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Abstract. We report on the first stages of a clinical study designed to
test elastic-scattering spectroscopy, mediated by fiberoptic probes, for
three specific clinical applications in breast-tissue diagnosis: (1) a
transdermal-needle (interstitial) measurement for instant diagnosis
with minimal invasiveness similar to fine-needle aspiration but with
sensitivity to a larger tissue volume, (2) a hand-held diagnostic probe
for use in assessing tumor/resection margins during open surgery, and
(3) use of the same probe for real-time assessment of the ‘‘sentinel’’
node during surgery to determine the presence or absence of tumor
(metastatic). Preliminary results from in vivo measurements on 31
women are encouraging. Optical spectra were measured on 72 his-
tology sites in breast tissue, and 54 histology sites in sentinel nodes.
Two different artificial intelligence methods of spectral classification
were studied. Artificial neural networks yielded sensitivities of 69%
and 58%, and specificities of 85% and 93%, for breast tissue and
sentinel nodes, respectively. Hierarchical cluster analysis yielded sen-
sitivities of 67% and 91%, and specificities of 79% and 77%, for
breast tissue and sentinel nodes, respectively. These values are ex-
pected to improve as the data sets continue to grow and more sophis-
ticated data preprocessing is employed. The study will enroll up to
400 patients over the next two years. © 2000 Society of Photo-Optical Instru-
mentation Engineers. [S1083-3668(00)00302-6]
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1 Introduction and Background
Various types of optical spectroscopy have been investigate
as methods of ‘‘optical biopsy,’’ with a majority of research
efforts focusing on UV-induced fluorescence or Raman spec
troscopies.~For a review of the topic, see, for example, Ref. 1
or references contained therein.! Recently, elastic-scattering
spectroscopy~ESS! ~sometimes called ‘‘diffuse reflectance
spectroscopy’’! has been studied as a method for minimally
invasive optical diagnosis of tissue pathologies, with empha
sis on distinguishing dysplasia and cancer from normal tissu
or other benign conditions2–4 or for distinguishing different
normal tissue types.5 ESS, when performed using an appro-
priate optical geometry,6,7 is sensitive to the sizes and struc-
tures of the subcellular components that change upon tran
formation to premalignant or malignant conditions~e.g., the
nucleus, mitochondria, etc!.8 In work reported to date, clinical
application of the ESS technique has been fundamentally non
invasive, with access to the tissue mediated by endoscopes2–4

or by means of direct topical access as would be appropriat
for diagnosis on the cervix.9,10
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Within solid organs, such as the breast, the least invas
approach requires access through a needle. In screening,
early breast cancers are detected when an abnormality is
on mammography, although some patients may detect a l
themselves~palpation!. In either case, before any treatment
initiated, the diagnosis must be confirmed by fine-needle
piration cytology~FNA! or biopsy~which is often done as an
open procedure!. Approximately 50 000 diagnostic lumpecto
mies are performed annually in the U.S. Of those, only ab
12 000 turn out to be malignant when histology is perform
on the excised tissue by a pathologist.11 If it had been known
in advance that the remaining 38 000 lesions were benign,
potentially disfiguring surgery could have been avoided, alo
with the trauma and cost, as many benign lesions reso
spontaneously in time, without intervention. A core biops
through a large-gauge needle, is a frequent alternative to
gical resection or lumpectomy for biopsy. Although less
vasive than core biopsy, FNA is only infrequently used in t
U.S. because false-negative rates with FNA are often in
range of 12%–15%,12,13 and its reliability is under critical
review. This is due to the heterogeneity of breast lesions
the relatively small number of cells accessed by FNA. Desp
having the same level of invasiveness as FNA, the E
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method poses the potential advantage of immediate diagnos
and there is the possibility of improved sensitivity when com-
pared with FNA, due to the larger tissue volume that is sense
by the ESS method. If the optical biopsy technique based o
ESS proves sufficiently reliable, it gives an immediate result
which minimizes the time a patient must wait for a diagnosis
and might make it realistic to treat a small cancer at the sam
clinic visit. This will reduce patient anxiety and reduce costs
for the large number of patients who have suspicious area
seen on mammography. Image-guided optical biopsy eithe
with magnetic resonance, ultrasound, or conventional mam
mography could prove particularly valuable for patients with
more than one suspicious area.

However, two other applications of ESS diagnosis to
breast cancer may provide even greater patient benefits tha
the transdermal needle measurement. For open surgery proc
dures, the first of these is the object of our effort to develop a
probe for the surgeon to use during breast-conserving surge
~wide local excision or partial mastectomy! for determining
the status of the resection margins~the tissue surface, or ‘‘tu-
mor bed,’’ that is left after the suspect tissue has been ex
cised! in real time. In current surgical practice, especially
when the tumor limits are not clearly visible, the surgeon~and
anesthetized patient! are required to wait for pathology results
on a frozen section of the excised tissue to determine i
tumor-free margins of excision have been established. Imme
diate frozen-section pathology is not always available, and, in
real practice, with delayed pathology positive margins are
found in as many as 20%–55% of all breast-conserving
surgeries,14 requiring a second surgical procedure.

The other potentially important surgical application being
investigated in this study is real-time assessment of a ‘‘senti
nel’’ lymph node in the axilla. For years, there has been con
troversy about how the axilla should be treated in breast can
cer patients. Recent research has shown that if the main nod
in the axilla draining a tumor area, called the sentinel node, i
removed and doesnot show cancer, then the chances of any
other nodes in the axilla showing cancer are approachin
1%.15 Thus, if the sentinel node does not show cancer, the res
of the axillary nodes can be left in place, but if it does show
cancer, then a full surgical axillary-node clearance must be
done. The sentinel node can be identified by injecting a radio
active marker and then scanning the axilla about 24 h late
~during surgical preparation! or by using a dye such as meth-
ylene blue, which can be easily detected in tissue during sur
gery. The ESS method may be able to provide immediate
assessment of the sentinel node during surgery.

Our diagnostic study is coupled, utilizing the same patien
cohort, with a study of minimally invasive optical treatment.
In the case of focal lesions, treatment can be accomplishe
using interstitial laser photocoagulation with laser energy
from a diode laser, again mediated by fiber optics through a
transdermal needle, to nonsurgically treat both adenocarcino
mas and fibroadenomas. Results for that part of the study wi
be reported in separate publication~s!.

2 Materials and Methods
The clinical instrumentation based upon elastic-scattering
spectroscopy is essentially similar to that described in publi
cations on earlier clinical studies.2,3 The system~see Figure 1!
222 Journal of Biomedical Optics d April 2000 d Vol. 5 No. 2
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consists of a pulsed xenon-arc lamp~EG&G! for the light
source, a PC-compatible spectrometer,~a modified version of
a spectrometer manufactured by Ocean Optics, Dunedin,!,
which employs a linear charge-coupled device~CCD! array
for detection, an optical-fiber based probe, and a laptop c
puter for system control and data display. The wavelen
range of the system is from 300 to 900 nm, but the range u
for these studies is 330–750 nm, which covers the near-U
visible part of the electromagnetic spectrum. As depicted
Figure 2, the probe is designed to be used in~gentle! optical
contact with the tissue and incorporates two optical fibe
which are selected for their broadband light transmission o
the spectral range used in the study. The output of the
lamp is coupled to the illumination fiber, with a core diame
of 400 mm, which transmits the light to the tissue target si
A second, adjacent and parallel fiber within the probe, wit
core diameter of 200mm, collects a small fraction of the
scattered light from the tissue. The collected light is th
guided to the spectrometer where an optical spectrum is g
erated for further processing. For all of the measurement
this study, the probe design fixes the center-to-center sep
tion of the collection and delivery fibers at 350mm, at the tip
of the probe. For this probe geometry, the volume of tiss

Fig. 1 Schematic diagram of the principal components of the ESS di-
agnostic system. All components (except for the fiber probe) are lo-
cated inside a small, portable chassis.

Fig. 2 Depiction of the optical geometry for the fiberoptic probe.
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Diagnosis of Breast Cancer
visited by the collected photons occupies a zone approxi
mately 500mm long, 300mm wide and 300mm deep. This
has been determined from computational simulations usin
our Monte Carlo code, which incorporates Mie theory for the
details of the scattering events.6

In clinical use the tip of the fiber probe is momentarily
placed in contact with the suspect tissue, and the measureme
is activated, at the keyboard or with a foot pedal. The system
automatically takes a background(ambient1 ‘ ‘dark’’ ) mea-
surement without firing the lamp, followed immediately
~within 100 ms! by an ESS measurement with the pulsed lamp
being triggered, and then subtracts the background spectru
from the ESS spectrum. The entire measurement process, i.
activating the spectrometer, triggering the arc lamp, readin
the detector array with an analog/digital~A/D! converter, etc.,
is computer controlled by a laptop PC, and can be activate
with a foot pedal. This allows both accurate and reproducible
measurements within the clinical setting. Furthermore, it also
provides the clinician with the advantages of rapid data acqui
sition and a graphical display for inspection. Typical data ac-
quisition and display time is less than 1 s for each site mea-
surement. More specific details about the basic concepts o
ESS, and discussion about the optical system and the desig
philosophy of the optical fiber probe, can be found in previous
publications.6,16,17

Prior to any clinical measurements the ESS system an
probe are calibrated with a reflectance standard. The reflec
tance standard~Spectralon™, Labspere, Inc., North Sutton,
NH! has a spectrally flat, diffuse reflectance.98%, over the
entire wavelength range of the system. The purpose of refe
encing the system to a known standard is to allow the norma
ization of spectral data against the overall system respons
This technique effectively minimizes any variations in the
system response due to variations in the spectral transmissio
among different probes, thermal effects, coupling efficiency
of the fiber probe, drifts in detector/spectrometer response
etc. The reference standard and probes are sterilized by aut
clave, and the housing of the reference standard protects
from any airborne contaminants during surgery.

Two different optical-probe configurations have been fab-
ricated for use in the clinical program. Both probes incorpo-
rate the same ‘‘standardized’’ optical design, which specifies
the diameters of the illumination and collection fibers, as well
as the distance between the centers of the fibers, as specifi
above. It should be noted that details of the probe’s optica
design, including the fiber sizes and separation, have a signifi
cant effect upon the characteristic spectra obtained for a pa
ticular tissue. Therefore, these parameters are standardized
each clinical study in order to optimize the sensitivity of the
system to tissue variations and also to prevent spectral varia
tions due to instrumental artifacts. The main difference be
tween the two probes designed for this study is to be found in
the mechanical housing of the probe, allowing each to be
optimized for the different specific clinical procedures. For
interstitial ~transdermal! measurements the probes have a
small-diameter~<1 mm! stainless-steel outer sheath, which
houses the optical fibers. The outer diameter of these probe
was carefully chosen to be compatible with the inner bore o
current core-biopsy needles in use at the clinics, so that
probe could safely and easily be passed down the needle a
presented to the tumor tissue under investigation. The secon
nt
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probe design incorporates a larger stainless-steel sheath;5
mm in diameter, to house the optical fibers, with no change
the fiber dimensions or separation. This creates an ergon
cally convenient, pen-like design, which is utilized, hand he
for optical measurements during open surgery, when both
sected tumor margins and lymph nodes are addressed.

3 In Vivo Measurement Procedures
All clinical measurements reported here have been perform
at the Middlesex Hospital, University College London Hosp
tals, UK. Histological examination of all tissue samples h
been performed by the same pathologist~S.L.!. Before anyin
vivo measurements were made,ex vivo tissue samples were
obtained from resected breast specimens from 15 patients
were measured with the ESS system. These initial findi
were used to optimize the operational settings of the syst
and also helped to establish protocols for marking the opt
biopsy sites for histological examination and correlation. A
in vivo measurements are performed under a protocol
proved by the Ethical Review Board of the Middlesex Hos
tal. Prior to surgery every patient within the study is inform
about the research program, and informed consent for da
be taken is provided by the patient. As mentioned in the p
vious section, three separate areas are currently under in
tigation, and each warrants discussion due to the techniq
employed in order to obtain the ESS spectra.

For interstitial measurements with the ESS system, a c
biopsy ~Tru-cut™! needle is guided into the palpable lesio
sometimes with the aid of ultrasound or magnetic-resona
imaging. The appropriate ESS optical probe is then inse
through the needle and gently placed in direct contact with
tissue at the needle’s distal end. After the optical measu
ment has been made, the fiber probe is withdrawn, and
inner component of the biopsy tool is reinserted and a c
biopsy is then taken from the same site, without moving
needle. This produces a small worm-shaped biopsy sam
one end of which has been measured optically. The other
of the core sample~which is opposite to the end of the samp
that was interrogated by the ESS probe! is marked with India
ink so that proper orientation is preserved and identification
the end examined with the ESS probe can be maintained
correlated with histology.

Following the core-biopsy procedures, some of the patie
immediately undergo surgery in order to have the tumor
sected. In these and other surgical cases~not preceded by core
biopsy!, and depending upon the exact nature of the surg
procedure, measurements are taken from one or more l
tions of the tumor bed, during and immediately after res
tion. Each optical measurement is followed by a small sur
cal biopsy of the same site, and the biopsy samples are co
to correlate with the ESS probe measurements.

With a subset of the surgical patients, assessment of
sentinel node is performed in order to determine the prese
of metastatic disease.~In a number of patients more than on
node was assessed.! During the surgical procedure the sen
nel node is located with the aid of radioactive tracer and
blue dye~both injected previously into the tissue space ne
the tumor!. The node is resected and cut in half, and E
measurements are made on one or more sites on the cut
face of the node. Once again, the ESS measurement site
Journal of Biomedical Optics d April 2000 d Vol. 5 No. 2 223
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indicated to assist the pathologist in providing the correspond
ing histopathology information about the specific locations
measured.

4 Methods of Classification
The data reported here were taken on the first 31 patients o
the study~which will eventually enroll up to 400 patients over
the next two years!, with breast-tissue measurements~either
as an interstitial measurement or during surgery! being made
on 24 of them and lymph-node measurements~during sur-
gery! on 21 of them. Thus, both breast-tissue measuremen
and sentinel-node measurements were made on many, but n
all, of the patients. The numbers of patients and measure
ments are summarized in Table 1. The last two columns lis
the histopathology designations for the sites measured opt
cally, i.e., the number of true positives and true negatives. In
many cases two or three optical measurements were made f
a given biopsy site to test repeatability of the spectra. How
ever, it is not appropriate to treat multiple spectra from the
same biopsy site as independent measurements, as this co
result in incorrectly highor low sensitivity and/or specificity.
Consequently, in such cases the multiple spectra~which were
very similar! were averaged together and treated as a singl
spectrum. Thus, one spectrum is correlated with each biops
site. An effort was always made to mark precisely each site o
optical measurement, so that corresponding histopatholog
could be properly correlated.

Table 1 Histopathology of optically measured tissue sites.

Number of
patients

Number of
biopsies

Number of
cancer sites

Number of
normal sites

Breast tissue 24 72 13 59

Sentinel nodes 21 54 12 42
224 Journal of Biomedical Optics d April 2000 d Vol. 5 No. 2
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Figures 3 and 4 show examples of tissue spectra, ma
nant and nonmalignant, for breast tissue and sentinel no
respectively. The spectra in Figure 3 are examples that
representative of some but not all of the data. It would
misleading to assume otherwise, given the heterogeneit
breast tissue~glandular, adipose, connective, fibrous, duc
structures, etc.! and the resulting large spectral variation
Consequently, it would be risky to base diagnosis directly
a model for any specific/common signature causes. For
ample, Figure 3 does not show a difference in hemoglo
saturation between normal breast tissue and ductal carcin
in situ ~DCIS!, although there is evidence of more perfusi
in the DCIS, which is expected.~On the other hand, Figure 4
does indicate some desaturation for the metastatic sen
node, and the spectra are more representative of other
spectra, since nodes are less heterogeneous.! Reduced satura-
tion can indicate cancer indirectly because necrotic regio
are more likely to be cancer than benign, but DCIS is an ea
pre-invasive stage, and does not generally invoke necro
Thus, reduced saturation can be indicative of cancer~although
other conditions can also, more rarely, produce necrosis!, but
good saturation isnot a reliable indicator of benign condi
tions. Artificial-intelligence pattern-recognition~AI-PR!
methods are well suited for spectral classification wh
model-based analysis is made difficult by the large numbe
necessary input parameters resulting from heterogen
Nonetheless, there certainly are some spectral indicators
are understood, as discussed below, and we have ensure
the input parameters~derived from the spectra! for our AI
analyses contain that information.

Two different AI-PR methods of spectral classificatio
have been employed to assess the degree of correlation
tween pathology and spectral pattern differences: artifi
neural networks and hierarchical cluster analysis. Artific
neural networks~ANNs! were selected for study because
the expectation by our group and other researchers4 that
ANNs would prove to be a generally useful method of tiss
spectral classification. ANNs~and other AI-PR methods! are
Fig. 3 Examples of ESS spectra for normal and malignant breast-tissue conditions.
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Fig. 4 Examples of ESS spectra for a reactive node, without tumor, and for node containing metastatic tumor.
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known to be well suited for classification in systems where
model-based classification is difficult.18 As stated above, such
is the case with ESS spectra of breast tissue because of
remarkable heterogeneity of tissue types. In light of this ex-
pectation, there was interest in our group to evaluate the rela
tive merits of ANNs in ESS spectral analysis. Hierarchical
cluster analysis~HCA! was also selected for study because it
can serve as an alternative to the many approaches to clas
fication that provide unbounded class regions~including
ANNs, as well as linear discriminant analysis, regression
analysis, etc.!. The problem of unbounded class regions, and
the benefits of using cluster analysis to avoid this problem, ar
discussed in detail by Osbourn et al.19 In general, the problem
with unbounded class regions is that a new sample will be
classified in one of the available classes of a previously
trained system, even if the input parameters of this new
sample differ markedly from the other samples in the class to
which it is assigned. This is not a problem when new sample
are expected to be reasonably similar to previous sample
With optical biopsies, however, a number of variables can
significantly alter the measured spectra. In addition to tissu
heterogeneity, and even with relatively homogeneous tissu
types, there can be experimental factors such as the presen
of fluid ~especially blood! trapped under the probe tip, or
simply as a consequence of improper probe contact with tis
sue. It would thus be beneficial for a classification technique
to be able to recognize samples that may have been adverse
affected by such variables~i.e., ‘‘outliers:’’ samples that dif-
fer markedly from previous samples!. Having bounded class
regions, such as those produced through HCA, provides th
ability to reject outliers. A more detailed description and com-
parison of these artificial intelligence methods for classifica-
tion of tissue spectra for several different organ areas is th
subject of a future publication currently in preparation.

Although both ANN and HCA methods are intrinsically
statistical-based classification methods, some preprocessing
weighting of input parameters can be implemented to ‘‘as-
sist’’ classification when some things about the underlying
s

-

i-

.

ce

ly

r

tissue optical properties are known.~Such preprocessing can
in effect, combine benefits of both statistical-based analy
and model-based analysis.! In its simplest form this means
that the input parameters for training the AI methods, wh
are derived from the raw spectra, should be structured so a
include the spectral information known to have diagnostic r
evance. For example, the presence of adipose~fatty! tissue in
the measured volume is much more frequently associated
normal or benign breast conditions~for a given biopsy site!
than with adenocarcinoma. Especially in postmenopau
women, and in mixed tissues, a developing adenocarcino
will often ‘‘push’’ the fat out of the tissue volume wher
growth is occurring. Since adipose tissue has the charact
tic absorption feature of beta carotene, the spectral bands
taining that feature can be accounted for.~The absorption fea-
ture of beta carotene~450–500 nm! can be seen in both the
fibro-fatty and normal spectra in Figure 3.! Another example
is the mean redox state of the hemoglobin in the tissue.
moglobin desaturation is generally indicative of necrot
malignant lesions, although the obverse is not true, and
pervascularization more frequently accompanies malign
tissue than normal or benign conditions. In short, it is valua
to include enough detail of the beta carotene and hemoglo
bands among the AI-PR input parameters. Finally, bro
~large-spectral-range! slope changes are expected for mali
nant conditions in glandular tissue due to enlarged and de
nuclei, and other scattering differences are expected am
tissue types.

For the data analyses presented here, some model-b
preprocessing was implemented to ensure sensitivity
known factors, but no weighting of any specific paramet
was implemented at this stage. This and other methods of
preprocessing can improve the classification accuracy,
will be treated more extensively in a future publication.

5 Data Processing and Analysis Results
For all analyses reported here the spectra from breast tis
and sentinel nodes were analyzed separately since they
Journal of Biomedical Optics d April 2000 d Vol. 5 No. 2 225
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fundamentally different classes of tissue. All breast-tissue
spectra were preprocessed by first normalizing each spectru
to the same total integral over the spectral range of 330–75
nm. Sentinel-node spectra were normalized for the rang
330–590 nm.~See discussion below.! Thus, only spectral
shapes were compared. These normalized spectra compri
information on both the spectral dependence of scattering pa
rameters and absorption bands, but not total scattering effi
ciencies. Such data treatment eliminates concerns about d
ferences in optical coupling and/or transmission among th
several fiber probes used, although any potentially useful in
formation in the total scattering efficiency is, admittedly, also
lost. In the case of sentinel nodes, many exhibited strong ab
sorption due to the presence of methylene blue dye~Patent
Blue™!, which had been used to assist the surgeon in locatin
the node during surgery. Therefore, sentinel-node spectr
were also treated to subtract the feature of that absorptio
band, and were analyzed for the range of 330–590 nm.

In presenting the statistical results, sensitivity and specific
ity are defined in the standard way

Sensitivity[SE=TP/(TP+FN),

Specificity[SP=TN/(TN+FP),

where TP, FP, TN, and FN represent the numbers of tru
positives, false positives, true negatives, and false negative
respectively, as determined by the corresponding histopatho
ogy.

5.1 ANN Classification
For ANN classification the normalized spectra were divided
into 21 wavelength bands of 20 nm width~330–750 nm!, with
some of the intervals being smaller for sentinel-node spectr
because of the reduced total spectral range~330–590 nm!, and
an average spectral intensity for each interval was calculated
For classification of breast-tissue spectra we also include
slopes of the intervals as input parameters, and although mo
sophisticated ANNs can handle a large number of inpu
nodes, ours was limited to about 20. Therefore, for breast
tissue spectra, principal component analysis was performe
on the interval intensities to establish a smaller number o
input parameters.20 The resulting smaller number~4–6! of
principal components based on spectral intensities were com
bined with a number of slopes for various spectral intervals
for a total of 12–16 input parameters.

With ANN classification a variety of network designs and
transfer functions between neuron layers are possible.21 The
analyses presented here used a relatively simple flat, thre
layer network, with input and output layers and one hidden
layer of neural nodes, or ‘‘neurodes.’’ As mentioned above,
the input layer had 12–16 input parameters~neurodes! and the
output layer always had two parameters, for malignant and
nonmalignant conditions. The choice for the number of
hidden-layer neurodes is somewhat arbitrary, and a typica
starting point is to set it at half the total of input and output
parameters, although sometimes a somewhat larger number
chosen if training is too slow. The transfer function~between
layers! chosen for these analyses is a unipolar sigmoid~from
0 to 1!, which is often used for parameters that can have
smoothly varying values.21 Network training was accom-
226 Journal of Biomedical Optics d April 2000 d Vol. 5 No. 2
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plished by ‘‘error back propagation,’’ wherein the correct d
agnoses~from histopathology! are presented at the outpu
layer, and the network is run~transfer functions are varied! to
minimize the error between the classified output and
known parameter. Eighty percent of the data samples wh
selected randomly for training and the remaining 20% w
used for testing. This was repeated five times with disjo
testing sets, each with a different 20% of the samples, so
all of the data samples were used for testing, but none w
used for both training and testing in the same run. Statis
were derived from the average of all five runs. Given t
modest size of the data set, better statistics might have b
achieved by the ‘‘leave-one-out’’ method where only one d
sample is used for testing~andn21 are used for training! and
repeating the processn times, but this would have taken pro
hibitively long computer time.

5.2 HCA Classification
For HCA classification of breast-tissue spectra, the spe
were again divided into 20 nm intervals, and a prelimina
cluster-template analysis was performed, as described be
in order to pre-select a subset of interval intensities to be u
for input parameters. Similarly, preliminary template analy
was also performed with interval slopes in order to pre-se
a reduced number of slopes as input parameters. A comb
tion of these pre-selected intensities and slopes was then
as the set of input parameters for the full HCA analysis. F
sentinel-node spectra only the interval intensities were use
input parameters, without any pre-selection.

With the hierarchical cluster analysis method the ‘‘trai
ing’’ consists of trying all possible different combinations o
the input parameters, using multidimensional pattern reco
tion schemes to find clusters with noa priori input of actual
classifications, and then comparing the resulting clusters w
the known classifications of their members. Different crite
are possible for determining the multidimensional Euclidi
‘‘distance’’ between a sample point and a given cluster: ne
est neighbor, farthest neighbor, or average distance.20 For the
analyses presented we chose the average-distance me
The combination of input parameters that yields the clust
of samples that best agree with each other, by having the s
histology classifications, is the one that is chosen. For a gi
number of input parameters HCA generally requires m
data than ANNs for statistical stability of the clusters~out-
puts!. However, training can be faster than for ANNs. On
the input parameters for the best clustering are establishe
new data sample can be tested for those parameters, to
which ~if any! cluster it falls into. With our modest-sized da
sets, and with the multiple input parameters required, the c
ters found are sensitive to the specific choice of training
Therefore, instead of an 80/20 split of the data, we applied
leave-one-out method, as described above, and the stat
are determined from the sum of all of the leave-one-out te

The results of data analysis are summarized in Table
and 3. It can be seen that with the HCA method a few samp
appear as unclassifiable, rather than as false positives or
negatives. It is especially interesting that, upon examinat
of the individual unclassified samples, about half of these o
liers corresponded to samples that were classified incorre
by ANN. The resulting sensitivities and specificities we
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comparable for breast tissue, but for sentinel nodes HCA
yielded significantly better sensitivity~91%! than ANN
~58%!, albeit at the cost of somewhat reduced specificity. It is
our expectation that with adequately large data sets HCA with
properly chosen input parameters will generally yield similar
or better sensitivity and specificity, as compared with ANNs,
but with HCA having the advantage of identifying ouliers as
difficult to classify, rather than blindly forcing a classification.
We believe this is a more realistic approach for clinical appli-
cation of any new diagnostic method, and is comparable to
other clinical measurement situations: for example, an invalid
EEG measurement resulting when an electrode has poor co
tact. As expected with data sets for which there were signifi
cantly more negatives than positives but comparable accu
racy, the negative predictive values~NPV! ~87%–96%! were
significantly higher than the positive predictive values~PPV!
~40%–75%!, where NPV[TN/~TN1FN!, and
PPV[TP/~TP1FP!.

6 Discussion and Problems Encountered
It is not the purpose of this paper to present a detailed discus
sion of the structures and functions of different artificial-
intelligence, pattern-recognition schemes for classification o
tissue spectra, but rather to present the results of their imple
mentation, with minimal refinement, for these preliminary
data of our breast-cancer study. Although our ANN was lim-
ited to about 20 input parameters, with some ANN codes it is

Table 2 Classifications for breast-tissue spectra.

ANN HCA

Number of specimens showing cancer
histologically

13 13

Number of cancers optically diagnosed
as cancer (true positives)

9 8

Number of cancers optically diagnosed
as normal (false negatives)

4 4

Number of cancers with an
indeterminate optical diagnosis
(HCA only)

1

Sensitivity (%) 69% 67%

Number of specimens found normal
histologically

59 59

Number of normals optically diagnosed
as normal (true negatives)

50 44

Number of normals optically diagnosed
as cancer (false positives)

9 12

Number of normals with an
indeterminate optical diagnosis
(HCA only)

3

Specificity (%) 85% 79%

% Classified (HCA only) 91.5%
-

-

-

-

possible to have as many as 250 input parameters, w
would have permitted us to present every spectral resolu
element, for each spectrum, to a separate input node.
would have permitted capturing all spectral features. Also
variety of other improvements and refinements are possi
including variations in the design of the ANN, and more s
phisticated data preprocessing and choice of input parame
for HCA. A careful discussion of the relative merits of A
methods for tissue-spectra classification will require a f
separate publication, which~as mentioned above! is in prepa-
ration. Also, with HCA robust clustering requires that th
number of samples be much greater than the number of in
parameters. For the sizes of our data sets this condition
marginally met, and we expect significant improvement in
statistics as data sets grow. Nonetheless, we believe these
liminary results are compelling enough to merit presentat
to the scientific community.

In actual clinical implementation of the ESS instrumen
tion, it became evident that some attention must be given
avoiding excessive amounts of blood on the tip of the fib
probe, as this can obscure information about the amoun
tissue perfusion, or even block much of the scattering spec
information ~due to the strong absorption by hemoglobin!.
Thus, it was sometimes necessary to sponge, or rinse
saline, the surgical resection surface to be measured, and/
wipe the tip of the probe. Also, for sentinel nodes the ac
racy in co-registration between optical and histology sites
some uncertainty when only a small region of the node exh

Table 3 Classifications for sentinel-node spectra.

ANN HCA

Number of specimens showing cancer
histologically

12 12

Number of cancers optically diagnosed
as cancer (true positives)

7 10

Number of cancers optically diagnosed
as normal (false negatives)

5 1

Number of cancers with an
indeterminate optical diagnosis
(HCA only)

1

Sensitivity (%) 58% 91%

Number of specimens found normal
histologically

42 42

Number of normals optically diagnosed
as normal (true negatives)

39 26

Number of normals optically diagnosed
as cancer (false positives)

3 8

Number of normals with an
indeterminate optical diagnosis
(HCA only)

8

Specificity (%) 93% 76.5%

% Classified (HCA only) 83.3%
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ited metastasis. Improvements are planned for the co
registration between optical measurement and histology fo
sentinel nodes.

Another problem encountered on a few occasions was tha
the ambient lighting of the surgical suite~with the high-
intensity directed-beam lighting typically found in theater!
would occasionally cause too much scatter through tissue int
the collection fiber of the probe, using up much of the detec
tor’s dynamic range, and making it difficult for the system to
perform an accurate background subtraction. This was rem
edied by either having the surgeon momentarily shadow th
strong light from the measurement site, or by a redesign of th
probe fixture to incorporate a small shadow mask.~Of course,
the strong lights could be temporarily aimed away from the
surgery or reduced in intensity while the ESS measuremen
are being made, but we wished to minimize any inconve-
nience to the surgical team.!

Finally, in the development of any new diagnostic tech-
nique, the accuracy and robustness of the ‘‘gold’’ standard
histopathology, are always a concern. In our case all patho
ogy reports were provided by a specialist breast pathologis
~S.L.! of the University College London Hospitals.~For the
purposes of these analyses, ductal carcinomain situ ~DCIS!
was always classified as cancer, since the treatment cons
quences are the same regardless of whether the DCIS alrea
shows signs of invasiveness or not.! Careful attention has
been paid to adequacy of tissue samples, correlation with op
tical measurement sites, and consistency of pathology repor
ing terminology, although further improvements are planned
As the program enlarges, and incorporates other medical ce
ters, agreement among pathologists will be addressed, an
slides will be read by multiple pathologists. Methods will be
assessed to resolve conflicting reports. Nonetheless, the re
ability of histopathology being less than 100%, this type of
correlation is fundamentally limited in accuracy, and determi-
nation of the ultimate capability of the new method requires
long-term outcome studies.

7 Conclusions
We have described a research program designed to test t
value of elastic-scattering spectroscopy as a real-time diag
nostic tool and as a diagnostic aid to surgical/therapeutic pro
cedures for breast cancer. We have presented, as prelimina
data, the results from the first 31 patients of a larger program
The modest sizes of the data sets notwithstanding, the resu
of spectral classification by two different methods of ‘‘artifi-
cial intelligence’’ pattern recognition show promise for good
agreement with pathology. This allows us to be hopeful tha
as the data sets grow, we will be able to successfully test th
predictive capabilities of already trained spectral classification
schemes.
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