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Alzheimer’s disease (AD) is a progressive, neurodegenerative brain disorder that attacks neurotransmitters, brain cells, and nerves,
affecting brain functions, memory, and behaviors and then finally causing dementia on elderly people. Despite its significance, there
is currently no cure for it. However, there are medicines available on prescription that can help delay the progress of the condition.
Thus, early diagnosis of AD is essential for patient care and relevant researches. Major challenges in proper diagnosis of AD using
existing classification schemes are the availability of a smaller number of training samples and the larger number of possible feature
representations. In this paper, we present and compare AD diagnosis approaches using structural magnetic resonance (sMR)
images to discriminate AD, mild cognitive impairment (MCI), and healthy control (HC) subjects using a support vector
machine (SVM), an import vector machine (IVM), and a regularized extreme learning machine (RELM). The greedy score-
based feature selection technique is employed to select important feature vectors. In addition, a kernel-based discriminative
approach is adopted to deal with complex data distributions. We compare the performance of these classifiers for volumetric
sMR image data from Alzheimer’s disease neuroimaging initiative (ADNI) datasets. Experiments on the ADNI datasets showed
that RELM with the feature selection approach can significantly improve classification accuracy of AD fromMCI and HC subjects.

1. Introduction

Alzheimer’s disease (AD) is a slow fatal neurodegenerative
disease affecting people over the age of 65 years [1], while
early-onset AD is also diagnosed before 65. The deposition
of two abnormal protein fragments known as plagues and
tangles in the brain causes the death of neuron cells. The hip-
pocampus, where the memories are first formed, is the ini-
tially affected region by AD, and thus early symptoms of
AD include memory problems resulting difficulties in word
finding and thinking processes [2]. AD patients suffer from
a lack of initiative, changes in personality or behavior in
day-to-day functions at home, or at work, and in taking care
of oneself, eventually, leading to death. The brain volume

reduces dramatically through time and affects most of its
functions with the progression of AD.

With the increase in the population of elderly people in
developed countries, AD is going to be a major problem in
socioeconomic implications. According to the recent report
[3], it is expected that the number of affected people will be
doubled in the next 20 years and one in two aged above 85
years will suffer from AD by 2050. Thus, accurate diagnosis
of AD is very important, especially, at its early stage. Conven-
tionally, the diagnosis of AD is performed by a neuropsycho-
logical examination in support of structural imaging. It is
reported in [4] that (1) in the early stage of AD, degeneration
of neurons takes place in the medial temporal lobe, (2) gradu-
ally affecting the entorhinal cortex, the hippocampus, and the
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limbic system, and (3) neocortical areas are affected at the final
stage. Therefore, the study of medial temporal lobe atrophy
(MTA), particularly in the hippocampus, the entorhinal cor-
tex, and the amygdala provides the evidence of the progression
of AD. Generally, MTA is measured in terms of voxel-based
[5], vertex-based [6], and ROI-based [7] approaches. However,
as the disease progresses, other regions in the brain are also
affected. In such cases, whole-brain methods are preferred
rather than a specific region-based method; then, the charac-
terization of brain atrophy for differentiating AD and MCI
patients can be performed more efficiently.

In recent years, major advances in neuroimaging have
provided opportunities to study neurological-related dis-
eases, resulting improvements in early and accurate detection
of AD [5, 6, 8]. Magnetic resonance imaging (MRI) is more
widely used in AD-related studies because of its noninvasive
nature and lack of pain to patients. In addition, MRI provides
an excellent spatial resolution and good contrast [5–7, 9].
Thus, several studies have used structural MRI- (sMRI-)
based biomarkers to classify AD [10–19], which describes
brain atrophy and change in the size of brain tissues. Simi-
larly, functional MRI (fMRI) [20] can be utilized to charac-
terize the hemodynamic response relevant to neural activity
and functional/structural connectivity [21–23], which can
be used to describe neurological disorders in the whole brain
at the connectivity level. In this paper, we focused only on
AD classification using sMRI. The intensity and stage of the
neurodegeneration can be identified by the help of atrophy
measured by sMRI [24]. Thus, sMRI-based feature extraction
has attracted the attention for researchers of AD classifica-
tion. These studies include morphometric methods such as
region of interest (ROI)/volume of interest (VOI) grey matter
voxels in the automatic segmentation of images [25] and the
sMRI measurement of the hippocampus and the medial
temporal lobe [26].

Several machine learning techniques have been used to
distinguish AD subjects from elderly control subjects using
different biomarkers. The commonly used classifiers include
support vector machine (SVM), artificial neural network
(ANN), and other ensemble classifiers. Among them, SVM
and the variants have been widely studied due to its relatively
good accuracy and ability to deal with high-dimensional
data. A SVM-type classifier (e.g., Magnin et al. [27]) begins
with a learning stage from the training dataset consisting of
well-characterized subjects with known states (i.e., labels for

the subjects are given). Then, the classifier aims to maximize
the margin of the training data by constructing the optimal
separating hyperplane or a set of hyperplanes in a single- or
higher-dimensional space. At a testing stage, classification is
performed for test dataset based on the learned hyper-
plane(s). In general, three-dimensional (3D) T1-weighted
MR images of each subject were automatically parcellated
into ROIs. Grey matter from each ROI is extracted, as shown
in Figure 1, as a feature for classification.

Zhang et al. [10] proposed a multimodal classification
approach by utilizing multiple-kernel SVM based on the bio-
markers including sMRI [18, 19], positron emission tomog-
raphy (PET) [6], and cerebrospinal fluid (CSF) [28] to
discriminate AD (orMCI) and normal control (NC) subjects.
From the binary classification (i.e., AD versus NC and MCI
versus NC) results, their proposed model could obtain a good
accuracy for AD classification and an encouraging accuracy
for MCI classification. Liu et al. [29, 30] proposed deep
learning-based multiclass classification among normal con-
trols (NC), MCI nonconverters (ncMCI), MCI converters
(cMCI), and AD subjects based on 83 ROIs of sMRI images
and the corresponding registered PET images. Stacked auto-
encoders (SAE) were used as unsupervised learning to obtain
high-level features, and then softmax logistic regression was
adopted as the classifier. While the experimental results
showed reasonably good performance, it is still arguing that
the denoising nature of SAE can increase the difficulty of
suitable feature learning and thus it may be difficult for prac-
tical use. Li et al. [31] proposed fine-grained new features
based on principle component analysis (PCA), stability selec-
tion, dropout, and multitask learning, where restricted Boltz-
mann machine (RBM) model was used as the deep learning
architecture. 93 ROIs of MRI and PET images, together with
CSF biomarkers, are used. Ye et al. [32] introduced concep-
tual machine learning-based multimodal data fusion
approach using MRI, PET, genetic, CSF, demographic for
AD-related research, and functional connectivity analysis.
Recently, Rama et al. [33] proposed IVM-based classification
approach for multiclass classification. In this method, only
the subset of features from structural MRI was used as input
to kernel logistic regression thus reducing the computational
cost. This method used total 65 ROIs as features for training
and testing and achieved the accuracy of up to 70% while
classifying AD, MCI, and HC and 76.9% for binary classifica-
tion of HC and AD [33].

Figure 1: Segmentation of brain MR images for volumetric study.
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While several approaches have been proposed for classi-
fication of different AD stages, with relatively small dataset,
it is very difficult to extract effective information. This work
focuses on comparing and presenting efficient classification
approaches working robustly for a relatively small dataset.
To this end, we present and compare three representative
classifiers, with an efficient feature selection approach,
including SVM, an import vector machine (IVM) and a reg-
ularized extreme learning machine (RELM) for the multiclass
classification of different stages of AD progression.

2. Materials for Study

2.1. sMRIDataset.Data used in preparation of this paper were
obtained from the Alzheimer’s disease neuroimaging initia-
tive database (ADNI) (http://adni.loni.usc.edu/). The ADNI
database was launched in 2003 as a public-private partner-
ship. The primary goal of ADNI has been to test whether the
serial MRI, PET, other biological markers, and clinical and
neurophysical assessment can be combined to measure the
progression of midcognitive impairment and the early AD.

2.2. Subjects. The ADNI dataset consists of more than 6000
subjects aged from 18 to 96. From it, we selected 214 subjects
aged between 65 and 96. The selected participants met the
criteria defined in the ADNI protocol. We constructed
balanced dataset consisting of 214 subjects as follows:

(1) 70 NC subjects: 33 males, 37 females; age± SD=76.3
± 5.4 years, range =60–90 years; mini-mental state
estimation (MMSE) score = 29.2± 1.0, range = 25–30.

(2) 74MCI subjects who had not converted to AD within
18 months: 38 males, 36 females; age± SD=74.5± 7.2
years, range =58–88 years; MMSE score = 27.2± 1.7,
range = 24–30.

(3) 70 AD subjects: 39 males, 31 females; age± SD=76.0
± 7.3 years, range =55–91 years; MMSE=23.2± 2.0,
range = 18–27.

Table 1 shows a summary of demographic status of the
selected subjects.

All structural MR (sMR) scans used in this work were
acquired from 3T scanners. The main focus of this work
was to elaborate the supervised multiclass classification
among NC, MCI, and AD based on different classifiers. Thus,
to obtain unbiased estimates of the classifier performance,
the selected subjects were randomly split up into two groups
of the training dataset and the testing dataset. The algorithms
were trained on a training set, and the performances of the

diagnostic sensitivity and specificity together with accuracy
were evaluated on an independent test dataset. The division
process considers balanced age and sex distributions.

2.3. Preprocessing of sMRI Data. We used a fully automated
pipeline of the FreeSurfer 5.3.0 software package for recon-
struction and volumetric segmentation from all the sMRI
images and extracted the pattern of useful data. The software
performs a series of preprocessing operations with the Free-
Surfer’s recon-all processing pipeline on the original sMRI
data as shown in Figure 2. The preprocessing steps include
motion correction, T1-weighted image averaging, registration
of volume to the Talairach space, skull striping with a deform-
able template model. The white surface and the pial surface
are generated for each hemisphere using encoding the shape
of the corpus callosum and pons in the Talairach space and
following the intensity gradients from the white matter. The
accurate matching of the morphologically homologous corti-
cal locations across subjects was estimated using the mapping
of the atlas based on a cortical surface to a sphere aligning the
cortical patterns. Cortical thickness at each vertex of the cor-
tex is denoted by the average shortest distance between white
and pial surfaces. The area of every triangle in a standardized
spherical surface tessellation provides the surface area. Simi-
larly, the registration surface based on the folding pattern
was used to compute the local curvature. The method devel-
oped by Schaer [34] was used to measure the folding index
over the whole cortical surface. All the extracted features are
explained in terms of feature measures as in Table 2.

2.4. Details of the sMRI Data. We perform binary classifica-
tion for NC versus AD and multiclass classification using
the one-versus-all (OVA) class setting for NC, MCI, and
AD. For the subjects and groups chosen as in Table 2, volu-
metric features, fM5, in Table 2, were used for the study,
and for each feature, we computed the grey matter tissue vol-
ume from the individual subject’s sMRI image. Block brain
regions selected for the classification are shown in Figure 3.
Each tissue is discriminated from other tissues by using color
code defined by FreeSurfer software package. The left column
presents the coronal view followed by the saggital view in the
middle column and the axial view at the rightmost column.
We followed neurological convention for the view. All sMR
scans used in this paper were acquired from 3T scanners.

3. Proposed Methods: Classification of Stages of
AD Progression

We used the three representative machine-learning classifi-
cation algorithms, SVM, IVM, and RELM. The stepwise
block diagram of the classification of stages of AD progres-
sion is shown in Figure 4.

3.1. Efficient Feature Selection. In neuroimaging analysis, the
number of features per subject can be very high compared
to the number of subjects, which is commonly referred to
as the curse of dimensionality. We perform an efficient
feature selection method based on PCA which is a method
widely used to reduce the dimensionality of a high-

Table 1: Summary of subject’s demographic status.

NC MCI AD

Number of subjects 70 74 70

Average age 76.3 74.5 76.0

Average education points 16.19 15.96 15.53

MMSE 29.2± 1.0 27.2± 1.7 23.2± 2.0
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dimensional (imaging) data [25]. As the result, the most
information representative dimensions are kept while the
least important ones are excluded. PCA generates new fea-
tures which are a linear combination of the initial features
and maps each instance of the given dataset present in a
d-dimensional space to a k-dimensional subspace such that
k < d. The set of k new dimensions generated are called
the principal components (PCs), and each PC is directed
towards maximum variance excluding the variance already
accounted for in all its preceding components. Subsequently,
the first component covers the maximum variance, and each
component that follows it covers a lesser value of variance.
PCs can be represented as

PCi = a1X1 + a2X2 +⋯ + adXd , 1

where PCi is the ith PC, Xj is the original feature j, and aj rep-
resents the numerical coefficient for Xj.

3.2. SVM Classifier. SVM [35] is basically a binary classifier
which is useful for the classification of both separable and
nonseparable data. It has been used in the neuroimaging
field and considered as one of the most popular machine
learning tools in the neuroscience domain in the last
decade. It is a supervised classification algorithm and finds
the optimal hyperplane that separates both classes with
maximum margin from support vectors during the training
phase. For the testing of new data points, the classifier’s
decision is based on the estimated hyperplane. For the lin-
early separable patterns, linear SVM is used. However, lin-
ear SVM cannot guarantee better performance in complex
cases with nonseparable patterns. In such scenario, linear
SVM is extended using kernel trick. The input patterns
are mapped into a higher dimensional space using linear
and nonlinear functions known as kernels. Linear and non-
linear radial basis function (RBF) kernels are widely used
SVM kernels.

3.3. IVM Classifier. The fundamental principle of IVM pro-
posed by Zhu and Hastie [36] is built on kernel logistic

regression (KLR). It has not merely performed well in the
binary classification as SVM, and it can be naturally general-
ized to the multiclass classification. Thus, we begin with the

explanation of logistic regression. Let xi = x1,…, xn
T repre-

sent observed samples with class labels yj ∈ C j = 1,…, K

pattern classes. The training set is represented as
xi, yj , i = 1,…, n. For the binary class problem, where input

samples xi are independent and identically distributed, the
conditional class posterior probability Pi yi/xi w is estimated
using the following logistic regression model:

Pi

yi
xi w

=
1

1 + exp wTxi
2

The logistic regression predicts the class based on proba-
bilities which are either p for yi = 1 or 1− p for yi = 0. Thus,
we can express the cost function of logistic regression as

Q0 w = ∏
n

i=1
p xi

yi 1− p xi
1−yi 3

In order to fit the parameters for the given model by
training the given data points, we try to find the parameter
u that minimizes Q0. As a result, u is selected, which is most
likely to generate the labels as the same as in the training set.
The minimization can be obtained by using the gradient and
the Hessian. In order to prevent overfitting, one may intro-
duce a prior over the parameters and optimize

Q w =Q0 w +
λ

2
wTLw 4

Therefore, the iteration scheme could simply be formu-
lated with the Newton-Raphson iteration method. To extend
the linear model to a nonlinear one, the original features xn
are transformed into the higher dimensional space kn using
a kernel function

knn = k xn, xn 5

The model of kernel logistic regression now presumes the
a posteriori probabilities are given by

Pnc w =
exp wT

c kn

〠
c

exp wT
c kn

, 6

with kn as the nth column of the kernel matrix K, and the
unknown parameter w = …, wc,… refers to c classes.
The parameters are determined in an iterative way by
optimizing the regularized objective function. One of the
limitations of the standard KLR is that all possible training
samples are used to evaluate the kernel function, thus
increasing the computational complexity and the memory

Motion correction 

and registration

Pial and white

vertex extraction

Mapping cortical 

surface atlas to sphere

Obtaining cortical 

features

MRI

Images

Figure 2: Preprocessing steps of sMRI images.

Table 2: Feature measures and cortical feature index information.

Feature measure
(fM)

Feature measure
type

Indices of cortical
feature

fM1
Mean cortical
thickness

1–64

fM2 Surface area 65–128

fM3 Folding indices 193–256

fM4
Mean curvature

indices
193–256

fM5 Volume 257–320
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Figure 3: Block brain regions selected for AD classification using sMRI images.

MRI images White/pial surface Feature measures
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Figure 4: Block diagram of automatic diagnosis system.
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requirement for large datasets. Meanwhile, the complexity
of the classifier can be controlled by enforcing the sparse-
ness in the learning model. The sparse kernel machine
uses only the kernel function evaluated at a subset of the
training data points for prediction of new inputs. The
most common methods to implement sparseness are by
introducing a suitable prior or by a subset selection. One of
the popular examples for sparse kernel machine is SVM,
which only supports that vectors are used to predict new
inputs. The main idea of incorporating sparseness into KLR
is to select a subset v of V feature vectors out of the training
set T. Thus, the kernel matrix only consists of the selected a
subset v of important kernels kv from all samples T. IVM uses
a smaller fraction of training data to realize the sparse KLR.
The subset is determined by a greedy manner. This method
begins with empty set v and then constructs the set of import
vectors by successively adding data samples. The construc-
tion process of sets stops once the convergence criterion is
reached. The convergence criterion is used by the ratio
ε = Qt −Qt−Δt / Qt with a small integer Δt such as the regu-
larization, and the kernel parameter ε defines the threshold
for excluding import vectors. Consequently, this criterion
influences the sparseness of the model.

3.4. RELM Classifier. Single hidden-layer feed forward neural
networks (SLFNs), such as the back propagation (BP)
learning algorithm, are widely used machine learning
techniques for research in various fields. These methods
minimize the cost function to maintain the accuracy
within an acceptable range by searching the specific input
weights and hidden layer biases, which leads to increase in
computational cost. Extreme learning machine (ELM) is a
learning algorithm implemented without iteratively tuning
the artificial hidden nodes, thus decreasing the computa-
tion time [37]. ELM is an effective solution for SLFNs.
The SLFN with L hidden nodes and an activation function
g(x) is expressed as

YL x = 〠
L

i=1

βihi x = h x βi, 7

where β = β1,…, β2
T is an output weight matrix between

the hidden nodes and output nodes. hi x is the hidden
node output. Unlike SVM and other BP-based methods,
the parameters of the hidden layer such as the input
weight wi and the hidden layer biases bi need not to be
tuned and can be generated randomly before the training
samples are acquired. Given N training samples xj, tj

N

j=1
,

ELM solves the learning problem by minimizing the error
between tj and Y j:

H w1,…, wÑ, b1,…, bÑ β̂− T = min
β

Hβ̂− T , 8

where

H w1,…, wÑ, b1,…, bÑ

=

g w1 ⋅ x1 + b1 ⋯ g wL ⋅ x1 + bL

⋮ ⋯ ⋮

g w1 ⋅ xN + b1 ⋯ g wL ⋅ xN + bL

,

β =

βT
1

⋮

βT
L

,

T =

tT1

⋮

tTL

9

Here, H is called the hidden layer output matrix. The
output weights β can be calculated as

β =H+T , 10

where H+ is the Moore-Penrose generalized inverse of the
matrix H with the advantage of speed. ELM is well-suited
for the tasks related to neuroimaging and big data for the
classification of binary and multiclass settings. However,
the decrease in computation time increases the error in the
output, thus decreasing the accuracy. To increase the accu-
racy, ELM is combined with sparse representation. This
hybrid algorithm performs classification in two fundamental
steps [38–40]. In the first stage, the ELM network is trained
with the conventional training approach. However, in the
testing stage, reliability-based classification is used. In
reliability-based classification, the ELM classifier is employed
if the test data is correctly classified; otherwise, the sparse
representation-based classification is used [41]. Additionally,
a regularization term is added to improve generalization
performance and make the solution more robust. Finally,
the output weight of the RELM can be expressed as

β =
I

C
+HTH

−1

HTT 11

4. Experimental Results and Analysis

4.1. Permutation Testing. Permutation testing can be applied
to assess the statistical significance of the classifier [42]. The
assessment proceeds with the selection of the test statistic of
the classifier and assigns random labels to the classifier by
permuting the class labels for the training dataset. Permuta-
tion testing involves performing cross validation (CV) on
data for which the diagnostic label has been randomly
permuted. This leads to a distribution of classification results
under the null hypothesis that the classifier cannot accurately
predict the clinical labels from the data. The p value of the
permuted prediction rate against the prediction rate with
the original data labels indicates the significance of the
classifier. In this work, we used 70/30 CV, 10-fold CV, and
leave-one-out (LOO) CV methods. Experiments for both
binary and multiclass classification were carried out with
the same setup.
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4.2. Performance Evaluation Methods. We evaluated the
performance of the proposed algorithm with the IVM,
SVM, and RELM classifiers for each specific test including
binary and multiclass classification tasks. The performance
of the binary classification for the two subjects S1 and S2
can be visualized in a form of a confusion matrix as shown
in Table 3. Diagonal elements of the matrix indicate the
number of correct predictions by the classifier. The elements
can be further divided into true positive (TP) and true
negative (TN), which represent correctly identified controls.
Similarly, the number of wrongly classified subjects may be
represented by false positive (FP) and false negative (FN).

The accuracy measures the proportion of examples that
are correctly labeled by the classifier.

ACC =
TP + TN

TP + TN + FP + FN
12

However, for dataset with very unbalanced class distribu-
tion, accuracy in (12) may be a misleading performance
metric. Thus, two performance metrics known as sensitivity
and specificity are also used.

SEN =
TP

TP + FN
13

SPE =
TN

TN + FP
14

The sensitivity in (13) measures the rate of true posi-
tives while the specificity in (14) measures the rate of true
negatives. The performance metrics for the multiclass
classification are easily extended as the averaged ones on
the OVA setting.

4.3. Binary Classification: Results and Analysis. The experi-
mental results of binary classification (NC versus AD) are
shown in Table 4, and those with feature selection are in
Table 5. 141 subjects were randomly selected for the binary
classification. Initially, we randomly segregated the training
and testing dataset and used the first 111 randomly chosen
subjects from each group for training and the remaining 30
subjects for testing the classifier. Similarly, in 10-fold cross-
validation, all 141 subjects were randomly divided into
equally sized subsets, that is, 10% testing subjects and 90%
training subjects, for each of the 10-fold sets of the CV. In
addition, for the nested validation, we repeated the classi-
fication experiment 10 times in the case of the 10-fold CV
and leave-one-out CV, and 100 times in the case of the
conventional 70/30 CV, to ensure the robustness of the
classification results. The mean accuracy of all the repetitions
was calculated by the final results.

In Table 4 showing the baseline performance of differ-
ent classifiers, all classifiers except IVM obtained good
performance. There was no substantial difference, in terms
of accuracy, between the results obtained with IVM and
SVM, and RELM is better than the others in 10-fold
CV; however, SVM is better than RELM in LOO CV.
For the feature selection, the datasets of size n × d were
mapped to the given k principal component framework
and transformed into the dataset of size n × k, where n is
the number of subjects and d is the original number of
features. The dataset originally consists of total 54 features.
The number of PCs represented as k ranging from 2 to 20,
with an incremental offset of two, was checked and the
best one was selected for each classifier. From repeated
simulations, we achieved the generally good accuracy
when the value of k is set to 10. As shown in Table 5,
by adopting feature selection, the similar performance
characteristic was observed in terms of accuracy. From
Figure 5, it is easily observed the effectiveness of the fea-
ture selection approach in 10-fold CV and LOO CV cases.
It is meaningful that from our repeated simulations, we
found that the results of 70/30 CV case, which is a widely
used setting, are not stable (i.e., it has large variance with
different trials) mainly due to overfitting problems, and
thus, the results were not listed in this work.

4.4. Multiclass Classification: Results and Analysis. For multi-
class classification, we adopted all labeled 214 subjects in
Table 1. The same subjects were used in binary classification,
and we adopted three CV methods. From Tables 6 and 7, it is
easily observed that RELM outperforms SVM and IVM in
terms of accuracy. From Figure 6, we also could see the
effectiveness of the feature selection approach in 10-fold

Table 4: Performance of binary classification.

CV method Classifier
Performance metrics

ACC (%) SEN (%) SPEC (%)

10-fold CV

SVM 60.10 74.63 88.81

IVM 59.50 62.30 62.85

RELM 77.30 (p < 0 0001) 62.12 79.85

LOO CV

SVM 78.01 75.81 79.12

IVM 73.36 70.97 75.95

RELM 75.66 (p < 0 0001) 72.13 77.22

Table 5: Performance of binary classification with feature selection.

CV method Classifier
Performance metrics

ACC (%) SEN (%) SPEC (%)

10-fold CV

SVM 75.33 77.51 61.20

IVM 60.20 62.50 81.10

RELM 76.61 (p < 0 0001) 61.70 90.63

LOO CV

SVM 80.32 83.37 78.82

IVM 74.47 87.10 64.56

RELM 77.88 (p < 0 0001) 68.85 83.54

Table 3: Confusion matrix.

True class
Predicted class

S1 S2

S1 TP FN

S2 FP TN

7Journal of Healthcare Engineering



CV and LOO CV cases. Similar to binary classification cases,
on the 70/30 CV case, we obtained the experimental results
with large variance, and thus, they were also excluded from
the analysis. From the results, it is naturally driven that mul-
ticlass classification (which is the general form in clinical
diagnosis of AD) assisted by RELM is effective compared to
the other considered representative classifies.

4.5. Discussion on the Results. It has been known that in many
problem tasks, IVM generally performs similar with SVM in

terms of accuracy and provides probabilistic output. From
our experiments, we could confirm that SVM generates bet-
ter accuracy compared to IVM, which is mainly attributed
to the robustness of SVM to outliers. The main impetus of
this study was to compare representative classifiers, SVM,
IVM, and RELM for binary and multiclass classification
tasks. Trivially, the accuracy of the binary classification cases
was higher than the corresponding multiclass classification
cases. Also, the experimental results on large dataset of 214
subjects verified that RELM-based AD diagnosis framework
(significantly) outperform the others with higher accuracy.
To the best of our knowledge, this is the first study in
which the RELM framework was used for multiclass clas-
sification on sMRI data obtained from the ADNI dataset.
To classify the effectiveness of feature selection in combi-
nation with the classifiers, we utilized the PCA-based
feature selection method as an efficient approach to vali-
date its efficiency. It selects features that represent higher
degrees of significance based on the internal linear SVM-
based classification scores, and thus, it has the possibility
of making classification significantly more accurate. The
experimental results also support that such adoption of
feature selection can be beneficial to improve the accuracy
of the classifiers, SVM, IVM, and RELM. From the note-
worthy results, we could conclude that the approaches
for the stage classification can be used as an effective assis-
tive tool for the establishment of a clinical diagnosis.

5. Conclusions and Future Work

The early diagnosis of AD and MCI is essential for patient
care and research, and it is widely accepted that preventive
measures plays an important role to delay or alleviate the
progression of AD. For the classification task of different
stages of AD progression, the smaller number of training
samples and the larger number of feature representations
are the major challenges. In this study, we investigated
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Figure 5: Performance comparison of binary classification in terms of accuracy: (a) binary classification and (b) binary classification with
feature selection.

Table 6: Performance of multiclass classification.

CV method Classifier
Performance metrics

ACC (%) SEN (%) SPEC (%)

10-fold CV

SVM 52.63 42.74 56.77

IVM 54.90 46.18 60.82

RELM 57.56 56.34 56.73

LOO CV

SVM 57.40 55.25 58.62

IVM 55.50 60.78 52.22

RELM 61.20 50.00 66.89

Table 7: Performance of multiclass classification with feature
selection.

CV method Classifier
Performance metrics

ACC (%) SEN (%) SPEC (%)

10-fold CV

SVM 56.60 50.59 56.38

IVM 56.14 40.16 64.83

RELM 59.81 58.25 58.82

LOO CV

SVM 58.30 57.12 60.32

IVM 56.80 64.71 49.56

RELM 61.58 54.00 62.25
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SVM, IVM, and RELM for the classification problem. In
IVM, only the subsets of the input vectors of KLR are selected
by minimizing the regularized cost function to reduce com-
putation time. RELM is an effective solution for SLFNs
implemented without iteratively tuning the artificial hidden
nodes and adopts reliability-based classification where ELM
is adopted if the test data is correctly classified, and sparse
representation is selected for the other cases. Experiments
on the ADNI dataset showed that RELM-based classifier
could significantly improve accuracy in both binary and mul-
ticlass classification tasks. In addition, we could observe that
adoption of the PCA-based feature selection could improve
the accuracy slightly. While this study is focusing on the stage
diagnosis of AD progression using sMRI alone, further study
is still being carried out to improve the accuracy by elaborat-
ing the classifiers, possibly using a model ensemble approach,
and feature selection. Also, the studies of adding more
modalities such as fMRI and PET in combination with sMRI
are also one of our future researches.
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