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Abstract. Mechatronic systems are widely used in many industrial applications for
their capacity to improve the production performances. However, due to the complexity
of the mechatronic systems, several faults that disrupt the system operating, may
occur and specially, the dynamic defects (e.g., electrical, mechanical, design defects · · · )
and the sensors faults (e.g., bias or gain defects). In this paper, classification of some
diagnosis methods is presented and a new diagnosis technique, called sparse recovery, is
presented. Academic example is developed in order to illustrate the good performance
of the proposed method.
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1 Introduction

2 Problem statement

Generally, mechatronic systems are complex systems which are composed of at
least two interconnected subsystems. Thus, they can be presented under a non
linear state-space representation:{

ẋ = f(x, t) + g(x, t)u,
y = h(x),

(1)

where x ∈ Rn is the state vector of the system, u ∈ Rp is the input vector
and y ∈ Rm is the output vector, f , g and h are vector field assuming suffi-
ciently smooth. In mechatronic application, the state vector x must include all
state (variables) obtained from the subsystems modeling of the global system.
For instance, a mechanical subsystems can be modeled considering, as a state
vector, the degree of freedom of the system (Derbel et al. 2019). Concerning
an electrical application, the state vector can be represented by the currents,
fluxes or rotational speed variables (Feki et al. 2010). In thermodynamic appli-
cations, the state space vector can be represented by the heat flow density or
the environmental temperature (Galant et al. 2016).

Each mechatronic systems can be affected by several defects which are con-
sidered and modeled as following:{

ẋ = f(x, t) + g(x, t)u+D1(x, t)w(t),
y = h(x) +D2(t)w(t),

(2)
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where D1(x, t), D2(t) are the fault matrices related to, respectively, the oper-
ating systems and the sensor faults, w(t) represents the possible fault vector.
Diagnostic of these faults is a difficult issue for industries and any fault mod-
eled in the (2) needs to be successfully and efficiently detected, localized and
identified using a limited set of sensor signals available.

3 Diagnosis methods

The classification of the diagnostic methods is not unique and depends on the
specific branch that researchers are focused (see, i.e.,(Hwang et al. 2010),(Mouza-
kitis 2013) and (Yu et al. 2014)). In this paper, the proposed classification is
illustrated in Fig. 1 and is classified into two areas: the hardware redundancy
and the analytical redundancy. The basic concept of the hardware redundancy is
to use multiple hardware, as the sensors measurements (two or three sensors), in
order to analysis the same information and to diagnosis faults. However, the an-
alytical redundancy requires the knowledge of specific information given from a
mathematical model, a signals (frequency) information or from a historic system
data. Each category is discussed briefly in the following subsections.

Fig. 1: Classification of diagnostic methods

3.1 Hardware redundancy

The key idea of the hardware redundancy is to use several materials in order to
measure the same signals. The hardware redundancy deals with the comparison
of duplicative signals generated by more than one sensor using algebraic relation
between different system variables. The advantage of this method appears in its
reliability and its simplicity. On the other hand, this diagnosis method presents
a major setback which is the expensive cost of maintenance due to the extra
equipment. An additional space is required to place the extra equipment that
limits also the use of this method.
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3.2 Analytical redundancy

The analytical redundancy is mainly based on specific information given by local
or global modeling of the system. In this article, the analytical redundancy is
divided into three categories: model-based methods, signals-based methods and
data driven methods (see Fig. 1).

Model-based methods Model-based methods are most effective methods com-
pared to the hardware redundancy because it does not require additional hard-
ware. Model-based methods are based on a mathematical model obtained by

Fig. 2: Classification of diagnostic methods

developing some physical and fundamental principles. Generally, model-based
methods allows to compare the available measurements of the practical systems
and the model predicted outputs. In this section, the principle of some model-
based methods (see, Fig.2) is detailed and divided, with respect to the type of
the model, into three categories: deterministic diagnostic methods, stochastic
diagnostic methods. Sparse recovery method belongs to model-based diagno-
sis methods since it requires a mathematical model that describes the system
behavior.

– Deterministic diagnosis methods

The deterministic diagnosis methods are based on a deterministic modeling
of a system under consideration. They can be presented in two main areas: parity
space and diagnostic based on observers.

Parity space: The principle of the parity space is to create residual which is, gen-
erally, the difference between the model and the system outputs. With the help
of the residual information, the consistency between this difference is checked.
Without faults, the residual generated by the party space technique is equal to
zero. However, it is non-zero if modeling errors, noises or faults occur in the
system. The parity space method can be used to either the time-domain state-
space model or frequency-domain model. This diagnostic method is applied for
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many complex model, for example, to estimate faults for a quadrotor unmanned
aerial vehicle (Han et al. 2018), to detect fault for electro-mechanical brake sys-
tems (Hwang & Huh 2015), ect,.... However, in some dynamical system, due to
the lack of the algebraic relations between different system variables, the parity
space method becomes unable to diagnosis some specific faults.

Diagnostic based on observers: Diagnostic observers play a major role in the
deterministic diagnosis methods and,generally, they are based on a space-state
representation of the system. These diagnosis methods can be used to detect,
or isolate, or identify the fault. An important issue of the diagnosis methods
based on observers is the choice of the observer gain that must make the resid-
ual signals sensible to faults and insensible to disturbances (modeling errors,
noises and process disturbances). Precisely, the gain observer is chosen in or-
der to minimize the ratio between the residual term linked to the disturbance
and the residual term related to the faults. In order to solve this optimization
problem ((Gao, Cecati & Ding 2015)), the common design approach is the eigen-
structure assignment method. It gives a design of the gain observer by using the
left and right eigenstructure methods and aims to cancel directly the distur-
bance (for more details, see (Xu & Tseng 2007)). Recently, diagnostic observers
are used in many applications in order to diagnosis damage (see, e.g., (Odofin
et al. 2016), (Sen & Bhattacharya 2017) and (Odofin et al. 2018)). Residual
generation using unknown input observer is a important diagnostic method and
applied specially to isolate the fault. The key idea of the unknown input ob-
server is to give state estimation of the system by decoupling the unknown input
related to the disturbances (see, for more details (Edwards et al. 2000) and for
applications (e.g.,(Alhelou et al. 2018), (Gao, Liu & Chen 2015)). Concerning
the fault identification, many types of observers are developed (for instance,
adaptive observers (Rodrigues et al. 2015), sliding mode observers (Barbot et al.
1996), proportional integral observer (Youssef et al. 2017), ect,...). The concept
of these observers is that, in the modeling system, the considered fault are im-
plemented as an additional state and thus, the global extended state vector will
be estimated including the fault and original signals. Recently, the combination
of different type of observers is an important topic of researchers in order to
diagnosis several faults (e.g., citepob10, (Chen et al. 2016), (Rahme & Meskin
2015)).

– Stochastic diagnosis methods

Stochastic diagnosis methods are a model-based methods in which the model
process some inherent randomness.

Kalman filter: The common stochastic diagnostic methods is the residual gen-
eration using Kalman filter. The defects are diagnosed by statistical testing on
whiteness, co-variance and mean of the residuals. Several statistical tools are
developed in order to test the presence of faults such as maximum likelihood
method, generalized likelihood ration, ect,... (see, (Gao, Cecati & Ding 2015)),
for more information). Kalman filer has been modified in many research works
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in order to improve the accurately of the stochastic approximation (unscented
Kalman filter (Sepasi & Sassani 2010), to consider the non linear system (ex-
tended Kalman filter (Foo et al. 2013)) or to adjust the noise (adaptive Kalman
filter (Kim et al. 2009)).

Parameter estimation: Parameter estimation is another stochastic diagnostic
methods which consider that the presence of fault lead to a change in the sys-
tem parameter (for example, space matrix in the space-state representation). The
basic structure in healthy state is known and compared to the estimated param-
eters methods in order to obtain fault information (see, for example, (Bachir
et al. 2006)).

– Sparse recovery method

Sparse recovery method is a new technique used to detect, isolate and identify the
faults in dynamical system. It is a diagnostic method based on system modeling
specially on the state-space representation. The unknown inputs of the system
(faults, disturbances, attacks) are reconstructed under the condition that only
specific number of the inputs are detected of a long list of possible inputs. Some
other conditions must be verified in order to diagnosis faults. Sparse recovery
method is widely applied in image processing and recently, this method becomes
a diagnostic methods to diagnosis dynamical system. For instance, cyber-attack
reconstruction via sparse recovery algorithm for electrical power networks appli-
cation is developed in (Nateghi et al. 2018). The problem of sparse recovery is an
optimization program that minimizes a cost function constructed by leveraging
the observation error term and the sparsity inducing term:

w∗ = min
w∈Rp

{1

2
‖M −Hw(t)‖22 + λ‖w(t)‖1}. (3)

with w is the estimated fault vector, M is the observed and available measure-
ment and H is a sensing matrix determined form the fault modeling.

Model-based methods are an important diagnostic methods that need to have
a large knowledge of system modeling (the physical laws, behavior system, ect,....
Moreover, the frequency characteristics and behavior of the system are also an
essential information to generate a perfect system modeling. This need led to
the other diagnostic methods that need the frequency knowledge of the system.

Signals-based methods Signal-based methods are depend on measured signals
which contain the fault characteristics. In this section, signal based methods are
divided into three areas: time-domain methods, frequency-domain methods and
time-frequency methods.

Time-domain methods: Time-domain methods are the basic diagnostic methods
based on extraction of time-domain characteristics of the measured signals. The
main advantage in using the time-analysis is the period of time that can be
associated with some form of fauls. The common time-domain methods are:
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root-mean-square, crest factor, absolute value, kutosis, ect,.... These diagnostic
methods are used in widely industrial application in order to detect faults in
different systems (see for example, (Tian et al. 2015),(Hong & Dhupia 2014),
and (Jan et al. 2017)). The early methods possess some limitations such as
the difficulty faults detection in a noisy environment and in specific case the
localization and the identification of the faults are not always possible.

Frequency-domain methods: Frequency-domain methods is a method to detect
abnormality or defect by using the spectrum analysis tools. The Fast Fourier
Transform FFT is the most applied method in frequency analysis technique. It
aims to extract the fault indication from the vibration measured on the machine
and to analyze the frequency characteristics and the amplitude of the defect.
Though the FFT has the ability of frequency analysis for the stationary signals,
it cannot illustrate the change in the frequency spectra for a non-stationary signal
(Gong & Qiao 2015).Therefore, FFT cannot reveal the hidden fault information
in a non-stationary signal. In specific cases, the spectrum is not always readable
and clear and not contain information if changes occur on the transmission
path. Thus, the cepstral analysis is used and deal with the identification of
the damage in the situation of the combined effects of harmonics. The spectral
analysis is used for many industrial applications such as diagnostic and analysis
of the behavior of electric motors and electronic systems (Sonavane & Jadhav
2015), detection to tooth crack from electrical measurement (Feki et al. 2013),
monitoring of the wind behavior (Gayatri & Sekhar 2018).

Time-frequency methods: Time-frequency methods are used specially to analysis
a non-stationary signals. They aims to identify the frequency characteristic of
signals and to extract their time variant features which can be an effective tools
for diagnostic. The common time-frequency methods are the short-time-Fourier
transform, wavelet transform, Hilbert transform. For instance, In (Cao et al.
2016),(Burriel-Valencia et al. 2017), the time-frequency methods are applied in
order to diagnosis faults in dynamic systems working in transient state.

The frequency knowledge is an important tool for the diagnostic specially
in mechatronic system. This knowledge is one of the required tools that allows
to analyze the system behavior if the system modeling is not available. So, the
data-driven methods describe process behavior based on available empirical or
experiential information from sensors systems and/or human operator.

Data-driven methods Data-driven methods are the diagnostic methods that
not require a mathematical model of the physics. The key idea of data-driven
methods is to generate a model of the process, which related measured inputs
to measured outputs and then use this model against the real process to create
residual. Fuzzy logic, neural networks, and clustering are the common diagnostic
methods of the data driven methods.

Fuzzy logic: Fuzzy logic is a mathematical method that solve different simulated
problems based on many inputs and output. Fuzzy logic is able to give results
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in the form of recommendation for a specific interval of output state using a
knowledge base including data and role data (Adhikari et al. 2016).

Neural networks Neural networks are intelligent systems inspired from biological
neural networks and are mostly suited for faults diagnosis in non-linear systems.
Neural networks give a mapping between the inputs and the outputs of the
system and form an associate memory that recovers the appropriate output
when presented with an unseen input. For instance, this diagnostic method is
applied (Er-raoudi et al. 2016) in order to detect gear fault.

4 Examples

5 Conclusions

In this paper, classification of different diagnostic methods is presented.
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