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Abstract

Breast cancer is a common cancer in women. Early detection of breast cancer in particular 

and cancer, in general, can considerably increase the survival rate of women, and it can be 

much more effective. This paper mainly focuses on the transfer learning process to detect 

breast cancer. Modified VGG (MVGG) is proposed and implemented on datasets of 2D 

and 3D images of mammograms. Experimental results showed that the proposed hybrid 

transfer learning model (a fusion of MVGG and ImageNet) provides an accuracy of 94.3%. 

On the other hand, only the proposed MVGG architecture provides an accuracy of 89.8%. 

So, it is precisely stated that the proposed hybrid pre-trained network outperforms other 

compared Convolutional Neural Networks. The proposed architecture can be considered 

as an effective tool for radiologists to decrease the false negative and false positive rates. 

Therefore, the efficiency of mammography analysis will be improved.

Keywords Hybrid transfer learning · Medical image segmentation · Breast cancer · 

Mammography · 3D mammography · Convolutional neural networks

1 Introduction

Every year, 12% of women are diagnosed with breast cancer (McGuire et al. 2015). In the 

US alone, 40,000 women die of breast cancer annually (Bharati et  al. 2018; Cancer.gov 

2018). Evidence shows that early detection of breast cancer can significantly increase the 

survival rate of women.
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Mammography, a special X-ray of the woman’s breast, is one of the most common diag-

nostic tools for detecting breast cancer (Bharati et al. 2020a, b; Thanh and Surya 2019). A 

3D mammography is an advanced model compared to mammography. A 3D mammogram 

uses multiple breast X-rays to create a 3D picture of the breast. A 3D mammogram is used 

for finding breast cancer in patients who have no signs or symptoms. It can also be used to 

investigate other issues on breasts, such as breast mass, pain, and nipple discharge (Kumar 

et al. 2020).

When screening breast cancer, 3D mammogram machines will create 3D images and 

standard 2D mammogram images (Clinic 2020). Studies showed that “Combining 3D 

mammograms with standard mammograms reduces the need for additional imaging and 

slightly increases the number of cancers detected during screening”.

According to the mammography technique as well as the 3D mammography technique, 

one can show masses and even calcifications, which are precursors to breast cancer. How-

ever, correctly identifying these images can be challenging for radiologists. Moreover, time 

constraints in assessing the images often result in incorrect diagnosis with detrimental con-

sequences. For instance, a false negative diagnosis, that a case is normal when it is, in fact, 

an early form of breast cancer, can decrease the chance of 5-year survival significantly.

A mammogram is a type of X-ray image of the breast. It can be captured by both mam-

mography and/or 3D mammography. Doctors use the mammogram to identify the signs of 

breast cancer. So, it is capable of detecting calcifications, lumps, dimpling, etc. These are 

the common signs shown in the early stage of breast cancer. The mammograms of the digi-

tal database for screening mammography (DDSM) dataset is used in this paper. This data-

set is available in a valid online repository (DDSM 2020) which is illustrated in the article 

of Lee et al. (2017). DDSM is a group of labeled mammographic images. This database is 

maintained by the research community (Heath et al. 1998). It is one of the largest datasets 

for studying breast cancer. Figure 1 shows some types of images of DDSM.

2620 instances are contained in the dataset. The instances are the mammograms of 

patients with masses, calcifications, etc. The labels for calcification and masses are speci-

fied in four categories.

(1) Benign.

(2) Malignant.

(3) Benign without a callback.

(4) Unproven.

Fig. 1  Some types of images of DDSM
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Besides, the images have been categorized on a scale of 1–5, according to the BI-RADS. 

BI-RADS means breast imaging, reporting, and data system. BI-RADS can be considered 

the most effective tool to detect breast cancer. Score 5 shows that the mammogram results 

are very suspicious, and the probability of breast cancer is almost 95%. To simplify our 

analysis, patches are used instead of full images. It helps not only for efficient computation 

but also for better performance. Because feature detection becomes easier. 10,713 patches 

are contained in our dataset. Table 1 summarizes the statistics of the DDSM patch data set.

All images are separated at the abnormality level and full mammography as DICOM 

files where the whole mammography of breast images contains both CC and MLO visions 

of the breast mammograms. Moreover, abnormalities are depicted as binary mask breast 

images where the size of the images is the same as their related breast mammograms. The 

ROI of every abnormality is described in these mask breast images. Users can play out an 

element-wise choice of pixels inside an abnormality mask which was made for every mam-

mogram. We have separated the images, including only abnormalities cropped for analysis 

of abnormalities. We have also separated the dataset like train, test, validation using python 

programming.

Exploring the data provides the plots shown in Figs. 2 and 3. Overall, there are more 

cases of masses than of calcification (in Fig. 2). The number of malignant and benign cases 

for calcification and masses seems to be the same. For both calcification and masses, a 

few cases have been categorized as ‘unproven’. In our analysis, we decide to mark these as 

pathological as it is not clear if they can be considered healthy patients or not (the number 

is small and should not have a strong negative impact on our predictive power). As we aim 

Table 1  Summary of the DDSM patch data set

Malignant Benign w/o 

callback

Benign Unproven Total

Calcification 797 539 800 16 2152

Mass 1075 179 1079 21 2354

Pathological cases – – – – 4506

Non-pathological cases – – – – 6207

Total number of patches – – – – 10,713

Fig. 2  Classes and labels of the 

DDSM dataset
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to model a binary classifier, we label all mass and calcification patches as pathological. In 

total, we have 4506 pathological and 6027 non-pathological patches (Fig. 3).

In this paper, we have proposed MVGG based on VGG 16. VGG 16 is modified in 

our application by fine-tuning the feed-forward, dense layers in the end to just one layer 

with 32 nodes, followed immediately by an output layer with sigmoid activation and one 

node (for binary classification). Binary classification is necessary to predict breast cancer. 

Therefore, categorizing mass and calcification labels are categorized as ‘pathological’, and 

normal images are categorized as ‘non-pathological’. VGG16 is designed initially to label 

up to 1000 classes and therefore have wide dense layers (4096 nodes). The width of these 

layers is cut down not to mix the information of the features at the time of passing from 

4096 nodes to just one node in the output layer.

The significant contributions of the research work listed as follows:

• Modified VGG model has been proposed to diagnose breast cancer utilizing 2D and 3D 

images of mammograms.
• The proposed hybrid transfer learning model (a fusion of MVGG and ImageNet) pro-

vides an accuracy of 88.3% which surpasses existing machine learning models.
• The data augmentation and regularization approach enhance the breast cancer detection 

rate and improve the proposed system performance.

2  Literature reviews

There are several machine and deep learning approaches in health care systems. ML is 

conducted in various domains, including health care, disease detection, biomedical, etc. 

(Tiwari and Melucci 2019a). Some works (Tiwari and Melucci 2018, 2019b; Khamparia 

et al. 2020) related to binary and multi-class classifications using machine learning have 

been proposed, and they exhibited some performance matrix-like accuracy, recall, preci-

sion, F1 score, etc. (Tiwari and Melucci 2018). Some unsupervised algorithm was already 

utilized for the treatment of breast cancer, lung cancer, and coronavirus (Tiwari et al. 2020; 

Mondal et al. 2020). Therefore, we can use deep learning for the detection of diseases from 

image data. Conversely, the image fusion algorithm was conducted for medical images 

where the big data was efficiently utilized (Tan et al. 2020). Traditional deep learning tech-

niques are used for detecting blood cells. The images of the dataset were 13 k and provided 

Fig. 3  Split of the patches based 

on pathology
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results according to the performance matrix (Tiwari et  al. 2018). Next, a hybrid method 

was offered by Reddy et al. (2020). They used hybrid deep belief networks (DBNs) and 

MRI images to detect glioblastoma tumors. The proposed method combined DBN with 

DTW to improve the efficiency of DBN. Thus, we use hybrid MVGG16 ImageNet for 

enhancing efficiency.

A deep learning-based system for the classification of the images of breast tissue is 

proposed in Rakhlin et  al. (2018). For those images, 650 × 650 has been extracted with 

400 × 400 pixels. Next, pre-trained VGG-16, InceptionV3, and ResNet-50 networks are 

conducted for the feature extraction. 10-fold cross-validation with LightGBM classifier has 

been driven to the classification and extraction of in-depth features. That technique gets 

an average accuracy of 87.2% across leave on out for breast cancer image classification 

(Rakhlin et al. 2018). In the other work (Kwok 2018), 4-DCNN architectures, i.e. Incep-

tionResnetV2, InceptionV3, VGG19, and InceptionV4 have been used for the classification 

of images of breast cancer. The size of the images is 1495 × 1495 of 99 pixels. Various data 

augmentation systems have also been developed to increase the accuracy. In Vang et  al. 

(2018), the ensemble-based architecture is proposed for multi-class image classification of 

breast cancer. Their conducted ensemble classifier involved; logistic regression, gradient 

boosting machine (GBM), majority voting to achieve the final prediction.

Moreover, the ensemble-based boosted neural network is also used for the diagno-

sis of lung cancer (Alzubi et  al. 2019). The bagging algorithm is improved in the paper 

of Alzubi (2015). This algorithm cannot provide a good result for this complex dataset. 

Therefore, our proposed work will carry out for other complex image data. It can be used 

in IoT healthcare system and will be transmitted data securely according to the authors 

of Rani et al. (2019). Furthermore, the authors of Qian et al. (2020) conducted an unsu-

pervised dictionary learning in an internet-based healthcare system for patient monitor-

ing. They offered an ECG compression method where they measured EEG. This method 

has developed the dictionary continuously while the hidden pattern refined and occurred 

the dictionary. In Vahadane et al. (2015), the stain-normalization technique is applied to 

stain images for normalization where the achieving accuracy is 87.50%. Another research 

(Sarmiento and Fondón 2018) conducts a machine learning method where feature vec-

tors are extracted from various characteristics i.e. texture, color, shape, etc. For the ten-

fold cross-validation, SVM provides 79.2% accuracy. Lastly, the paper (Nawaz et al. 2018) 

uses a fine-tuned AlexNet for the automatic classification of breast cancer. They achieve an 

accuracy of 75.73% where the patch-wise dataset is used.

Our literature review covered three topics: (1) The state-of-art deep learning architec-

tures for the task of binary classification of images, (2) Performance achieved in similar 

tasks as a benchmark for our algorithm, (3) Studies on physicians’ performance to under-

stand the clinical implications of such algorithms.

2.1  State of the art architectures

VGG network is presented by the author of Simonyan and Zisserman (2014). It is a simple 

model. It consists of a 13 layered CNN where 3 × 3 filters (Fig. 4) are used. VGG model 

has 2 × 2 max-pooling layers. The performance of multiple, smaller-sized kernels is com-

paratively better than a single larger-sized kernel because the increased depth of the VGG 

network can support the kernel to learn more complex features.

Secondly, Residual Network (ResNet) is considered. For image classification, ResNet is 

the most popular architecture. It is presented by the paper (He et al. 2016). Residual block 
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can be considered a distinguishing feature in ResNet. (in Fig. 5). The residual block allows 

the residual network to achieve a depth of 152 layers. Vanishing gradients is a common 

problem in DCN. This problem can be moderated by the residual block. Because of vanish-

ing gradients, the performance of ResNet can be degraded with the increase of depth.

Finally, MobileNets for mobile and embedded vision applications are proposed, which 

are based on a streamlined architecture that uses depth-wise separable convolutions to 

build light weight deep neural networks. This network is introduced by the authors of How-

ard et  al. (2017). The core layer of MobileNet is depth-wise separable filters, named as 

depth-wise separable convolution. Finally, the width and resolution can be tuned to tradeoff 

between latency and accuracy. The purpose of using MobileNet in comparison to other 

architectures is that it has very little computation power to run or apply transfer learning to. 

This makes it a perfect fit for Mobile devices, embedded systems, and computers without 

GPU or low computational efficiency with compromising significantly with the accuracy 

of the results (in Fig. 6).

Fig. 4  The characteristic of 3 × 3 

convolution layers of the VGG

Fig. 5  The residual model of the 

ResNet architecture
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2.2  Prior art in breast cancer classification

To detect breast cancer, several algorithms and classification have been developed using 

different datasets. For instance, a paper published in 2015 obtained 85% accuracy for 

identifying images with a mass and also localizing 85% of masses in mammograms 

with an average false positive rate per image of 0.9 (Ertosun and Rubin 2015). In Shen 

(2017), developed an end-to-end training algorithm for a whole-image diagnosis. It 

deploys a simple convolutional design achieving a per-image AUC score of 0.88 on the 

DDSM dataset. We adopt this metric as the benchmark for our algorithm, in addition to 

an accuracy benchmark of 85%.

2.3  Physician performance

Several high-quality studies explored the performance of physicians diagnosing mam-

mograms. A study was looked at radiologist performance on mammographs from 1192 

patients (Rafferty et al. 2013). In a first study, 312 cases (48 cancer cases) were diag-

nosed by 12 radiologists who recorded if an abnormality that requires a callback was 

present. This resulted in a sensitivity of 65.5% and a specificity of 84.1%. In a sec-

ond study, 312 cases (51 cancer cases) were analyzed by 15 radiologists. They obtained 

additional training and also reported the type and location of the lesion. It was in a 

sensitivity of 62.7% and a specificity of 86.2%. Another high-quality study compared 

different diagnosis methods such as mammography, ultrasonography (US), and physi-

cal examination (PE) using a data set of 27,825 screening sessions Kolb et  al. (2002) 

and compared the results of the three diagnosis methods with the actual biopsy. The 

results showed a sensitivity of 77.6% and a specificity of 98.8%. However, these scores 

Fig. 6  MobileNet architecture
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were not achieved by radiologists using only mammograms and thus do not fit well for a 

benchmark for this task.

Most relevant as a benchmark for our analysis is the first study by the authors of Rafferty 

et al. (2013) as the 12 radiologists restricted themselves to binary classification, which is 

similar to our approach.

2.4  Clinical significance

Medical suggestions of the mammogram diagnosis are essential to improve an algorithm 

with Clinical significance. Radiologists have a considerably higher specificity than sensi-

tivity. So, it means that the false-negative rate is higher than the false positive rate. Table 2 

illustrates the Comparative analysis of risks for two types (1 and 2) of diagnostic errors.

False-positive diagnosis indicates that the radiologist judges a normal mammogram of 

malignant or benign type. As a result, that patient has to revisit the clinic, and in most 

cases, further testing through a biopsy is performed. Biopsy for breast cancer detection 

is minimally invasive, and only a small incision is needed. However, there is a range of 

evidence showing the psychological effects of such false positives. According to a study 

from 2000, it can lead to short-term distress as well as long-term anxiety (Aro et al. 2000). 

On the contrary, a false negative implies that a potentially cancerous case is misinterpreted 

as healthy. The consequences of this can be very severe because breast cancer when left 

untreated progresses in its stages and with each stage, a different 5-year life expectancy is 

associated (in Table 3 Cancer.gov 2018).

In general, it is more important to avoid false-negative over a false positive. A mammo-

gram is first followed by sonography, and if this is positive as well, further testing is done 

via a minimally invasive biopsy. However, in the future, it would be great to differentiate 

Table 2  Comparison of risks for type 1 and 2 diagnostic errors

Risks and costs of a diagnostic error

False-positive Additional test: Costs and minimal-invasive biopsy

Short-term distress/long-term risk of anxiety

False-negative 5-year survival rate is strongly impacted by later detection:

Decreases from 93 to 72% from stage 3 to stage 2

Table 3  The survival rate of 

breast cancer stages
5 years overall survival by stage

Stage 5-year overall survival (%) Classification

0 100 In situ

1 100 Cancer formed

2 93 Lymph nodes

3 72 Locally advanced

4 22 Metastatic
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further and decrease the false positive in the three categories of BI-RADS. As of now, 98% 

of patients in this category have to come back every 6, 12, 24 months for a check-up, yet do 

not have breast cancer. This is a large burden.

Considering Table 2 and the two interviews, we conclude that a false negative error can 

have more severe consequences than a false positive error. Thus, we decide to design our 

algorithm to have a threshold that is more sensitive than specific.

3  Modeling

3.1  Data cleaning

Before building the model, we clean the data set to convert it into the appropriate form. We 

assign new, binary labels to the images by categorizing all the original mass and calcifica-

tion labels as ‘pathological’, and the normal images as ‘non-pathological’. Thus, the prob-

lem is decreased to binary classification. Next, we randomly divide the data set into train, 

validation, and test splits, in approximate proportions of 75:10:15, respectively. While 

doing so, we ensure that the splits are evenly balanced between the two classes (as evident 

in Fig. 7). Train test split method is adopted to check the validation of this work. For vali-

dation of this work, 75% of the total images are trained in the total dataset.

3.2  Performance evaluation

The performance of classification is evaluated by the following metrics: accuracy and 

AUC. AUC means the area under the ROC curve. These two parameters are widely-used 

for evaluating classification. Accuracy means the percentage of cases that the model clas-

sifies correctly. AUC implies the capability of the model to discriminate between the two 

classes.

3.3  Modeling process

The flow chart can easily describe the modeling process shown in Fig. 8.

Fig. 7  Balance of classes in the 

train, validation, and test splits
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3.4  Model building

Model building is the first step of model processing. It can be divided into four sub-stages:

1. Construction of the baseline model and performance evaluation.

2. Training of popular models with various architectures, and selection of best models.

3. Deployment of regularization and data augmentation methods to develop the perfor-

mance. Choose the best model as the final model based on the performance.

4. Tuning of hyper-parameters on the final model to accomplish the desired level.

Table 4 describes the details of the architecture of the baseline (simple) model. There 

are two 2-dimensional convolution layers. There are 32 and 64 filters. There is a dense 

layer in the architecture having 32 nodes on the top. At the time of the performance 

Fig. 8  Workflow diagram of the 

modeling process
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evaluation of the model on the test set, the accuracy of 75.9% is obtained. It is about 

13% lower than the desired accuracy or desired benchmark.

In the next stage, three image classification models are implemented. The models are 

ALEXNET, VGG16, VGG19, MVGG, MobileNet, and ResNet50. The models are then 

modified by tuning the feed-forward, dense layers in the end to only one layer having 32 

nodes. These models are designed initially to label up to 1000 classes and therefore have 

wide dense layers (4096 nodes).

Two additional methods have been considered after choosing the final model to observe 

if they improve performance. The two techniques are

(1) Data augmentation and

(2) Pre-training.

In the data augmentation stage, three operations are performed on the input images. The 

operations are:

(1) Flip the images along a horizontal axis

(2) Shift vertically/horizontally within a width range of 0.2

(3) Rotate randomly within a twenty-degree range.

The pre-training process includes initializing model parameters with values learned 

from a different data set, instead of random ones. The pre-training process not only can 

speed up learning but also achieve improved local optima in gradient optimization. In this 

paper, the best model is pre-trained using weights. ImageNet data set is trained in this case.

To tune on the best model, batch size and learning rates are varied to enhance the 

accuracy.

4  Results and interpretation

4.1  Performance of different models

The performance of different implemented models is shown in Table 5.

Table  5 depicts the comparison of various classification algorithms including 

ALEXNET, ResNet50, MobileNet, VGG16, VGG19, etc. where our final model hybrid 

MVGG16 ImageNet provides higher accuracy, precision, recall, and F1 score than 

another traditional algorithm for our DDSM dataset. We calculate our results for 15 

Table 4  Architecture of the 

baseline model
Layer (type) Output shape Parameters

Conv2d_3 (2D convolution layer) (None, 254,254,32) 320

Conv2d_4 (2D convolution layer) (None, 252,252,64) 18,496

Max_pooling2d_2 (None, 126, 126,64) 0

Flatten_2 (None, 1016064) 0

Dense_3 (None, 32) 32,514,080

Dense_4 (None, 1) 33
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Fig. 9  Details of the architecture of MVGG
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epochs. Validation loss gets saturated after 15 epochs that why we considered these 

many numbers of epochs. It depends on how validation loss is behaving after each 

epoch. VGG 16 is modified in our application by fine-tuning the feed-forward, dense 

layers in the end to just one layer with 32 nodes, followed immediately by an output 

layer with sigmoid activation and one node (for binary classification). At the end of 

the model building process, we realize that the pre-trained modified VGG16 (MVGG 

16) model outperforms all others in terms of accuracy. The architecture of the model 

is shown in Fig.  9. It produces an accuracy of 86.9% on the test set and an AUC of 

0.933. This is better than our benchmark on both metrics. In Fig. 10, we can see that 

the model starts to strongly over fit after 6 epochs.

After testing three architectures, it is seen that Modified VGG16 outperforms both 

ResNet50 and MobileNet. MobileNet produces lower accuracy. The modified VGG16 

model outperforms ResNet50 model. It can be assumed that this might be due to 

the features of the images and fixation of ResNet50’s loss function on a higher local 

minimum.

Fig. 10  Training and validation of the best model

Fig. 11  ROC curve of the final 

model
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It is also observed that the pre-training model provides better performance com-

pared to the data augmentation. Because the initial weights might have enabled the 

model to find a better local minimum of the loss function during the gradient descent 

process. It can also be useful to run the model with extra resources and data augmenta-

tion for more epochs as the convergence is slow owing to the large size of the data.

4.2  ROC analysis

Figure 11 showed that the final modified proposed model has an AUC value of 93.3%. This 

is better than our benchmark of an AUC value of 88% from (Shen 2017). Additionally, our 

model also outperforms radiologists to classify mammograms as pathological or not. The 

benchmark of the first study on 12 radiologists on 312 cases with a sensitivity of 65.5% 

and a specificity of 84.1% (Rafferty et al. 2013) was surpassed by our model. For study 2, 

the physicians did use not only mammography but also other diagnostics, which could be a 

reason for better results.

After finalizing the algorithm, we estimate the mathematically optimal mode for the 

algorithm is, i.e. what the best threshold for the algorithm to declare a mammogram as 

either pathological or non-pathological. We compute the Youden’s J statistic as follows:

Youden’s index is the probability of an informed decision (as opposed to a random 

guess) and considers all predictions. We have used it for setting optimal thresholds on 

medical breast cancer tests. In different words, this threshold minimizes the error rate of 

false positive and false negative, taking both as equally important. However, as written in 

chapter 3.4. from a clinical perspective, reducing false negatives is more important than 

false positives. Thus, we decided to weigh reducing false negatives twice as important as 

false positive and calculated the optimal threshold maximizing the cost function as 0.66 * 

true positive rate + 0.33 * (1-false negative rate). The clinically optimal threshold is 0.17, 

enabling us to further increase the false positive rate (thereby decreasing the false negative 

rate) by 10% while increasing the false positive rate by 15%.

Conclusively, this model with its well-performing accuracy as well as the estimated 

clinically relevant threshold would be well suited to sufficiently reduce errors, especially 

false negatives, in the clinical setting.

Several data mining algorithm is applied for cancer detection and classification (Shapiro 

et al. 1982; Bharati et al. 2019; Zhou et al. 2020; Celik et al. 2020; Benhammou et al. 2020; 

Kose and Alzubi 2020) using the dataset as a CSV file, but disease detection and classifica-

tion using image dataset is a challenging task. To classify images into multiple categories 

such as benign, malignant (Hu et al. 2020; Bharati et al. 2018), and normal, our focus is to 

implement binary classification. This is because classifying a case as normal with higher 

confidence is more clinically relevant and immediately applicable than multinomial clas-

sification. The strength of the paper is the balance between breadth and depth in the scope. 

Testing various transfer learning models can enable us to recognize the best model for the 

task. On the other hand, there are some shortcomings with more time consuming and com-

puting resources. So, we have tried to fine-tune our proposed models better, trying different 

hyper-parameters, and constructing our network.

(1)J = maximum sensitivity(c) + specificity(c) − 1.
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4.3  Comparison among the others work of accuracy

In the work of Rakhlin et al. (2018), the authors used the fusion methods of various deep 

CNN algorithms. They calculated sensitivity, AUC for two class and four class classifica-

tion of breast cancer. Moreover, the authors of Kwok (2018) and Nawaz et al. (2018) pro-

posed Inception-Resnet-v2 and ALEXNET, respectively for the same dataset. The using 

dataset of Rakhlin et al. (2018), Kwok (2018), Vang et al. (2018), Sarmiento and Fondón 

(2018), Nawaz et al. (2018) differs from our using dataset. Therefore, direct comparisons 

are not sufficient. Our adopted dataset is the same as the works of Li et al. (2019), Wang 

et  al. (2019), Singh et  al. (2020). The author of Li et  al. (2019) proposed Dense U-Net 

algorithm that is not a traditional algorithm like DenseNet or U-Net. The obtained accu-

racy is 78.38%. Furthermore, the reference papers of Wang et al. (2019), Li et al. (2019) 

and Singh et al. (2020) also used our adopted DDSM dataset. They also proposed novel 

algorithms. The accuracy of these papers is less than our proposed method where the accu-

racy of 86.50% and 80% are obtained for CNN-GTD and cGAN, respectively.

Our proposed method provides higher accuracy than other methods presented in Table 5 

for other transfer learning methods (Rakhlin et  al. 2018; Kwok 2018; Vang et  al. 2018; 

Sarmiento and Fondón 2018; Nawaz et al. 2018). It can also be explored from Table 6 that 

the architectures in Rakhlin et al. (2018), Kwok (2018), Vang et al. (2018), Nawaz et al. 

(2018), Sarmiento and Fondón (2018), Li et al. (2019), Wang et al. (2019) and Singh et al. 

(2020) provide an accuracy of 87.20%, 79.00%, 87.50%, 81.25%, 79.20%, 71%, 78.38%, 

86.50%, and 80%, respectively, whereas our proposed model provides the accuracy of 

94.3%.

5  Conclusion

The best performing architecture is an MVGG network which has been pre-trained on the 

ImageNet with an accuracy of 94.3% and the value of AUC is 93.3%. The clinical analysis 

shows that recall or sensitivity should be highlighted over specificity in the case of breast 

cancer. Thus, a clinical classification threshold is chosen, which is much lower than the 

mathematical threshold value. This algorithm will help to considerably decrease the false 

negative cases of mammograms. This will also increase the chances of 5-year survival.

Table 6  Comparative analysis 

with other existing works
Method Accuracy (%)

Fusion of various deep CNN (Rakhlin et al. 2018) 87.20

Inception-Resnet-v2 (Kwok 2018) 79.00

Ensemble of LR, MV and GMV with refinement 

(Vang et al. 2018)

87.50

ALEXNET (Nawaz et al. 2018) 81.25

Quadratic SVM (Sarmiento and Fondón 2018) 79.20

Dense U-Net (Li et al. 2019) 78.38

CNN-GTD (Wang et al. 2019) 86.50

cGAN (Singh et al. 2020) 80

Proposed architecture 94.3
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There are different approaches we would like to follow in the future. Instead of binary 

classification, it will be interesting to make a categorical classification based on the BI-

RADS scores. But in this situation, masses and calcification have to keep merged. We will 

also need additional, very detailed data set containing not only the BI-RADS scores but 

also other medical explanations.

Additionally, it will be interesting to integrate additional features into our algorithm. 

The tissue density of the woman plays a critical role in the breast cancer assessment. 

Obtaining this and adding it as a feature could potentially increase the accuracy of the 

algorithm significantly.
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