Our structure description allows us to indicate
the intended direction of information flow along a wire, but our
simulation is not misled by this. This is, of course, important in
troubleshooting. since some of the more difficult faults to locate
are those that cause devices to behave not as we know they
“should”, but as they are in fact electrically capable of doing. Our
representation machinery allows us to include both design
specifications (the functional hierarchy) and implementation (the
physical hierarchy) and keep them distinct.

Finally, the behavior description is also a convenient
nlechanism lor fault insertion. A wire stuck al Lero, for example, is
modeled by giving the wire a behavior specification that maintains
its terminals at logic level 0 despite any attempt to change them.
Bridges, opens, etc., are similarly easily modeled.

Troubleshooting
The traditional approach to troubleshooting digital

circuitry (e.g.? 131) has, for our purposes, a number of significant
drawbacks. Perhaps most important, it is a theory of fest
generation. not a theory of d~ngnosis. Given a specified fault, it is
capable of determining a set of input values that will detect the
fau!t (ie, a set of values for which the output of the faulted circuit
differs from the output of a good circuit). The iheory tells us how
to move from faults to sets of inputs; it provides little help in
determining what fault to consider, or which component to
suspect.

These questions are a central issue in our work for
several reasons. First, the level of complexity we want to deal with
precludes the use of diagnosis trees, which can require
exhaustive consideration of possible faults. Second, our basic
task is repair. rather than initial testing. Hence the problem

confronting us is “Given the following piece of misbehavior,
determine the fault.” We are not asking whether a machine is free

of faults, we know that it fails and know how it fails. Given the
complexity of the device, it is important to be able to use this
information as a focus for further exploration.

A second drawback of the existing theory is its use of a
set of explicitly enumerated faults. Sinze the theory is based on

boolean logic, it is ztror,$y oric-n:cd toward faults whose behavior

can be modeled as some form of permanent binary value, typically
the result of stuck-ats and opens. One consequence of this is the

paucity of useful results concerning bridging faults.
A response to these problems has been the use of what

we may call the “violated expectation” approach ([6], [4], [7]).
The basic insight of the technique is the substitution of violated
expectations for specific fault models. That is, instead of

postulating a possible fault and exploring its consequences, the
technique simply looks for mismatches between the values it

expected from correct operation and those actually obtained.
This allows detection of a wide range of faults because
misbehavior is now simply defined as anything that isn’t correct,
rather than only those things produced by a struck-at on a line.

This approach has a number of advantages. It is, first of
all, fundamentally a diagnostic technique, since it allows
systematic isolation of the possibly faulty devices. and does so

without having to precompute fault dictionaries, diagnosis trees,
or the like. Second, it sppcars to make it unnecessary to to
specify a set of expected fatiits (we commelrt further on this
beluw). As a result, it can &l&t a IINK~ wi&L’ range of fr;lulls,
including any systematic misbehavior exhibited by a single
component. The approach also allows natural ust? of hierarchical
descriptions, a rnarked advantage for dealing with complex
structures.

This approach is a good starting point, but has a number
of important limitations built into it. We work through a simple
exarnple to show the basic idea and use the same example to
comment on its shortcomings.

Consider the circuit in Fig. 4.4 If we set the inputs as
shown, the behavior description s will indicate that we should
expect 12 at F. If, upon measuring, we find the value at F to be 10,
we have a conflict between observed results and our model of
correct behavior. We check the dependency record at F to find
that the value expected there was d&t-mined using the behavior
rule for the adder and the values emerging from the first and
second multiplier. One of those three must be the source of the
conflict, so we have three hypotheses: either the adder behavior
rule is inappropriate (ie, the first adder is broken), or one of the
two mputs did not have the expected values (and the problem lies
further back).

**3
WILT-1 @)

x

El.2 ADD-1 ----.F(12)
[lOI

c-2 - MULT -2 (6) y

D.3 ’ ADD-2 -Ii
Cl21 z

-
MULT - 3 W

E.
3

expected-()

actual- -[]

Figure 4 - Troubleshooting example using violated expectations.

If the second input to adder-l was good, then the first
input must have been a 4 (reasoning from the result at F, valid
behavior of the adder, and one of the inputs). But that COnfktS
with our expectation that it should be a 6. That expectation was
based on the behavior rule for the multiplier and the expected

value of its inputs. Since the- inputs to the multiplier are prirnitive
(supplied by the user), the only alternative along this line of
reasoning is that the multiplier is broken. tience hypothesis # 2 is
that adder-l is good and multiplier-l is faulty.

If tile first input to adder-l is good, then the second input
must have been a 4 (suggesting that the second multiplier might
be bad). But if that were a 4, then the expected value at G would
be 10 (reasoning forward throligh tile second adder). We can
check this and discover in this case that the output at G is 12.
Hence the value on the output of the second rnultiplier can’t be 4,

4. As is common in the field, we make the usual assullptions ihat there
is 011iy a sil,yle source of err01 and ii;e erli3! is Ilot trdrisieilt. Both or
these are important in the reasoning that follows.

it must be 6, hence the second multiplier can’t be causing the
current problem.

So we are left with the hypotheses that the malfunction
lies in either the first multiplier or the first adder. The diagnosis
proceeds in this style, dropping down levels of structural detail as
we begin to isolate the source of the error.

This approach is a useful beginning, but has some clear
shortcomings that result from hidden assumptions about faults.
Consider the slightly revised example shown in Fig. 5. I?easoning
just as before,’ the fault at F leads vs to suspect adder-l. But if
adder-l is faulty, then everything else is good. This implies a 6 on
lines y and z, and (reasoning forward) a 12 at G. But G has been
measured to be 6, hence adder-l can’t be responsible for the
current set of symptoms. If adder-l is good, then the fault at F
rnlght result from bad inputs (Itnes x and y). If the fault is on x,
then y has a 6. But (reasoning forward) this means a 12 at G.
Once again we encounter a contradiction and eliminate line x as a
candidate. Wc turn to line y, postulate tl:,?i it is 0. This is
consistent with the faults at both F and G, and is in fact the only
hypothesis we can generate.

A.3
- MULT-1 @)

x

6.2 ADD-l -F (12)
c61

C-2 MULT-2 J6’ y

D-3-- ADD -2 -G (12’

z [61

Em3
MULT - 3 (6)

expected-()

actual - -[]

Figure 5 - Troublesome troubleshooting example.

The key phrase here is “the only hypothesis we can
generate”. In fact, there is another quite reasonable hypothesis:
the third multiplier might be bad.’ But how could this produce
errors at both F and G? The key lies in being wary of our models.
I he tllought that digital devices have input and output ports is a
convenient abstractlon, not an clectncal reality. If, as sometimes
happens (due to a bent pin, bad socket, etc.), a chip fails to get

power, its inputs are no longer guaranteed to act unidirectionally
35 inputs. If the third multiplier were a chip that failed to ye:
power, it might not only send out a 0 along wire z, but it might also
pull down wire C to 0. Hence the symptoms result from a single
point of failure (multiplier-3), but the error propagates along an
“input” line common to two devices.

The problem with the traditional violated expectation
approach lies in its implicit acceptance of unidirectional ports and
the reflection of that acceptance in the basic
dependency-unwinding machinery. That machinery implicitly
believes that inputs only get information from outputs --- when
checking the inputs to multiplier-l, we said they were “primitive”.
We looked only at the input terminals A and C, never at the other

5. The eager reader has no doubt already chosen a likely hypothesis.
We go through the reasoning in any case, to show that the method
outlined generates ihe same hypothesis and is in fact simply a more
formal way of doing what we often do intuitively.

6. Or the first.

end of the wire at multiplier-3.
Bridges are a second common fault that illustrates an

interesting shortcoming in the contradiction detection approach.
The reasoning style used above can never hypothesize a bridging
fault, again because of implicit assumptions about the model and
their subtle reflection in the method. Bridges can be viewed as
wires that don’t show up in the design. But the traditional

approach makes an implicit “closed world” assumption --- the
structure description is assumed to be complete and anything not
shown there “doesn’t exist”. Clearly this is not always true.
Bridges are only one manifestation; wiring errors during assembly
are another possibility.

Let’s review for a moment. One problem with the
tradition31 test generation technology was its use of a very limited
fault model. The contradiction detection approrch improves on
this substantially by defining a fault as anything that produces
behavior different from that expected. This seems to be perfectly
general, but, as we illustrated, it is in fact limited in some irnportant
ways.

So what do we do? If wi toss out the assumption that
input and output ports are unidirectional, we take care of that
class of errors; the cost is generating more hypotheses. Perhaps
we can deal with the increase. If we toss out the closed-world
assumption and admit bridges, we’re in big trouble. Even it we
switch to our physical representation’ to keep the hypotheses
constrained to those that are pl\ysically plausible, the number is
vast. If we toss out the assumption that the device was wired as
the description indicates, we’re in big trouble even if we invoke
the single point of failure constraint and assume only one such
error But some failures are due to multiple errors... and
transients are an important class ot errors . . . and ,... Wait, down
this road appears to lie madness, or at the very least, chaos.

What can we do? We believe that the important thing to
do is what human experts seem to do:

Make all the simplify/q assumptions we have to to

keep the problem tractable.
Be explicitly aware of what those assumptions are.

Be aware of the effect the assumptions have on

car&/date generation and testing.
Be able to discard each assumption in turn if it proves

to be misleading.

The key, it seems, lies in determining what are the
appropriate layers of assumptions for a given domain and in
determining their effects on the diagnostic process. In our
domain, for example, a sample list of the assumptions underlying
correct function of a circuit might be:

no wires are stuck
no wires present other than those shown
ports functioning in specified direction
actual assembly matches design specifications
original design is correct

Surrendering these one by one leads us to consider stuck-ats,
then bridges, then power iosi;, etc. We have significant work yet
to do in determining a more complete and correct list, and in
determining the consequences of each assumption on the
diagnostic process. But we feel this is a key to creating more
interesting and powerful diagnos?ic reasoners.

7. Remember, we said it was important to have one.

141

References

[l] Batali J, Hartheimer A, The design procedure language
manual, MIT Al Memo 598, Sept. 1980.

[2] Bell G, Newell A, Computer Structures: Readings and
Examples, McGraw-Hill, 1971.

[3] Breuer M, Friedman A, Diagnosis and Reliable Design of Digital

Sysrems, Computer Science Press, 1976.

[4] Brown J S, Burton f?, deKleer J, Pedagogical and knowledge
enginesring techniques in the SOPHIE systems, Xerox Report
CIS-14, 1981.

[5] Davis R, Expert systems: Where are we and where do we go
from here? AAAl Magazine, summer 1982.

[6] deKleer J. Local methods for localizing faults in electronic
circuits, MIT Al Memo 394, 1976.

[7] Genesereth M, The use of hierarchical models in the
automated diagnosis of computer systems, Stanford HPP memo
81-20, December 1981.

[8] Patil R, Szolovits P, Schwartz W, Causal understanding of
patient illness in medical diagnosis, Proc. L/CA/-B 1, August 1981,
pp 893 899.

[9] Shortliffe E, Computer-Based Medical Consultations: Mycin,

American Elsevier, 1976.

[lo] Sussman G, Steele G, Constraints - a language for expressing
almost-hierarchical descriptions, A/ Journal, Vol 14, August 1980,
pp l-40.

142

