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Abstract 
While expert systems have traditionally been built using 

large coliections of rules based on empirlcal associations, interest 
has grown recently in the use of systems that reason from 
representations of structure and function. Our work explores the 
use of such models in troubleshooting digital electronics. 

We describe our work to date on (i) a language for 
describing structure, (ii) a language for describing function, and 
(i/i) a set of prlnctples for troubleshooting that uses the two 
descriptions to guide its investigation. 

In discussing troubleshooting we show why the 
traditional approach --- test generation --- solves a different 
[JrdJklll dnti vve &SCllSS a Ilumber of its pIdC,hd ShOrt~Olllill~S. 

We consider next the style of debugging known as violated 
expectations and demonstrate why it is a fundclmental advance 
over traditional test generation. Further exploration of this 
approach. however, demonstrates that it is incapable of dealing 
with commonly known classes of faults. We explain the 
shortcoming as arisirlg from the use of a fault model that is both 
implicit and inseparable from the basic troubleshooting 
metl~odology. We argue for the importance of fault models that 
are explicit, separated from the troubleshooting mechanism, and 
retractable in much the same sense that inferences are retracted 
in current systems. 

Introduction 
While expert systems have traditionally been built using 

large collections of rules based on empirical associations (e.g., 
[S]) interest has grown recently in the use of systems that reason 
from representations of structure and function (e.g., [8], [7], [5]). 
Our work explores the use of such models in troubleshooting 
digital electronics. 

We view the task as a process of reasoning from 
oenavlor to structure, or more precisely, from misbehavior to 
structural defect. We are typically presented with a machine 
c-xhibitmg some form of incorrect behavior and must infer the 
structural abberation that is producing it. The task is interesting 
nnd difficult because the devices we want to examine are complex 
and because there IS no well developed theory of diagnosis for 
them. 

Our ultimata goal is to provide a level of performance 
comparabie to that of an experienced engineer, including reading 
and reasoning from schematics; selecting, running, and 
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interpreting the results of diagnostics: selecting and interpreting 
the results of input test patterns, etc. The Initial focus of our work 
has been to develop three elements that appear to be fundamental 
to all of these capabilities. We require (i) a language for 
describing structure, (ii) a language for describing function, and 
(/;I) a set of prlnciplcs for troublesllooting that uses the two 
descriptions to guide its invosligation. This paper describes our 
progress to date on each of tnuse elements. 

In discussing iroubleshosi;ng we St IOW why tire 

traditional approach to reasoni,lg ahout digital electronics --- test 
generation - .- solves a diflercnt problem and we discuss a number 
of its prPctic.31 shortcomings. We considar pext the style of 

c!ebugging known as violated expectations and demonstrate why 
it is a fundamental advance over traditional test generation. 
Further explcration of the violated expectation approach, 
however, demonstrates that it is incapable of dealing with 
commonly known classes of faults. We explain the shortcoming 
as arising from the us c of a fault model that is both implicit and 
inseparable from the basic troubleshooting methodology. We 
argue for the importance of fault models that are explicit, 
separated from the troubleshooting mechanism, and retractable in 
InUCh the same sense that inferences are retracted in current 
systems. 

Structure Description 
By structtire description we mean topology --- the 

connectivity of components. A number of structure description 
languages have been developed, but most, having originated in 
work or; machine design, deal exclusively with fu~~tiOff~/ 

components, rarely making any provision for describing pl~y~ical 
organization.’ In doing machine diagnosis. however, we are 
dealing with a collection of hardware whose functional and 

physical organizations are both important. The same gate may be 
both (i) functionally a part of a multlplexor, which is functionally a 
part of a datapath, etc.. and (ii) physically a part of chip E67, 
which is physically part of board 5, etc. Both of theso hierarchies 
are relevant at different times in the diagnosis and both are 
included in our language. 

We use the functional hierarchy as the primary 
organizing principle because, as noted, our basic task involves 
rensonirlg from function to structure rather than the other way 
around.’ The functional organization is also typically richer than 
the structural (more levels to the hierarchy, more terms in the 

1. This is curiously true even for languages billing themselves as 
computer hardware descripfron languages. They rarely mention a piece 
of physical hardware. 
2. ‘Gc arti iypicnliy confronted with a machine that misbehaves, not one 

that has visible structural damage. 
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vocabulary), and hence provides a useful organizing principle for 
the largc number of individual physical compol\ents. Compare, 
for example, the functional orqanization of a board (e.g., a 
memory controller with cache, address translation hardware, etc.) 
with the physical organization (1 pc board, 137 chips). 

The most basic level of our description vocabulary is built 
on three concepts: modules, ports, and ternjinals (Fig. 1). A 
module can be thought of as a standard black box. A module has 
at least two ports; ports are the place where information flows into 
or out of a module. Every port has at least two terminals, one 
terminal on the outside of the port and one or more inside. 
Terminals are primitive elements; they store logic levels 
representing the information flowing into or out of a device 
through their port, but are otherwise devoid of substructure. 

dinput-k4D”~ -1 sum”“” 

Figure 1 - The basic terms used in structure description. 

Two modules are attached to one another by 
superimposing their terminals. In Fig. 1, for example, wire A is a 
module that has been attached to input-l of the adder rnodule in 
this fashion. 

The language is hierarchical in the usual sense; modules 
ai any level rnay have substructure. In practice, our descriptions 
terminate at the gate level in the functional hierarchy and the chip 
level in the physical hierarchy. since for ollr purposes these are 
black boxes --- only their behavior (or misbehavior) matters. Fig. 2 
shows the next level of structure of the adder and illustrates why 
ports rnay have multiple terminals on their inside: ports provide the 
important function of shifting level of abstraction. It may be useful 
to think of the information flowing along wire A as an integer 
between 0 and 15, yet we need to be able to map those four bits 
Into the four single-bit lines insider the adder. Ports are the place 
where such infornlation is kept. T&y have machinery (described 
below) that allows them to map information arriving at their outer 
terminal onto their Inner terminals. The default provided in the 
system accomplishes the sirnple rnap required in Fig. 2. 

Since our ultimate intent is to deal with hardware on the 
scale of a mainframe computer, we need terms in the vocabulary 
capable of describing levels of organization mole substantial than 
the terms used at the circuit level. We can, for example, refer to 
horizontal, vertical, and hitslice organizations, describing a 
memory, for instance, as “two rows of five 1K ram’s”. We use 
these specifications in two ways: as a description of the 
organization of the device and a specification for the pattern of 
interconnections among the components. 

Our eventual aim is to provide an integrated set of 

descriptions that span the lebels of hardware organization ranging 
from interconnection of individual modules, through higher level 
of organization of modules, and eventually on up through the 
register transfer and PMS level [2]. Some of this requires 
inventing vocabulary like that above, in other places (e.g., PMS) 

Figure 2 - Next level of structue of the adder. 

we may able to make use of existing terminology and concepts. 
The structural description of a module is expressed as a 

set of commands for building the module. Hence the adder of Fig. 
2 is described by indicating how to “build” it (Fig. 3). These 
commands are then executed by the system, causing it to build 
data structures that model all the components and connections 
shown. The resultmg data structures are organized around the 
individual components. Executing the first expression of Fig. 3, 
for example, produces 4 data structures that model the individual 
slices of the adder. 

(def i nernodul e adder 
(repeat 4 i 

(part sl ice-i adder-s1 ice) 
(run-wire (input-l adder) (input-l slice-i)) 
(run-wire ( input-2 adder) (input-2 slice-i)) 
(run-wire (output slice-i) (suln adder)) 

(repeat 3 i 
(run-wire (carry-out slice-i) 

(carry-in sl ice-[i f-l])) )) 

Figure 3 - Parts are described by a palhname through the part 
hierarchy, e.g., (input-l adder). (This dcscrlptlon can be abbreviated as 
a bitslrce organization, but IS expanded here for illustration.) 

This approach to structure description offers two 
interesting properties: (a) a natural merging of procedural and 
object-oriented descriptions, and (b) the use of analogic 
representations. 

To see the merging of descriptions, note that we have two 
different ways of thinking about structure. We describe a device 
by indicating how to build it (the procedural view), but then want 
to think about it as a collection of individual objects (the 
object-oriented view). The first view is convenient for describing 
structure, the second makes it easy to answer questions about it, 
questions like connectivity, location, etc., that are irnportant in 
signal tracing and other troubleshooting techniques. The two 
descriptions are unified because the system simply “runs” the 
procedural description to produce the data structures modeling 
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the device. This gives us the benefit of both approaches with no 
additional effort and no chance that the two will get out of sync. 

The representation is analogic because the data 
structures that are built are isomorphic to the structure being 
described. “Superimposing” two terminals, for instance, is 
implemented as a merging of the structure representing the 
terminals. The resulting data structures are thus connected in the 
LISP sense in the same ways that the objects are connected in 
Fig. 2. The benefit here is primarily conceptual, it simply makes 
the resulting structures somewhat easier to understand. 

Our description language has been built on a foundation 
provided by a subset of DPL [l]. While DPL as originally 
implemented was specific to VLSI design, it proved relatively easy 
to “peel off” the top level of language (which dealt with chip 
layout) and rebuild on that base the new layers of language 
described above. 

Since pictures are a fast, easy and natural way to 
describe structure, we have developed a simple circuit drawing 
system that permits interactive entry of pictures like those in Figs. 
2 and 4. Circuits are entered with a combination of mouse 
movements and key strokes: the resulting structures are then 
“parsed” into the language shown in Fig. 3. 

Behavior Description 
A variety of techniques have been explored in describing 

behavtor, including simple rules for mapping inputs to outputs, 
petri nets, and unrestricted chunks of code. Simple rules are 
useful where device behavior is uncomplicated, petri nets are 
USC Lit f %‘hcre the fclcus is on modeling parallel events, and 
unrestricted code is often the last resort when more structured 
forms of expression prove too limited or awkward. Various 
combmations of these three have also been explored. 

Our initial implementation uses constraints [lo] to 
represent behavior. Conceptually a constraint is simply a 
relationship. The behavior of the adder of Fig. 1, for example, can 
be expressed by saying that the logic levels of the terminals on 
ports inpu!- 1, input-2 and sum are related in the obvious fashion. 
This is an expression of a relationship, not a commitment to a 
particular computation --- the logic level at any one of the 
terminals can be computed given the other two. 

In practice, this is accomplished by defining a set of rules 
covering all different computations (the three for the adder are 
shown below) and setting them up as demons that watch the 
appropriate terminals. A complete description of a module, then, 
is composed of its structural description as outlined earlier and a 
behavior description in the form of rules that interrelate the logic 
levels at its terminals. 

to get sum from (input-l input-2) do (+ input-l input-2) 
toget input-l from (sum input-2) do (- sum input-2) 
to get input-2 from (sum input-l) do (- sum input-l) 

A set of rules like these is in keeping with the original 
conception of constraints, which emphasized the non-directional, 
relationship character of the information. When we attempt to use 
it to model causality and function, however, we have to be careful. 
This approach is well suited to modeling causality and behavior in 
the world of analog circuits, where devices are largely 
non-directional. But we can hardly say that the last two rules 
above are a good description of the f~havior of an adder chip --- 
the device docsn’: do subtraction; putting logic levels zt its output 
and one input does not cause a logic level to appear on its other 
input. 

The last two rules really model the inferences we make 
about t/le devrce. Hence we find it useful to distinguish between 
rules representing flow of electrrclfy (digital behavior, the first rule 
above) and rules representing flow of inference (conclusions we 
can make about the device, the next two rules). This not only 
keeps the representation “clean”, but as we will see, it provides 
part of the foundation for the troubleshooting mechanism. 

A set of constraints is a relatively simple mechanism for 
specifying behavior, in that it offers no obvious support for 
expressing behavior that falls outside the “relation between 
terminals” view. The approach also has known limits. For 
example, constraints work well when dealing with simple 
quan?itizs like pumbcrs o: logic levels, but :Kn into difficulties if it 
becomes necessary to work with symbolic expressions.3 

The approach has, nevertheless, provided a good 
starting point for our work and offers two important advantages. 
First, the DPL and constraint machinery includes mechanisms for 
keeping track of dependency information --- an indication of how 
the system determined !he value at a terminal --- expressed in 
terms of what rule computed the value and what other values the 
rule used in performing its computation. This is very useful in 
tracing backward to the source of the misbehavior. 

Second, the system provides machinery for detecting and 
unwinding contradictions. A contradiction arises if two rules try to 
set different values for the same terminal. As we illustrate below, 
the combination of dependency information and the detection of 
contradictions provides a useful starting place for 
troubleshooting. 

Our system design OfferS a number of features which, 
while not necessarily novel, do provide useful performance. For 
example, our approach offers a unity of device description and 
simulation, since the descriptions themselves are “runnable”. 
That is, the behavior descriptions associated with a given module 
allow LJS to simulate the behavior of that module; the 
interconnection of modules specified in the structure description 
then causes results computed by one module to propagate to 
another. Thus we don’t need a separate description or body of 
code as the basis for the simulation, we can simply “run” the 
description itself. This ensures that our description of a device 
and the machinery that simulates it can never disagree about what 
to do, as can be the case if the simulation is produced by a 
separately maintained body of code. 

Our use of a hierarchic approach and the terminal, port, 
module vocabulary makes multi-level simulation very easy. In 
simulating any module we can either run the constraint associated 
with the terrninals of that module (simulating the module in a 
single step), or “run the substructure” of that module, simulating 
the device according to its next level of structure. Since the 
abstraction shifting behavior of ports is also implemented with the 
constraint mechanism, we have a convenient uniformity and 
economy of machinery: we can enable either the constraint that 
spans the entire module or the constraint that spans the port. 

Varying the level of simulation is useful for speed (no 
need to simulate verified substructure), and provides as well a 
simple chock on structure and b-zhavior specification: we can 
compare the results generated by the module’s behavior 
soecification with those aenerated by the next lower Ievei of 

3. What, for example, do we do if we know that the output of an or-gate is 
1 but we don’t know the value at either input? We can refrain from 
making any conclusion about the inputs, which makes the rules easy to 
write but misses some information. Or we can write a rule which express 
the value on one input in terms of the value on the other input. This 
captures the infolmalrou but produces problems when trying to use the 
resulting symbolic expression elsewhere. 



simulntion. Mismatches typically mean a mistake in structure 
specification at the lower level. 

We believe it is important in this undertaking to include 
descriptions of both design and implementation, and to 
distinguish carefully between them. A wire, for example, is a 
device whose behavior is specified simply as the guarantee that a 
logic level imposed on one of its terminals will be propagated to 
the other terminal. Our structure description allows us to indicate 
the intended direction of information flow along a wire, but our 
simulation is not misled by this. This is, of course, important in 
troubleshooting. since some of the more difficult faults to locate 
are those that cause devices to behave not as we know they 
“should”, but as they are in fact electrically capable of doing. Our 
representation machinery allows us to include both design 
specifications (the functional hierarchy) and implementation (the 
physical hierarchy) and keep them distinct. 

Finally, the behavior description is also a convenient 
nlechanism lor fault insertion. A wire stuck al Lero, for example, is 
modeled by giving the wire a behavior specification that maintains 
its terminals at logic level 0 despite any attempt to change them. 
Bridges, opens, etc., are similarly easily modeled. 

Troubleshooting 
The traditional approach to troubleshooting digital 

circuitry (e.g.? 131) has, for our purposes, a number of significant 
drawbacks. Perhaps most important, it is a theory of fest 
generation. not a theory of d~ngnosis. Given a specified fault, it is 
capable of determining a set of input values that will detect the 
fau!t (ie, a set of values for which the output of the faulted circuit 
differs from the output of a good circuit). The iheory tells us how 
to move from faults to sets of inputs; it provides little help in 
determining what fault to consider, or which component to 
suspect. 

These questions are a central issue in our work for 
several reasons. First, the level of complexity we want to deal with 
precludes the use of diagnosis trees, which can require 
exhaustive consideration of possible faults. Second, our basic 
task is repair. rather than initial testing. Hence the problem 

confronting us is “Given the following piece of misbehavior, 
determine the fault.” We are not asking whether a machine is free 

of faults, we know that it fails and know how it fails. Given the 
complexity of the device, it is important to be able to use this 
information as a focus for further exploration. 

A second drawback of the existing theory is its use of a 
set of explicitly enumerated faults. Sinze the theory is based on 

boolean logic, it is ztror,$y oric-n:cd toward faults whose behavior 

can be modeled as some form of permanent binary value, typically 
the result of stuck-ats and opens. One consequence of this is the 

paucity of useful results concerning bridging faults. 
A response to these problems has been the use of what 

we may call the “violated expectation” approach ([6], [4], [7]). 
The basic insight of the technique is the substitution of violated 
expectations for specific fault models. That is, instead of 

postulating a possible fault and exploring its consequences, the 
technique simply looks for mismatches between the values it 

expected from correct operation and those actually obtained. 
This allows detection of a wide range of faults because 
misbehavior is now simply defined as anything that isn’t correct, 
rather than only those things produced by a struck-at on a line. 

This approach has a number of advantages. It is, first of 
all, fundamentally a diagnostic technique, since it allows 
systematic isolation of the possibly faulty devices. and does so 

without having to precompute fault dictionaries, diagnosis trees, 
or the like. Second, it sppcars to make it unnecessary to to 
specify a set of expected fatiits (we commelrt further on this 
beluw). As a result, it can &l&t a IINK~ wi&L’ range of fr;lulls, 
including any systematic misbehavior exhibited by a single 
component. The approach also allows natural ust? of hierarchical 
descriptions, a rnarked advantage for dealing with complex 
structures. 

This approach is a good starting point, but has a number 
of important limitations built into it. We work through a simple 
exarnple to show the basic idea and use the same example to 
comment on its shortcomings. 

Consider the circuit in Fig. 4.4 If we set the inputs as 
shown, the behavior description s will indicate that we should 
expect 12 at F. If, upon measuring, we find the value at F to be 10, 
we have a conflict between observed results and our model of 
correct behavior. We check the dependency record at F to find 
that the value expected there was d&t-mined using the behavior 
rule for the adder and the values emerging from the first and 
second multiplier. One of those three must be the source of the 
conflict, so we have three hypotheses: either the adder behavior 
rule is inappropriate (ie, the first adder is broken), or one of the 
two mputs did not have the expected values (and the problem lies 
further back). 
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Figure 4 - Troubleshooting example using violated expectations. 

If the second input to adder-l was good, then the first 
input must have been a 4 (reasoning from the result at F, valid 
behavior of the adder, and one of the inputs). But that COnfktS 
with our expectation that it should be a 6. That expectation was 
based on the behavior rule for the multiplier and the expected 

value of its inputs. Since the- inputs to the multiplier are prirnitive 
(supplied by the user), the only alternative along this line of 
reasoning is that the multiplier is broken. tience hypothesis # 2 is 
that adder-l is good and multiplier-l is faulty. 

If tile first input to adder-l is good, then the second input 
must have been a 4 (suggesting that the second multiplier might 
be bad). But if that were a 4, then the expected value at G would 
be 10 (reasoning forward throligh tile second adder). We can 
check this and discover in this case that the output at G is 12. 
Hence the value on the output of the second rnultiplier can’t be 4, 

4. As is common in the field, we make the usual assullptions ihat there 
is 011iy a sil,yle source of err01 and ii;e erli3! is Ilot trdrisieilt. Both or 
these are important in the reasoning that follows. 



it must be 6, hence the second multiplier can’t be causing the 
current problem. 

So we are left with the hypotheses that the malfunction 
lies in either the first multiplier or the first adder. The diagnosis 
proceeds in this style, dropping down levels of structural detail as 
we begin to isolate the source of the error. 

This approach is a useful beginning, but has some clear 
shortcomings that result from hidden assumptions about faults. 
Consider the slightly revised example shown in Fig. 5. I?easoning 
just as before,’ the fault at F leads vs to suspect adder-l. But if 
adder-l is faulty, then everything else is good. This implies a 6 on 
lines y and z, and (reasoning forward) a 12 at G. But G has been 
measured to be 6, hence adder-l can’t be responsible for the 
current set of symptoms. If adder-l is good, then the fault at F 
rnlght result from bad inputs (Itnes x and y). If the fault is on x, 
then y has a 6. But (reasoning forward) this means a 12 at G. 
Once again we encounter a contradiction and eliminate line x as a 
candidate. Wc turn to line y, postulate tl:,?i it is 0. This is 
consistent with the faults at both F and G, and is in fact the only 
hypothesis we can generate. 
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Figure 5 - Troublesome troubleshooting example. 

The key phrase here is “the only hypothesis we can 
generate”. In fact, there is another quite reasonable hypothesis: 
the third multiplier might be bad.’ But how could this produce 
errors at both F and G? The key lies in being wary of our models. 
I he tllought that digital devices have input and output ports is a 
convenient abstractlon, not an clectncal reality. If, as sometimes 
happens (due to a bent pin, bad socket, etc.), a chip fails to get 

power, its inputs are no longer guaranteed to act unidirectionally 
35 inputs. If the third multiplier were a chip that failed to ye: 
power, it might not only send out a 0 along wire z, but it might also 
pull down wire C to 0. Hence the symptoms result from a single 
point of failure (multiplier-3), but the error propagates along an 
“input” line common to two devices. 

The problem with the traditional violated expectation 
approach lies in its implicit acceptance of unidirectional ports and 
the reflection of that acceptance in the basic 
dependency-unwinding machinery. That machinery implicitly 
believes that inputs only get information from outputs --- when 
checking the inputs to multiplier-l, we said they were “primitive”. 
We looked only at the input terminals A and C, never at the other 

5. The eager reader has no doubt already chosen a likely hypothesis. 
We go through the reasoning in any case, to show that the method 
outlined generates ihe same hypothesis and is in fact simply a more 
formal way of doing what we often do intuitively. 

6. Or the first. 

end of the wire at multiplier-3. 
Bridges are a second common fault that illustrates an 

interesting shortcoming in the contradiction detection approach. 
The reasoning style used above can never hypothesize a bridging 
fault, again because of implicit assumptions about the model and 
their subtle reflection in the method. Bridges can be viewed as 
wires that don’t show up in the design. But the traditional 

approach makes an implicit “closed world” assumption --- the 
structure description is assumed to be complete and anything not 
shown there “doesn’t exist”. Clearly this is not always true. 
Bridges are only one manifestation; wiring errors during assembly 
are another possibility. 

Let’s review for a moment. One problem with the 
tradition31 test generation technology was its use of a very limited 
fault model. The contradiction detection approrch improves on 
this substantially by defining a fault as anything that produces 
behavior different from that expected. This seems to be perfectly 
general, but, as we illustrated, it is in fact limited in some irnportant 
ways. 

So what do we do? If wi toss out the assumption that 
input and output ports are unidirectional, we take care of that 
class of errors; the cost is generating more hypotheses. Perhaps 
we can deal with the increase. If we toss out the closed-world 
assumption and admit bridges, we’re in big trouble. Even it we 
switch to our physical representation’ to keep the hypotheses 
constrained to those that are pl\ysically plausible, the number is 
vast. If we toss out the assumption that the device was wired as 
the description indicates, we’re in big trouble even if we invoke 
the single point of failure constraint and assume only one such 
error But some failures are due to multiple errors... and 
transients are an important class ot errors . . . and ,... Wait, down 
this road appears to lie madness, or at the very least, chaos. 

What can we do? We believe that the important thing to 
do is what human experts seem to do: 

Make all the simplify/q assumptions we have to to 

keep the problem tractable. 
Be explicitly aware of what those assumptions are. 

Be aware of the effect the assumptions have on 

car&/date generation and testing. 
Be able to discard each assumption in turn if it proves 

to be misleading. 

The key, it seems, lies in determining what are the 
appropriate layers of assumptions for a given domain and in 
determining their effects on the diagnostic process. In our 
domain, for example, a sample list of the assumptions underlying 
correct function of a circuit might be: 

no wires are stuck 
no wires present other than those shown 
ports functioning in specified direction 
actual assembly matches design specifications 
original design is correct 

Surrendering these one by one leads us to consider stuck-ats, 
then bridges, then power iosi;, etc. We have significant work yet 
to do in determining a more complete and correct list, and in 
determining the consequences of each assumption on the 
diagnostic process. But we feel this is a key to creating more 
interesting and powerful diagnos?ic reasoners. 

7. Remember, we said it was important to have one. 
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