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SUMMARY is now generally accepted that these assays lack sensitivity. A num-

Clostridium difficile is a formidable nosocomial and community- ber of molecular assays are commercially available for the detec-
acquired pathogen, causing clinical presentations ranging from  tion of C. difficile. This review covers the history and biology of C.
asymptomatic colonization to self-limiting diarrhea to toxic
megacolon and fulminant colitis. Since the early 2000s, the inci-

dence of C. difficile disease has increased dramatically, and this is Address correspondence to Carey-Ann D. Burnham, cburnham@path.wustl.edu.
thought to be due to the emergence of new strain types. For many Copyright © 2013, American Society for Microbiology. All Rights Reserved.
years, the mainstay of C. difficile disease diagnosis was enzyme doi:10.1128/CMR.00016-13

immunoassays for detection of the C. difficile toxin(s), although it
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difficile and provides an in-depth discussion of the laboratory
methods used for the diagnosis of C. difficile infection (CDI). In
addition, strain typing methods for C. difficile and the evolving
epidemiology of colonization and infection with this organism are
discussed. Finally, considerations for diagnosing C. difficile disease
in special patient populations, such as children, oncology patients,
transplant patients, and patients with inflammatory bowel dis-
ease, are described. As detection of C. difficile in clinical specimens
does not always equate with disease, the diagnosis of C. difficile
infection continues to be a challenge for both laboratories and
clinicians.

INTRODUCTION

lostridium difficile is an anaerobic, Gram-positive, spore-

forming, rod-shaped bacterium that exists in the soil and in
the gastrointestinal tract of animals and humans. More than 100
strains exist based upon mutations in the genes on the pathoge-
nicity locus (PaLoc) that encode various toxins (see “Genetics and
Pathogenesis” below) (1, 2). There are two forms of the organism,
a dormant spore form that is resistant to antibiotics and a vegeta-
tive form that can produce toxins and is susceptible to the activity
of antibiotics. The organism and its toxigenic potential were dis-
covered in 1935 by Hall and O’Toole, who noted it as a component
of the normal fecal microbiota of newborn infants (3). Since it was
difficult to cultivate in vitro, they named it Bacillus difficilis (3, 4).
Later, investigators verified that Bacillus difficilis produced a toxin
that was highly potent when injected intraperitoneally into guinea
pigs (5).

Since the organism did not seem to be associated with human
disease at that time, it was largely ignored until the antibiotic era.
In 1974, Hafiz characterized the organism in more detail, includ-
ing a description of glutamate dehydrogenase (GDH) (also known
as common antigen), and showed that it was widely distributed in
nature, including in the stools of many animals (4). Around that
time, cases of pseudomembranous colitis (PMC), initially de-
scribed as early as 1893 (6), became much more prevalent and
were attributed primarily to Staphylococcus aureus (4). Oral van-
comycin provided therapeutic success and became the treatment
of choice for this disease (4). Also, in the early 1970s, Tedesco et al.
noted that clindamycin treatment for anaerobic infections seemed
to cause severe diarrhea in several patients. Those researchers per-
formed a prospective study to assess the frequency of diarrhea
associated with clindamycin treatment and to assess patients who
developed diarrhea by colonoscopy. Remarkably, 42 of 200 pa-
tients developed diarrhea, and 20 patients had endoscopic evi-
dence of PMC, which those researchers called “clindamycin coli-
tis” (7). S. aureus was not recovered from the stool samples of
these patients. The connection with C. difficile as the etiologic
agent was not made at that time, nor was it made by Green et al.,
who studied cecitis induced by penicillin in animals; those inves-
tigators did not understand that the toxin that they recovered in
tissue cultures in 1974 was produced by C. difficile (4).

A series of studies and observations by many groups followed
the published observations in 1974. It was shown that oral vanco-
mycin administration could prevent clindamycin colitis when ad-
ministered simultaneously. Other studies showed that the poten-
tial agent of disease could be transferred from ill to healthy
animals in cecal contents and that it likely produced a large pro-
tein toxin (4). Laughon et al. reported detection of a cytotoxic
substance in the stool samples of patients with pseudomembra-
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nous colitis (8). Te-Wen Chang and others characterized the mor-
phological changes associated with antibiotic-associated colitis in
animals and discovered that the cytopathic effects observed in
fibroblast cells in tissue culture could be neutralized with Clostrid-
ium sordellii antitoxin, thus developing the cytotoxin assay as a
potential diagnostic test method (9). In 1978, after multiple ex-
periments, Bartlett et al. published the sentinel paper linking C.
difficile toxin production to PMC in humans (10). Interestingly,
several papers followed in which better diagnostic assays for C.
difficile cytotoxin were sought, and enzyme immunoassays (EIAs)
were developed. However, EIAs were shown to be about 10-fold
less sensitive than the cytotoxin assay and were not pursued fur-
ther by early investigators (4, 8).

During the 1980s and 1990s, C. difficile disease was not a major
cause of mortality. However, in the new millennium, due to the
“perfect storm” of epidemiological factors, host factors, and the
emergence of organism traits that facilitate infection and disease,
C. difficile infections (CDIs) have increased in frequency and se-
verity. These important factors have resulted in reevaluation of
diagnostic test methods and have stimulated the development of
new assays.

THE ORGANISM—PATHOGENESIS AND DISEASE
MANIFESTATIONS

Genetics and Pathogenesis

The emergence of “hypervirulent” C. difficile strains in the new
millennium has sparked a renewed interest in creating better an-
imal models of human disease and progress in phylogenetic stud-
ies to understand the pathophysiology of C. difficile infection. At
least two strains have been completely sequenced—strain 630, an
epidemic, restriction fragment length polymorphism (RFLP)-
PCR toxinotype X clinical strain that is virulent and multidrug
resistant, and a nontoxigenic strain, CD37 (ribotype 009) (11, 12).
Several other isolates have had partial genomic characterization. A
detailed discussion of the C. difficile genome is beyond the scope of
this review, and the reader is referred to other references for in-
formation (11, 13). However, it is important to stress that such
work has provided insights into how C. difficile survives in the
environment and causes disease in humans and animals—infor-
mation that may promote development of diagnostic tests and
therapeutic interventions.

In order for C. difficile to cause disease, several important con-
ditions must be met. A person must have contact with the spores
of a toxin-producing strain of C. difficile in combination with
alteration of the normal colonic microbiota, permitting coloniza-
tion of the organism. Both animal models and studies of the hu-
man gut microbiome have elucidated the microbial and cellular
interactions within this complex intestinal ecosystem (14). Also of
importance is the host immune system, as evidenced by the higher
rates of infection and worsening disease severity among the elderly
and other persons who lack the ability to mount an effective hu-
moral immune response (15, 16). Antitoxin antibodies may be
protective and can also explain variations in disease presentations
among immunocompetent hosts (15, 17).

The fact that antibiotics alter the gut microbiota has been estab-
lished since the 1940s, shortly after streptomycin became available
and investigators noted the impact of oral administration of this
agent on the bacteria present in the feces of mice (14). In subse-
quent decades, these observations were pursued in animal models
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of enteric diseases, including C. difficile infections, where it was dis-
covered that animals who were pretreated with antibiotics prior to
challenge with the enteric pathogen succumbed to infection com-
pared to the untreated groups (18-20). In several models, the un-
treated animals often did not become colonized, or the endogenous
microbiota outcompeted the challenge pathogen (18-20), a phe-
nomenon referred to as colonization resistance (14).

Antibiotics are the major risk factor for the development of C.
difficile disease because of the loss of endogenous microbiota that
allows C. difficile, when present, to proliferate and invade. Several
interesting studies of the gut microbiome using culture-indepen-
dent methods have elucidated the significant alterations that fol-
low antibiotic administration (21, 22). These studies have also
shown that in patients recovering from C. difficile disease, recur-
rence may be related to a failure to restore the normally diverse
microbial intestinal community (22, 23). The latter observation
explains why fecal transplantation is so efficacious in the manage-
ment of patients with recurrent C. difficile disease (24, 25). The
precise protective mechanisms of the normal microbiota in pre-
venting C. difficile disease are not completely elucidated. Several
hypotheses that are being pursued include (i) the impact of gut
microflora on bile acid transformation that impacts C. difficile
spore germination; (ii) direct antagonism by the normal microbi-
ota through production of bacteriocins, antimicrobials produced
by these organisms that directly inhibit the growth of C. difficile;
(iii) stimulation of innate immune responses by Toll-like receptor
5 signaling produced by intestinal microbiota; and (iv) competi-
tion between the microbiota and C. difficile for limited nutritional
resources (14).

A significant portion of the C. difficile genome is involved in
encoding factors that ensure survival in the gastrointestinal tract.
These coding regions produce enzymes that assist with carbohy-
drate transport and metabolism, including p-hydroxyphenyl-
acetate decarboxylase, which allows the organism to produce p-
cresol, a bacteriostatic compound that may be inhibitory to
intestinal microbes (11, 26). It is this compound that is responsi-
ble for the “horse barn” odor characteristic of C. difficile, a trait
often used to identify the organism when grown in culture. In
addition, C. difficile produces other compounds that allow it to
utilize nitrogen and phospholipids found in the host’s diet and to
survive in the presence of bile acids (26).

A large segment (19.6 kb) of the genome found in toxigenic
strains but lacking in nontoxigenic strains is the pathogenicity
locus (PaLoc). The PaLoc contains five genes: tcdA, tedB, tcdC,
tcdE, and tcdR (1). tcdA and fcdB are in close proximity, separated
by fcdE, and encode toxins A and B, respectively. The tcdE gene
encodes a protein that is important for the release of toxins A and
B from the cell (27). Upstream of tcdB is tcdR, which is a positive
regulator of tcdA and tcdB expression (1, 27). Downstream of tcdA
is tedC, which functions as a negative regulator of toxin produc-
tion during the exponential phase of growth (1, 28). We refer the
reader to other articles with schematic representations of the
PaLoc (26,29-31). The other genes, tcdA, tcdB, tcdE, and tcdR, are
expressed during stationary phase (1). Another important regula-
tor of toxin gene expression is CodY, which is a global gene regu-
lator that monitors environmental factors such as the presence of
carbohydrates, amino acids, and other nutrients (32). CodY influ-
ences tcdR expression and, hence, toxin gene production and may
be a potential target for future therapeutic agents (32).

In addition to toxins A and B, a third toxin, called binary toxin

606 cmr.asm.org

(see below), is also produced by some, but not all, strains of toxi-
genic C. difficile. The genes that encode binary toxin are not found
in the PaLoc (26). Other important virulence factors that contrib-
ute to the pathogenesis of C. difficile include adhesins, fimbriae,
flagella, a capsule, and a paracrystalline S-layer protein (important
in cellular adhesion) (11, 26, 29, 33).

Roles of Toxin A, Toxin B, and Binary Toxin in
Pathogenesis

Toxin A (TcdA) and toxin B (TcdB) are large clostridial toxins (205
kDa and 308 kDa, respectively). Similar to the toxins of other mem-
bers of the clostridial toxin family, they cause disease through a vari-
ety of cytotoxic mechanisms, most notably the loss of the cytoskeletal
structure, leading to cell rounding and cell death (1, 26, 29, 33). Orig-
inally, TcdA was believed to be more important in causing C. difficile
disease. This thinking evolved based upon several observations in a
variety of animal models. In both hamsters and mice, intragastric
administration of TcdA, but not TcdB, resulted in intestinal fluid
accumulation, diarrhea, hemorrhage, and death (29). Because the
fluid accumulation in the rabbit ligated ileal loop model was akin to
that seen with cholera toxin, TcdA was referred to as an enterotoxin
(1, 29). Both TcdA and TcdB, when administered intraperitoneally,
were observed to have similar potencies (29). TcdB is referred to as
the cytotoxin because it is 100- to 1,000-fold more potent in vitro in
cultured cells than TcdA (1). It has now been established that both
toxins can cause significant disease, as evidenced by outbreaks of se-
vere infection caused by TcdA-negative, TcdB-positive strains
(34-36).

Both TcdA and TcdB are large, single-stranded, two-compo-
nent proteins containing an enzymatically active A subunit and a
B subunit that delivers the A subunit into the target cell. X-ray
crystallography and small-angle X-ray scattering models have
shown that each toxin has four structural domains (29, 37, 38).
Production of active toxin involves four steps mediated by their
respective domains. The C terminus of both toxins contains the
receptor binding domain. This domain has short combined repet-
itive oligopeptides (CROPs) that, in the case of TcdA, bind to
saccharides in the human glycoprotein receptor gp96; the receptor
for toxin B binding is unknown (29, 38).

The toxins enter cells by clathrin-mediated endocytosis, where
they must escape from the endosome so that glucosyltransferase
cleavage and activity may proceed (1, 29). This is achieved by pore
formation in the endosomal membrane mediated by hydrophobic
segments of the central delivery domain after the region has been
structurally changed by endosomal acidification (1, 29). Once in the
cytosol, the A component of each toxin is cleaved at a cysteine pro-
tease domain adjacent to the glucosyltransferase domain. This cleav-
age is mediated by host cell inositol hexakisphosphate (InsP6) (26, 29,
39), resulting in release of biologically active toxin, a 63-kDa gluco-
syltransferase that resides at the N termini of both toxins.

As mentioned above, active toxin inactivates small Rho and
other GTPases, affecting their interactions with regulatory mole-
cules and interrupting vital signaling pathways (29). Cells round
up, shrink, and die, leading to significant loss of the intestinal
epithelial barrier, and tight junctions are disrupted, permitting
neutrophil migration. In addition, both toxins stimulate the re-
lease of proinflammatory cytokines such as interleukin-1f3
(IL-1B), tumor necrosis factor alpha (TNF-a), and IL-8 from ac-
tivated macrophages. This subsequently leads to neutrophil re-
cruitment, inciting an inflammatory response (40); neutrophil ac-
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cumulation is responsible for the pseudomembrane formation
seen in severe colitis.

Approximately 6 to 12.5% of strains of C. difficile produce an-
other toxin, called C. difficile transferase (CDT), also known as
binary toxin, which is encoded by the Cdt locus (CdtLoc) (26).
Binary toxin is so called because it is composed of two subunits,
namely, CDTa and CDTDb, that are produced and secreted from
the cell as two separate polypeptides (41). These polypeptides
combine into a potent cytotoxin, CDT.

CDT is an ADP-ribosyltransferase that disrupts the cytoskele-
ton of the cell, leading to cell rounding, loss of fluids, and eventu-
ally cell death (40, 41). Like TcdA and TcdB, CDT is a classical AB
toxin. The target cell receptors necessary for the binding subunit
(CDTb) are unknown. Toxicity of CDT involves cell entry via
endocytosis, pore formation that delivers active toxin into the
cytosol, and ADP-ribosylation of G-actin (40, 41). The precise
contribution of CDT to human disease is still being elucidated. In
animal models, CDT-positive (CDT™) strains that lack TcdA and
TcdB do not seem to cause disease, although massive edema was
seen in rabbit ileal loops (42). More recent findings indicate that
CDT may play a role in intestinal colonization through induction
of microtubule formation on epithelial cell surfaces, leading to
enhanced adherence (43). Since CDT production appears to be
epidemiologically associated with strains producing higher fatal-
ity rates (30, 40, 44), this observation and the findings from animal
studies have led to the hypothesis that CDT contributes to an
increased severity of disease (40).

Multilocus sequencing typing (MLST) and whole-genome se-
quencing (WGS) of the PaLoc reveal that C. difficile can be divided
into five genetic groups or clades (designated clades 1 to 5) that
continue to evolve at the strain level (44, 45). Within these clades,
strains that appear to be associated with more severe disease and
increased mortality have emerged—the so called “hypervirulent”
types. Examples of these strains include ribotype 027 (toxinotype
111, ST-1, BI/NAP1) and ribotype 078 (ST-11) strains. Outbreaks
related to these strains increased dramatically at the beginning of
the new millennium and continue to cause about 50% of cases in
some geographic locations (30, 34). More than a decade of re-
search has determined that there are several factors contributing
to the successful dissemination and enhanced pathogenicity of
these clones. These factors include (i) fluoroquinolone resistance
(30), (ii) higher sporulation rates (46), (iii) rapid internalization
and pore formation of TcdB due to divergence in the receptor
binding domain (29, 47, 48), (iv) a 20-fold increase in toxin pro-
duction related to mutations in #cdC (49, 50), (v) enhanced cyto-
toxicity (47), and (vi) production of binary toxin. These and other
studies will hopefully further our understanding of the molecular
epidemiology of C. difficile.

Clinical Manifestations

C. difficile infection can run the gamut from asymptomatic colo-
nization to severe PMC, toxic megacolon, and death. The type of
disease and severity of disease are related to the organism factors
described above and patient risk factors, including the presence of
neutralizing antibody against TcdA and TcdB (16). Patients with
clinical symptoms can be stratified into mild-to-moderate illness,
severe illness, and fulminant disease (51, 52). This stratification is
important in determining the need for treatment, the type of an-
timicrobial agent that may be required for treatment, whether
surgery is needed to control disease, and the need for supportive
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care such as intensive care unit admission (52). Watery, non-
bloody diarrhea, defined as 3 or more stools per 24-h period, is the
hallmark of symptomatic illness (51, 52). Mild disease is charac-
terized by diarrhea in the absence of signs and symptoms of colitis.
Patients with moderate disease have diarrhea with evidence of
colitis characterized by fever and abdominal cramps, usually in the
lower quadrants. Laboratory abnormalities in mild and moderate
disease include a leukocytosis level of 15,000 cells/pl or lower (51,
52) and a serum creatinine level less than 1.5 times the premorbid
level (52). The Society for Healthcare Epidemiology of America
and the Infectious Diseases Society of America (SHEA/IDSA)
guidelines define severe disease as colitis associated with a leuko-
cyte count that is 15,000 cells/pl or higher and a serum creatinine
level equal to or greater than 1.5 times the premorbid level (52).
Other characteristics of severe disease include markedly elevated tem-
perature reaching 40°C, PMC, and hypoalbuminemia (serum albu-
min level of <2.5 mg/dl) (51, 52). Fulminant C. difficile occurs in
<5% of patients and is characterized by severe abdominal pain, pro-
fuse diarrhea, or sometimes no diarrhea, as the patient rapidly pro-
gresses to development of an ileus or toxic megacolon, a condition in
which the colon becomes distended greater than 6 cm and is in danger
of perforation (51, 53). This is an ominous development and may
indicate the need for emergent surgery. The leukocyte count may be
as high as 50,000 cells/pl or higher, and a serum lactate level of >5
mmol/liter portends a poor outcome (53). Several factors have been
associated with increased mortality, the most frequent of which is an
age of >70 years. Comorbid conditions that contribute to the risk of
dying within 30 days include cognitive impairment and liver, renal,
and ischemic heart diseases (54).

LABORATORY METHODS FOR CLOSTRIDIUM DIFFICILE
DETECTION

Methods

Clostridium difficile infection is a clinical diagnosis supported by
laboratory findings. The laboratory methods used historically for
C. difficile detection had prolonged turnaround times, which lim-
ited their practicality for diagnostic testing. As a result of this,
when enzyme immunoassays (EIAs) emerged for C. difficile detec-
tion, they were widely adopted by many laboratories because of
the speed, convenience, and economy of using these methods.
However, it was ultimately demonstrated that these methods
lacked analytical sensitivity, which ushered in an era of nucleic
acid-based techniques for detection of C. difficile in clinical spec-
imens. The next section provides an overview of the laboratory
methods used for the diagnosis of C. difficile disease.

Cell culture cytotoxicity neutralization assay. The cell culture
cytotoxicity neutralization assay (CCCNA) is performed by prep-
aration of a stool filtrate, which is then applied onto a monolayer
of an appropriate cell line. A number of different cell lines have
been used for this purpose, such as human foreskin fibroblasts,
human diploid fibroblasts, Vero cells, McCoy cells, MRC-5 lung
fibroblasts, and Hep2 cells. Following 24 to 48 h of incubation,
cells are observed for toxin-induced cytopathic effect (CPE); if
CPE is observed, a neutralization assay is performed to ensure that
the CPE is attributable to C. difficile toxins rather than nonspecific
toxicity. The neutralization assay is performed by using either C.
sordellii or C. difficile antiserum. Although toxin B is primarily
detected in this assay, toxin A is also detected to some extent (55).

CCCNA has historically been considered the gold standard
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(56); however, this method is now considered by most experts to
lack the desired sensitivity to be the gold standard for assay com-
parison studies. The reported sensitivities for CCCNAs are quite
variable, ranging from 65 to 90% (52, 57—61). Compared to toxi-
genic culture, CCCNA has a sensitivity of approximately 75 to
85% (56), and the level of agreement between the two assays can
vary considerably between test sites. The performance character-
istics of the CCCNA vary depending on a number of factors. The
toxin can degrade in the specimen, so if there is a delay in trans-
port, false-negative results can occur. In addition, results can vary
depending on the cell line used, the timing between symptom
onset and performance of the assay, and pretreatment of the pa-
tient with antimicrobial therapy active against C. difficile; analyt-
ical factors, such as the method of preparation of the fecal filtrate,
can also impact the sensitivity of this assay (55, 57, 60, 62—65).
CCCNA has fallen out of favor as a routine diagnostic test as a
result of inadequate sensitivity, the relatively prolonged turn-
around time (24 to 48 h), and the requirement for expertise in
maintenance of cell cultures and interpretation of results.

Toxigenic culture. Toxigenic culture for C. difficile is based
upon isolating the organism from fecal specimens and determin-
ing if the recovered isolate is a toxin-producing strain. There have
been many different methods reported for this purpose. The es-
sence of all of the methods is based on using anaerobic agar or
broth culture with selective and differential agents to inhibit over-
growth of other fecal flora while enhancing the recovery of C.
difficile. To date, there is no consensus on the best method for
recovery of the organism in culture. Some investigators have em-
ployed a heat shock or alcohol shock prior to inoculation to en-
hance spores of C. difficile and inhibit growth of other organisms
(66-68). A variety of different medium formulations have been
described, many of which take advantage of the fact that C. difficile
can ferment fructose (69, 70). The medium type most commonly
used is cycloserine, cefoxitin, and fructose agar (CCFA) (71), buta
number of variants on the theme of CCFA have been reported,
such as cefoxitin cycloserine egg yolk agar (CCEY), also known as
Brazier’s medium, and cycloserine cefoxitin egg yolk agar with
lysozyme (CCEYL) (72). A variety of agents have been added to
these different medium formulations to enhance vegetation of
spores, such as lysozyme and taurocholate (73, 74). Broth enrich-
ment prior to plating onto solid agar appears to enhance recovery
(67, 74). Regardless of the medium or method used, it is essential
that the medium is prereduced prior to inoculation of the speci-
men to maximize recovery of the organism. Cultures are typically
incubated for a minimum of 48 h and are frequently held for up to
7 days before being reported as negative.

Few studies have simultaneously compared different media
and culture conditions for recovery of C. difficile from samples. A
recent systematic evaluation compared different medium types,
preincubation steps, and direct plating onto solid medium versus
the use of broth enrichment culture (67, 74, 75). Hink and col-
leagues observed that the most sensitive method for C. difficile
isolation from both stool and swab specimens was heat shock at
80°C prior to inoculation of the specimen into cycloserine-cefoxi-
tin mannitol broth with taurocholate and lysozyme (67).

Once colonies suspicious for C. difficile are isolated in culture,
the organism is typically identified based on Gram stain, colony
morphology, “horse barn” odor, and biochemical testing, such as
detection of hydrolysis of L-proline-naphthylamide (“PRO Disk”
positive) and spot indole. C. difficile isolates will exhibit yellow-
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green fluorescence under UV light (72). Commercial biochemical
methods for identification, such as the RapidANA (Remel,
Lenexa, KS) test, may also be used, and identification using ma-
trix-assisted laser desorption ionization—time of flight mass spec-
trometry (MALDI-TOF MS) is used by some laboratories.

When C. difficile has been identified, isolates must be tested for
the ability to produce toxins. Frequently, this is performed by
growing the C. difficile isolate in broth (such as prereduced brain
heart infusion or chopped meat broth) and subsequently per-
forming CCCNA on the culture supernatant. Alternatively, the
supernatant can be tested for toxin production by using commer-
cially available toxin EIAs; this is a rapid and reliable method for
toxin detection from cultured isolates when the EIA is positive
(76, 77). She et al. reported the Meridian Premier Toxins A & B
and the TechLab Tox A/B II assays to be 87.1% and 89.2% sensi-
tive, respectively, for the detection of toxin-producing strains
compared to CCCNA performed by using human foreskin fibro-
blast cells (76).

The fecal specimen for culture may be a stool specimen, rectal
swab, or perirectal swab; a recent study suggested that perirectal
swab specimens are almost as sensitive as “cup” stool specimens
for detection of C. difficile in symptomatic patients for whom di-
agnostic testing for C. difficile is sought (95.7% sensitive compared
to stool samples) (78). Even for patients with diarrhea, at times it
can be difficult to obtain a stool specimen due to a variety of
factors, such as the mental status of the patient and the availability
of a collection container at the time of defecation.

In addition to conventional culture methods, chromogenic
media have been developed for C. difficile; these media can expe-
dite recovery of C. difficile from fecal specimens. For example,
presumptive identification of C. difficile can be made based on
black colonies on bioMérieux chromID agar. A recent report
compared bioMérieux chromID C. difficile agar to taurocholate
cycloserine cefoxitin agar and bioMérieux CLO medium (79).
Four hundred six consecutive diarrheal stool samples from hos-
pitalized patients were cultured; the gold standard for comparison
was the recovery of C. difficile in the sample by using any of the
culture methods. chromID agar was 74% sensitive at 24 hand 87%
sensitive at 48 h (79). In a similar study, Perry et al. reported on a
prototype of a chromogenic medium for recovery of C. difficile
from fecal specimens (80); on this medium, C. difficile appears as
black colonies on a clear background, similar to chromlID agar.
This prototype agar was compared to bioMérieux CLO medium,
BBL Clostridium difficile agar, Oxoid Clostridium difficile agar with
defibrinated horse blood and moxalactam-norfloxacin supple-
ment, and CCEY with and without supplementation with
lysozyme. In total, 226 toxin-positive and 113 toxin-negative stool
specimens were evaluated under the 5 different culture conditions
(toxin status of stool specimens was determined by using the Vi-
das immunoassay). The sensitivities of the prototype chromo-
genic agar were 97% and 99% at 24 and 48 h of incubation, re-
spectively (80). The recovery of C. difficile was significantly better
with the prototype medium than with all other medium types
evaluated in this study.

The chromID C. difficile medium has also been evaluated for
cultivation of C. difficile from environmental surfaces within a
hospital setting and compared to cefoxitin cycloserine egg yolk
agar with lysozyme for this purpose (81). By using a combination
of both media, C. difficile was recovered from 21% of the sites
sampled, but the sensitivity of chromID agar was significantly
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TABLE 1 Examples of studies evaluating the performance characteristics of EIAs for detection of C. difficile toxins®

No.of  Sensitivity = Specificity
Assay Format Gold standard samples (%) (%) PPV (%) NPV (%) Reference
Meridian Premier Toxins A & B Microwell EIA CCCNA 540 96.8 94.3 50.9 99.8 88
Meridian Premier Toxins A & B Microwell EIA CCCNA 446 98.7 97.3 ND ND 94
Meridian Premier Toxins A & B Microwell EIA Toxigenic culture 200 48 98 88 87 106
Meridian Premier Toxins A & B Microwell EIA Detection of tcdB 81 42.3 100 100 78.6 90
by =2 molecular
methods
Meridian Premier Toxins A & B Microwell EIA Toxigenic culture 432 58.3 94.7 68.9 87.0 87
Meridian Premier Toxins A & B Microwell EIA Toxigenic culture 596 80.8 97.5 78.0 97.9 58
CCNA 91.7 97.1 78.0 99.1
TechLab Tox A/B Quik Chek Lateral flow EIA Aggregate of EIAs 284 59.6 99.2 Not given Not given 91
and toxigenic
culture
TechLab Tox A/B Quik Check  Lateral flow EIA Toxigenic culture 596 74.4 98.9 88.7 97.2 58
CCNA 84.3 98.6 86.8 98.3
ImmunoCard Toxin A & B Lateral flow EIA Toxigenic culture 150 47 99.2 88.9 93.6 61
Immunocard Toxin A & B Lateral flow EIA Toxigenic culture 200 48 99 91 87 106
Remel Xpect C. difficile A/B Lateral flow EIA Toxigenic culture 200 48 84 88 87 106
Remel Xpect C. difficile A/B Lateral flow EIA Toxigenic culture 596 68.8 99.4 924 96.6 58
CCNA 77.8 98.8 87.5 97.6
Remel ProSpecT Microwell EIA Toxigenic culture 596 81.6 93.3 57.4 97.9 58
CCNA 89.8 92.6 57.5 98.8
Wampole Tox A/B Quik Chek  Lateral flow EIA Toxigenic culture 360 43.18 99.68 89
Vidas C. difficile Toxin A/B Solid-phase, enzyme-linked Toxigenic culture 150 58.8 89.4 62.5 96.7 61
fluorescent assay
Vidas C. difficile Toxin A/B Solid-phase, enzyme-linked ~Toxigenic culture 596 80.0 97.3 76.4 97.8 58
fluorescent assay CCCNA 89.8 96.7 75.3 98.8

% CCCNA, cell culture cytotoxicity neutralization assay; ND, not determined.

higher than that of CCEY with lysozyme (87.6% compared to
26.6%) (81).

Chromogenic media are usually more expensive than other
medium types; this is typically attributed to the proprietary and
chromogenic substrates in the media. However, the studies to date
suggest that chromogenic media are sensitive for recovery of C.
difficile and may speed the time to presumptive identification of
isolates.

Toxigenic culture is typically considered to be a reference
method rather than a diagnostic method. It is imperative that at
least a subset of laboratories maintain expertise in C. difficile cul-
ture for method comparison and epidemiological studies, but the
labor requirement and turnaround time are not usually consid-
ered practical for routine diagnostic use. In addition, toxigenic
culture detects the ability of a C. difficile strain to produce toxin in
vitro and does not necessarily inform in vivo production of toxin
in the host. In summary, toxigenic culture is now considered by
many to be the gold standard for C. difficile detection in fecal
specimens (82, 83). The SHEA/IDSA guidelines support the use of
toxigenic culture as the gold standard in method comparison
studies (52). However, others argue that although toxigenic cul-
ture may result in more positive specimens, it might not be a
superior test for the diagnosis of clinically actionable disease com-
pared to CCCNA (56).

Toxin immunoassays. Enzyme immunoassays for C. difficile
diagnostics use monoclonal or polyclonal antibodies directed
against C. difficile toxins. Until very recently, EIAs for toxin detec-
tion have been the most frequently used assays in clinical labora-
tories for C. difficile detection. There are a number of commercially
available EIAs for C. difficile toxins, including rapid immuno-
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chromatographic/lateral flow membrane immunoassays and mi-
crowell and solid-phase assays. It should be noted that although
some of the early assays detected toxin A exclusively, it is now
generally recommended that assays detect both toxin A and toxin
B, as toxin A-negative disease-causing strains have been well doc-
umented (35, 84-86) (also described above). Overall, the cost per
test for these assays is low. The hands-on time required to perform
the test varies depending upon the test type. The sensitivity and
specificity that have been reported for these assays vary widely,
from approximately 40% to 100% (58, 61, 87-94). A summary of
several of the studies evaluating different EIAs for detection of C.
difficile toxins can be found in Table 1. The gold standard used to
evaluate these assays is variable and is either CCCNA or toxigenic
culture, as indicated in Table 1. A study by Eastwood et al. evaluated a
number of EIAs by using both gold standards and highlighted the
difference in sensitivity and specificity reported for comparator assays
depending upon the gold standard used (58).

Although the poor sensitivity of toxin EIAs for C. difficile is well
established, the clinical significance of this has not been well doc-
umented. In an attempt to address this question, in a retrospective
study, Polage and colleagues reviewed the charts of patients at the
University of California—Davis Medical Center who had a C. dif-
ficile toxin test ordered between 1 January 2005 and 21 December
2009 (95). This cohort included 925 toxin-positive patients and
6,121 toxin-negative patients (95). Upon chart review, only 1 out
of the 6,121 toxin-negative patients exhibited PMC, and there
were no documented cases of complications that could be attrib-
uted to C. difficile disease in any of these patients, such as toxic
megacolon, fulminant colitis, or colectomy. A small proportion
(5.3%) of the toxin-negative patients received empirical treatment
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TABLE 2 Examples of results of investigations evaluating the performance characteristics of assays for GDH detection”

No. of Sensitivity  Specificity
Assay Format Gold standard samples (%) (%) PPV (%) NPV (%) Reference
C. Diff Quik Chek Lateral flow EIA  Detection of tcdB by =2 81 96.2 76.4 Not given  Notgiven 90
molecular methods
C. Diff Quik Chek Lateral flow EIA  Toxigenic culture 401 93.5 96.9 87.9 98.4 110
C. Diff Chek-60 Microwell EIA Aggregate of EIAs and 284 100 94.2 Not given ~ Notgiven 91
toxigenic culture
C. Diff Chek-60 Microwell ETA Toxigenic culture 564 87.6 94.3 78 97.1 58
CCCNA 90.1 92.9 71.3 98.0
C. Diff Chek-60 Microwell EIA Toxigenic culture 497 93.5 98 91.6 98.5 116
C. Diff Chek-60 Microwell EIA Toxigenic culture and PCR 1,468 93.4 96.6 75.9 99.2 113
C. Diff Complete Lateral flow EIA  Toxigenic culture 60 100 93.3 93.8 100 115

(GDH component)

“ By definition, GDH assays are screening assays and are not for definitive reporting of C.

confirmatory testing.

for C. difficile infection, regardless of the toxin result. This study
suggested that the clinical impact of the reduced sensitivity of
toxin EIAs for C. difficile was minimal, but more studies are
needed to fully evaluate this issue.

Although the specificity of the toxin EIAs is generally superior
to the sensitivity of this method, specificities vary, and some assays
possess inadequate positive predictive values (PPVs) for a diag-
nostic test (58, 61, 96, 97). An abundance of false-positive results
can be just as problematic as false-negative results. This phenom-
enon was highlighted in a report by Han et al., who observed that
a change in the toxin EIA brand used for routine testing (from
ProSpecT Toxin A/B [Remel] to C. difficile Tox A/B II [TechLab])
resulted in an apparent decrease in C. difficile infection from 23.52
to 8.69 cases per 10,000 patient days (97). Using the ProSpecT test,
19.7% of patients were positive with the first test, compared to
9.1% of patients positive with the first test using the TechLab Tox
A/B I assay (97). A reduction in anti-CDI therapy followed as a
result of fewer positive tests, but no increase in mortality occurred,
suggesting that the decreased incidence was a result of improved
assay specificity of the toxin A/B assay (97).

There are a number of reasons for the heterogeneity in perfor-
mance characteristics of these assays, including, but not limited to,
geography, circulating strain types (and, therefore, potentially dif-
ferences in the antigenic features of the toxins that are expressed),
the gold standard used for assessment of the assay, host antibody
binding to toxin in the gastrointestinal tract, interlaboratory tech-
nical variance, institutional variance in ordering practices for C.
difficile testing and/or specimen transport time, and whether fresh
or frozen/stored stool samples are analyzed. To muddy the waters
even further, in some studies, investigators have modified manu-
facturers’ recommendations for the assays, such as the optical
density (OD) to be considered “positive” for the microwell format
EIAs (98). In addition, clinical signs and symptoms have only
rarely been taken into consideration when evaluating the per-
formance characteristics of these toxin EIAs (61, 95, 96, 99).
Since the lack of sensitivity of C. difficile EIAs is a well-known
problem within the medical community, common practice has
been to order “C. difficile testing times three.” This approach
only compounds the problem; with the poor specificity of these
assays, the number of false positives exceeds the number of true
positives with each round of testing, especially in a low-preva-
lence setting.
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difficile. In this table, specificity is reported for GDH assays performed without

Due to the inadequate sensitivity of toxin EIAs for C. difficile
testing, this method is not considered the best way to make a
diagnosis of C. difficile infection (52, 58, 100, 101). The SHEA/
IDSA guidance document outlines that EIAs should no longer be
considered adequate stand-alone tests for the diagnosis of C. dif-
ficile infection (52).

Glutamate dehydrogenase. Glutamate dehydrogenase (GDH)
is a metabolic enzyme encoded by gluD. This antigen is produced
at high levels in all isolates of C. difficile, including both toxigenic
and nontoxigenic strains. In addition, GDH of C. difficile is known
to cross-react with that of C. sordellii. Therefore, GDH represents
a screening test for C. difficile disease, and positive assays must be
followed up with a confirmatory test, such as a toxin EIA or a
molecular test for detection of toxin genes. Overall, the studies
performed to date suggest that GDH exhibits high sensitivity as a
screening test for C. difficile infection and exhibits a favorable
negative predictive value (NPV). Some of these studies are sum-
marized in Table 2 (58, 65, 91, 102-116).

Similar to toxin EIAs, GDH assays are available in microwell
EIA and lateral flow immunochromatographic formats. The sen-
sitivity (80 to 100%) and NPV for GDH assays appear to be similar
regardless of the specific GDH assay type used or the gold standard
used to evaluate the assay (108, 113, 116, 117). GDH testing can
efficiently provide a rapid turnaround time for negative results,
with minimal hands-on time. The cost per test is low, especially
compared to the cost of molecular methods.

GDH can be an attractive screening assay to quickly rule out C.
difficile disease for laboratories that do not have access to or ex-
pertise in performance of molecular testing. However, some con-
troversy exists regarding the adequacy of GDH assays to rule out
C. difficile disease. In order to be a reliable and effective screening
method, GDH should be highly conserved among C. difficile
strains. A report by Tenover et al. raised concern that the sensitiv-
ity of GDH assays may vary by strain type; namely, reduced sen-
sitivity for detection of strains of ribotypes 002, 007, and 106 was
observed in this study (118). Carman et al. evaluated 104 isolates
of C. difficile, corresponding to 77 different ribotypes (including
both toxigenic and nontoxigenic strains, with ribotypes in com-
mon with those in the study by Tenover et al.), from different
areas around the world (119). Most of the isolates had been recov-
ered from 2004 to 2011. All of the strains of the ribotypes evalu-
ated carried gluD, and predicted amino acid sequences of almost
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TABLE 3 Performance characteristics of EIAs combining GDH detection and toxin EIA for C. difficile detection

Sensitivity ~ Specificity

Assay Format Gold standard No. of samples (%) (%) PPV (%) NPV (%) Reference

TechLab C. Diff Quik Check Lateral flow EIA Detection of tcdBby =2 81 61.5 100 100 84.6 90
Complete molecular methods

TechLab C. Diff Quik Chek Lateral flow EIA Toxigenic culture 200 (all from 70.8 97.4 89.5 91.4 122
Complete pediatric patients)

TechLab C. Diff Quik Chek Lateral flow EIA Aggregate of EIA and 284 60.0 99.6 Not given Not given 91
Complete toxigenic culture

C. Diff Quik Chek plus Meridian ~ Lateral flow EIA/ Detection of tcdBby =2 81 42.3 100 100 78.6 90
Premier Toxins A & B microwell ETA molecular methods

C. Diff Chek-60 with Meridian Both are microwell Toxigenic culture 432 55.6 98.3 87 91.7 87

Premier Toxins A & B ElAs

all of the isolates were identical. All of the isolates produced GDH
that was readily detected by using a number of commercial assays,
including C. Diff Chek-60, C. Diff Quik Chek, and C. Diff Quik
Chek Complete (119). These results suggest that the performance
characteristics of commercial GDH assays are not dependent
upon the C. difficile ribotype.

Goldenberg et al. evaluated the performance of the C. Diff
Chek-60 GDH assay by using 64 isolates of C. difficile that could be
grouped into six ribotypes: ribotypes 002, 005, 023, 027, 078, and
106 (120). Although this study used cultured isolates rather than
direct testing of stool samples, there was no significant difference
in the performance of the GDH assay for any of the ribotypes
studied. Even when the cultures were diluted 1:100, the OD value
for the GDH EIA did not vary significantly between any of the
ribotypes tested (120).

Based on the studies Carman et al. and Goldenberg et al., it
seems unlikely that regional or geographic differences in strain
type account for the variance reported for GDH assays, although
this cannot be completely excluded (118-121). For method com-
parison studies, it is not uncommon for the testing to be per-
formed on frozen stool specimens; it is unknown if the freeze-
thaw could impact assay results. This could be a confounding
factor to consider when evaluating the variance between GDH
assay performances in different method comparison studies.

Combination testing—GDH detection and toxin EIA. Some
EIAs that combine GDH detection and a toxin EIA in one test have
recently come on the market. These combination assays are rela-
tively rapid, and the cost per test is less than that of the molecular
methods. The GDH component of these assays appears to have a
sensitivity similar to those of stand-alone GDH assays, but the
toxin EIA component appears to suffer from the same sensitivity
issues as conventional toxin EIAs (87, 90, 91, 122). Some of the
studies evaluating these combination assays are described in Table
3.1In general, samples that are GDH and toxin negative by these as-
says can be reported as negative with relatively high confidence,
and GDH- and toxin-positive samples can be reported as positive.
Samples that are GDH positive but toxin negative should have
confirmatory testing performed (such as CCCNA or a molecular
assay) to rule out C. difficile disease (100, 123, 124).

Molecular platforms for direct detection of Clostridium dif-
ficile in clinical specimens. The use of nucleic acid amplification
methods for the detection of C. difficile in fecal samples began to
appear in the literature in the early 1990s (125-127). These early
assays used conventional PCR methods and targeted a variety of
genes, including the tcdA, tcdB, and 16S rRNA genes. Extractions
were cumbersome and time-consuming, and PCR products were de-
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tected by gel electrophoresis and/or Southern blot analysis (126, 127).
An additional observed pitfall with some of the early primer designs
was cross-reactivity with other Clostridium species (125). However,
sensitivity was found to be significantly better than those of existing
anaerobic culture methods (127) and CCCNAs (128).

A decade later, methods of DNA extraction from fecal samples
have improved because of the availability of kits that use a mixture
of RNases, proteases, and other proprietary reagents in combina-
tion with spin columns for nucleic acid concentration and purifi-
cation to replace cumbersome phenol-chloroform extraction pro-
cedures. Nucleic acid amplification techniques (NAATSs) have
improved, and real-time PCR instruments such as the Cepheid
SmartCycler (Sunnyvale, CA), the Roche LightCycler (Pleasan-
ton, CA), and the iCycler IQ (Bio-Rad Inc., Hercules, CA) became
available, making laboratory-developed assays easier to verify and
implement (59, 88, 129). Several laboratories have reported suc-
cessful verification and implementation of laboratory-developed
quantitative real-time PCR (qPCR) assays for clinical use before
the availability of a U.S. Food and Drug Administration (FDA)-
cleared platform (59, 106).

Despite these advances, it was 2009 before the first nucleic acid
amplification assay for C. difficile detection in stool samples, the
BD GeneOhm Cdiff assay (BD Diagnostics Inc., Sparks, MD), was
approved by the FDA. The BD GeneOhm qPCR assay amplifies
conserved regions of tcdB and detects the amplified products by
using fluorogenic target-specific hybridization probes (molecular
beacons) (60). Amplification, detection, and interpretation of the
qualitative results are performed by using the Cepheid Smart-
Cycler (Table 4). A built-in internal control alerts the user to prob-
lems with inhibition. The current FDA-cleared platform has a
manual DNA extraction step and several pipetting steps before the
vials are loaded onto the instrument. The total assay time ranges
from 75 to 90 min depending upon the number of samples. An
automated version, BD Max Cdiff, has recently received FDA
clearance in the United States (89) and significantly reduces the
setup time. The assay involves the use of a 10-pl inoculating loop
to transfer liquid or unformed stool to the proprietary sample
buffer. The sample buffer tube is placed into the BD Max instru-
ment along with a reagent strip that contains all of the reagents
necessary for sample processing and qPCR. The instrument
moves a sample from one tube to the next on the reagent strip.
Like the manual BD GeneOhm assay, the BD Max Cdiff assay
amplifies tcdB. However, achromopeptidase is used for bacterial
lysis in the newer version of the test (89). Amplified targets are
detected with hybridization probes labeled with quenched fluoro-
phores. A disposable microfluidic cartridge is where the amplifi-
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TABLE 4 Available FDA-cleared molecular assays for detection of Clostridium difficile in fecal samples”

Unresolved/invalid ~ TAT
Assay Target(s) Chemistry(ies) Extraction type rate (%) (min)
BD GeneOhm tcdB qPCR/molecular beacons Manual 0.5-7.3 75-90
BD Max Achromopeptidase lysis; gPCR/ Automated 120
molecular beacons
ProDesse ProGastro Cd tedB qPCR Automated (Easy Mag) 2.7 180
Cepheid GeneXpert tedB, cdtA, tcdC Multiplex gPCR Automated (Infinity) NA 29-45
nt 117 deletion
Meridian Illumigene tedA Loop-mediated isothermal Manual Illumipro-10 reader ~ 0.8—4.4 70
amplification
Focus Technologies Simplexa tcdB qPCR, bifunctional fluorescent None NA 60
probe-primers
Great Basin Portrait Analyzer tedB Helicase-dependent amplification; NA 70
microarray detection
Quidel AmpliVue C. difficile Assay  tcdA Helicase-dependent amplification;  Manual 0.5 80
visual evaluation of results
using handheld cassette
Nanosphere Verigene tedA, tcdB, cdtnt  PCR combined with gold particle ~ Automated 2.4 150

117 deletion

probe capture and silver signal

amplification on an array

@ tedA, toxin A gene; tedB, toxin B gene; cdt, binary toxin gene; nt, nucleotide; NA, not available; TAT, turnaround time.

cation, detection, and interpretation of the signals take place. This
cartridge is sealed to prevent contamination. The assay contains
an internal sample processing control, which is read on an optical
channel of the instrument separate from the patient samples. The
overall time to completion is about 3 h, depending upon the total
number of samples.

The performance characteristics of the BD GeneOhm Cdiff
assay and the BD Max Cdiff assay along with those of the other
FDA-cleared assays are summarized in Table 5 (57, 60, 89, 96, 107,
122, 130-134). Only those published studies which used a recog-
nized reference method, such as toxigenic culture or a cell culture
cytotoxicity neutralization assay, on all of the samples tested are
included in Table 5. In cases where no published papers are avail-
able, data have been summarized from the manufacturer’s prod-
uct package insert. It is important to note that very few papers
include clinical information, specifically with respect to whether
patients met recognized case definitions as specified by clinical
practice guidelines (52).

The ProDesse ProGastro Cd assay (Hologic Gen-Probe Inc.,
San Diego, CA) detects tcdB in fecal samples. A portion of the stool
sample is diluted in stool transport and recovery (STAR) buffer,
followed by centrifugation to remove solid particles (stool clarifi-

cation). The internal control is added to the clarified stool sample
prior to extraction. Nucleic acid extraction and purification occur
on the NucliSENS easyMag instrument (bioMérieux, Durham,
NC). Amplification and detection using TagMan chemistry, as
well as interpretation of results, which are reported qualitatively,
are performed with the SmartCyclerIlI instrument (Cepheid Inc.,
Sunnyvale, CA). Of all of the commercially available NAATS, this
assay takes the longest to perform (Table 4). Performance charac-
teristics are summarized in Table 5 (130).

Detection of not only fcdB but also the binary toxin genes and
the deletion at nucleotide 117 on tcdC (A117) as surrogate mark-
ers for presumptive identification of 027/NAP1/BI strains are
unique features of the Xpert C. difficile Epi assay (Cepheid Inc.,
Sunnyvale, CA). Users may also buy a version that detects only
tcdB. This assay is among the simplest to perform and is also the
most rapid of the available NAATS. A scored swab containing fecal
material is inserted and broken off into an elution vial. After a
vortex step, the liquid from the vial is dispensed into the sample
port of the test cartridge that contains all of the reagents for am-
plification and detection as well as the internal control. The car-
tridge is subsequently loaded into the GeneXpert instrument. The
company has a larger and more automated instrument, called the

TABLE 5 Published performance characteristics of currently available NAATSs*

Assay Sensitivity (%) (range) Specificity (%) (range) NPV (%) (range) PPV (%) (range)
BD GeneOhm 82.1-100 90.6-99.2 96.7.0-100 58.6-94.4

BD Max Cdiff 97.7 99.7 99.7 97.7

Prodesse ProGastro Cd 77.3-100 93.4-99.2 95.9-100 82.8-94.4
Cepheid GeneXpert 94.4-100 93.0-99.2 99.3-100 78.9-94.7
Meridian Illumigene 86.7-98.1 98-100 98.1-99.5 91.8-98.5

Focus Technologies Simplexa® 90.1/79.6* 93/95.8¢ NA NA

Great Basin Portrait’ 79.6-90.1 93.0-95.8 95.3-98.4 66-81.4

Quidel AmpliVue C. difficile Assay 93.6 94.1 NA NA

Nanosphere Verigene 98.7/91.8* 87.6/92.5% 99.9/98.5¢ 42.1/67.3%

@ The first result represents comparison to direct toxigenic culture, and the second represents comparison to enriched toxigenic culture.

¥ No publications to date on the FDA platform; data are from the package insert.
¢ Data were compiled from references 57, 60, 87, 89, 96, 107, 122, 130-136, and 139-143.
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GeneXpert Infinity, that accommodates 48 or even 80 cartridges
in a completely random-access format. Table 5 lists the published
performance characteristics for C. difficile detection in patient
samples (87, 133—136). There have been three published reports
on the performance of the Xpert CD/Epi assay. Pancholi et al.
found 100% accuracy for detection of all 36 027 strains (137). Ina
comparison of the Xpert assay to ribotyping, Babady et al. (138)
found that 42 of 45 ribotype 027 strains were correctly identified.
Both of these studies were conducted in areas of the United States
where ribotype 027/NAP1/BI strains are prevalent. In contrast, a
study from Australia, where disease caused by ribotype 027 strains
is rare, reported false-positive results were related to non-027 iso-
lates with unusual mutations that were amplified by the primers in
the Xpert CD/Epi assay (139).

The Illumigene assay (Meridian Bioscience, Cincinnati, OH) is
the only FDA-cleared NAAT that is based upon the principle of
loop-mediated isothermal amplification (LAMP). This assay de-
tects a conserved 5" sequence of fcdA on the PaLoc by using four
primers designed to detect six distinct regions (140). The assay,
which has seven manual steps before it is loaded onto the reader, is
said to detect toxin A-negative, toxin B-positive strains, as it de-
tects a remnant of the gene in the PaLoc. Features of this assay and
its performance characteristics derived from several studies are
summarized in Tables 4 and 5 (139-141). One important point to
make is that while the test is simple to perform, it does require
specific training. There are two critical steps that could lead to a
higher-than-expected “invalid” rate if not performed correctly.
These include filling of the sample collection brush with the right
amount of stool sample and adhering to the specified time be-
tween preparing the sample and placing it into the Illumipro-10
instrument (142). Another concern is the potential for spore con-
tamination related to all of the manual processing steps.

Focus Diagnostics Inc. (Cypress, CA) has developed the Sim-
plexa C difficile Universal Direct assay. This is a real-time PCR
system that targets conserved regions of tcdB. There are three steps
in this assay. First, the liquid or soft stool samples processed in
Tris-EDTA (TE) buffer are heat denatured at 97°C for 10 min.
After a reagent preparation step, amplification of C. difficile DNA
and internal control DNA is performed by using fluorescent bi-
functional probe-primers together with reverse primers. The
specimens and reagent mixtures are loaded onto a Universal Disc
for use on the 3 M Integrated Cycler. The instrument software
interprets the results and will suppress them if any of the control
samples are invalid. The user examines the amplification curves
for each patient result along with the DNA internal control to
ensure that results are interpreted properly (143). At the time of
preparation of the manuscript, there have been no reported stud-
ies using this assay.

The Portrait Toxigenic C. difficile assay (Great Basin Inc., Salt
Lake City, UT) combines helicase-dependent amplification
(HDA) with target detection on silicon chip macroarrays (144) to
detect the C. difficile toxin B gene. The assay uses a proprietary
Hot Start approach—RNase-mediated amplification—to prevent
primer artifacts during amplification, which is a problem associ-
ated with other isothermal amplification systems (144). The array
technology is also unique in that the target DNA is biotin labeled.
When the target DNA is captured by probes on the array, hybrid-
ization is detected in an enzyme-linked immunosorbent assay
(ELISA)-type format by the reaction of each bound target with
antibiotin/horseradish peroxidase (HRP) conjugates. Reaction of
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subsequently bound conjugates with a precipitable tetramethyl-
benzidine (TMB) substrate results in signal amplification, which
enhances the sensitivity of the assay. After placing a swab into the
patient’s specimen, the user inserts it into a tube containing ex-
traction buffer, vortexes it, and then filters it by using a 3-ml sy-
ringe. Subsequently, 180 .l is delivered into the sample port of the
proprietary cartridge of the assay. After the sample port is closed,
the disposable cartridge is inserted into the analyzer, and testing
begins. The cartridge contains all reagents necessary to perform
the test; amplification and detection both occur within a closed
system so as to prevent contamination. The internal control de-
tects the S. aureus nuc gene. Results are reported qualitatively
within 90 min. In a paper by Hicke et al., the analytical sensitivity
was reported to be 10 CFU per fecal sample (144). In a small
preclinical study (n = 130 specimens) performed by those au-
thors, the Portrait test had a sensitivity of 97% and a specificity of
100% compared to the BD GeneOhm Cdiff assay (144). The re-
sults of the clinical trial for FDA approval are provided in Table 5.

Like the Illumigene assay, the AmpliVue C. difficile assay
(Quidel Molecular, San Diego, CA) targets a highly conserved
region of tcdA. The assay utilizes helicase-dependent isother-
mal amplification in a self-contained handheld cassette for am-
plicon detection. In brief, a swab is used to inoculate a small
amount of liquid sample into a dilution tube. Diluted sample
(50 wl) is added to a lysis buffer tube, which is heated in a
heating block at 95°C. After the 10-min lysis step, 50 pl of
sample is added to a reaction tube and heated for 60 min at
64°C. The biotinylated single-stranded DNA amplicons bind to
capture probes during the reaction. After incubation, the reac-
tion tube is placed into the amplicon cartridge, and the car-
tridge is placed into the hinged detection chamber of the hand-
held cassette. A lateral flow strip within the cassette uses
streptavidin-conjugated color particles to visualize the dually
labeled probe-amplicon hybrids. These appear as pink-to-red
lines on the cassette. There is also a line that corresponds to the
process control DNA that must be visible for any valid result
(146).

The Verigene C. difficile test (Nanosphere Inc., Northbrook,
IL) is the most recent assay to obtain FDA clearance. This assay
detects both tcdA and tcdB as well as cdt and the deletion at nucle-
otide 117 on tcdC. The Verigene assay requires a sample process-
ing step of a swab placed into the fecal sample, followed by inoc-
ulation of the specimen in buffer into the test cartridge. The test
cartridge contains a reagent pack, which is a single carrier that sits
atop the array, a glass slide that is solid support for the capture
oligonucleotides. The cartridge contains all of the reagents needed
for amplification and hybridization for each test, and it also cap-
tures all waste generated during testing. The testing within the
cartridge is performed with an instrument called the Verigene
Processor SP.

The Verigene assay has several unique features. The extracted
DNA is sheared by a sonication process into 300- to 500-bp frag-
ments to facilitate the hybridization steps. In step 1, the sheared
DNA is hybridized to single-stranded DNA capture oligonucleo-
tides on the array and simultaneously to sequence-specific medi-
ator oligonucleotides that detect single-copy DNA regions of each
target. In the second hybridization reaction, gold nanoparticles
bind to captured target nucleic acid/mediator oligonucleotide
complexes. After a wash step, silver signal amplification of the gold
nanoparticle probes occurs. A final washing step removes unre-

cmr.asm.org 613

SIN0T 1S Ul Ausiaaiun uolBuiysepn Aq £TOZ ‘Tz Jaquiadad uo /610 wse 1w/ :dny woiy papeojumod


http://cmr.asm.org
http://cmr.asm.org/
http://cmr.asm.org/

Burnham and Carroll

acted reagents. When testing is completed, the glass slide is removed
and placed into the reader for interpretation. Results are reported
qualitatively (147). To date, there have been no publications on this
assay, but the results from a five-center clinical trial are summarized
in Table 5. Like the GeneXpert C. difficile assay, this test may pre-
sumptively recognize ribotype 027 strains because it detects the nu-
cleotide 117 deletion on tcdC and the binary toxin genes. Although
there are no publications available, the data in the package insert
show that compared to PCR ribotyping of the isolates recovered from
the enriched culture, there was 91.4% positive agreement (147). The
assay failed to amplify four specimens that were positive for ribotype
027 by enriched culture (147). One specimen was positive for fcdA
and tcdB but was negative for cdt and A117, from which a ribotype
027 strain was recovered upon culture (147). Five specimens tested
positive for cdt and A117 by the Verigene assay, but the ribotype
recovered was not ribotype 027 (147).

(i) Impact of nucleic acid amplification tests on clinical care.
While molecular assays have certainly improved the detection of
C. difficile in fecal samples, there are numerous questions that have
been raised regarding their clinical utility. Some concerns relate to
the biology of C. difficile and how detection of the genes that en-
code toxins A and B correlate with expression of toxin. For exam-
ple, is the gene always expressed, or, given the heterogeneity of C.
difficile, will strains emerge that are not detected by a particular
assay? In terms of the former question, in the majority of the
clinical trials, compared to toxigenic culture, there are a few situ-
ations where the assays failed to detect a toxigenic organism re-
covered from a stool sample. It is unclear, however, whether these
are related to concentrations of organisms below the limit of de-
tection of an assay, specimen handling problems, or user errors.
Few studies have included sequencing or other methods to assess
failure of primer-probe binding or problems with completion of
amplification cycles. All of the assays discussed above have built-in
controls to assess inhibition, and this is one parameter that can be
monitored in clinical laboratories as a component of ongoing as-
say validation.

A few studies have focused on variability in test performance
based upon the ribotype of the infecting strain. One study found
that the GeneXpert and nonamplified methods, such as an EIA for
GDH antigen detection, had equivalent performances for detec-
tion of ribotype 027 strains (118). Conversely, significant differ-
ences in the performances of the EIAs for toxin A/B and GDH
were seen compared to PCR for non-027 isolates (118). However,
other studies have not seen this discrepancy based upon strain
type (120). It is important to note that almost all of these studies
suffered from small numbers of some ribotypes. The reasons for
variability in assay performance by strain type for the nonampli-
fied tests are hypothetically related to differences in toxin produc-
tion among those strains, a cited advantage to molecular testing
(121). More data on the impact of strain type on assay perfor-
mance are needed. The reader is referred to the sections on GDH
and epidemiology for more discussion of this topic.

As the circulating strain types causing disease change, it may be
important to periodically assess both analytical and clinical per-
formance of molecular tests as a component of ongoing valida-
tion. Itis unclear if this is the responsibility of the vendor, the user,
or public health institutions. Those states, countries, or regions
that have an existing surveillance program in place could alert
clinical laboratories when a new, predominant strain enters a
community. This information could be used to assess assay per-
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formance. Since all assays have focused on conserved regions of
the toxin A and B genes in the PaLoc found in strains of all ri-
botypes, it seems less likely that failure to detect a strain in clinical
samples is related to mutations within the target sequences, al-
though this remains a theoretical possibility (121).

More important questions concern the clinical utility of
NAATS, particularly the specificity and positive predictive values,
given that a gene and not an actual toxin is detected. Several stud-
ies demonstrating that inappropriate test ordering can certainly
impact the specificity of these tests have emerged. In a study by
Dubberke and colleagues (96), 36% of patients for whom a C.
difficile test was ordered did not have clinically significant diar-
rhea; moreover, 20% of patients had recently taken a laxative.
When clinical parameters were used to assess the performance of
various test methods, the NAATSs had the highest sensitivity but
the lowest specificity compared to other modalities (96). In a study
to assess the impact of education on C. difficile test ordering prac-
tices, Redding et al. (273) likewise observed that the presence of
diarrhea was recorded in the chart for only 50% of patients for
whom testing was ordered, and 44% of patients had received a
laxative in the prior 48-h period. Educational intervention suc-
ceeded in improving documentation to 71% and reducing testing
of patients on laxatives to 21% (Redding et al., submitted).

Although there are few studies that include clinical data when
assessing performance characteristics of C. difficile testing, the ex-
isting data highlight that although NAAT assays for C. difficile in
fecal specimens are analytically sensitive and specific, clinical
specificity may not be optimal; that is, detection of C. difficile in a
specimen does not always equal disease, as NAAT assays can be
positive in both colonization and disease states. It seems plausible
that the future of C. difficile diagnostics will include detection of
not only C. difficile but also a biomarker that correlates with active
C. difficile infection. While several biomarkers have been evalu-
ated (such as fecal lactoferrin and various cytokines [see “Adjunc-
tive tests and biomarkers for diagnosis of C. difficile disease” be-
low), to date, an optimal adjunct assay for NAAT testing has not
been established. This will likely be an area of active investigation
in the coming years.

Just as an example of the great interest in establishing improved
diagnostics for C. difficile infection, one recent study reported that a
dog (2-year-old male beagle) under the care of a professional
trainer was able to “sniff out” C. difficile in stool samples (148). When
the dog was presented with positive and negative stool samples, the
dog’s sensitivity and specificity for detection of C. difficile were 91 to
100% and 83 to 98%, respectively (148). However, it seems unlikely
that a sniffing dog will be broadly adopted as the adjunctive assay of
the future; not only do logistical concerns exist with keeping a dog in
the microbiology laboratory, this would also be completely un-
charted territory for regulatory bodies such as the College of Ameri-
can Pathologists (CAP) and the FDA.

Since molecular assays cost up to 2- to 3-fold more than ElAs,
the issue of cost-effectiveness has been raised by laboratorians and
administrators. To answer this question, the impact on treatment
and infection control activities should be considered. A few stud-
ies are beginning to emerge to address the impact on pharmacy
costs and length of stay in isolation, with favorable results. Peter-
son and Robicsek (149) were the first to hypothesize that imple-
mentation of a NAAT would lead to fewer tests ordered due to
enhanced accuracy, which might offset the increased costs of these
platforms. Tenover et al. (121) likewise created a hypothetical
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model based upon testing of 1,000 patients, assuming a 10% prev-
alence of CDI and using published performance characteristics of
various test methods. NAAT testing alone, compared to a toxin
EIA alone and to various two-step algorithms using GDH detec-
tion, resulted in the largest number of patients with disease who
would be placed in isolation within 24 h, the largest number of
patients who would be removed from isolation more quickly be-
cause the rapid NAAT would detect them more rapidly, and the
smallest number of patients with false-negative tests who would
not be placed in isolation and consequently who would continue
to spread the organism within the hospital environment (121).

In actuality, several studies clearly note that C. difficile rates
doubled when laboratories made the switch from an EIA to mo-
lecular testing or incorporating a molecular test into a testing al-
gorithm. This could have a negative impact on public health re-
porting if the method of testing is not considered (150-153). One
study hypothesized that this may be a disincentive to eliminating
less sensitive EIAs (151). After a period of increase, rates declined,
suggesting better case definition leading to decreased transmission
(151). The latter scenario played out at the Johns Hopkins Hospi-
tal (JHH). In 2010, the laboratory switched completely to a NAAT
that was implemented twice daily 5 days per week and offered once
per day on weekends. In the period immediately after implemen-
tation, C. difficile transmission rates appeared to increase from
11.5 cases/10,000 patient days to close to 15 cases/10,000 patient
days for calendar year 2010 (Lisa Maragakis, JHH, personal com-
munication). Rapid test availability allowed for improved isola-
tion. Additionally, the apparent increase in transmission was used
to campaign for better hand hygiene and compliance with infec-
tion control practices, such as enhanced environmental cleaning.
By the second quarter of 2012, the transmission rates were among
the lowest seen since 2007: 9 cases/100,000 population (Lisa Mara-
gakis, JHH, personal communication).

In a paper by Catanzaro and Cirone, the authors performed a
retrospective study comparing the impact of the switch from a
toxin A/B EIA to a PCR method (154). Prior to implementation of
the PCR test, the practice was preemptive isolation of symptom-
atic patients with the caveat that three negative EIA results were
required to remove patients from isolation. The latter rule was
based upon poor performance of the EIA in their environment,
which led to clusters of transmission in some units (154). When
the laboratory switched to the PCR test, preemptive isolation was
discontinued upon report of one negative test result (154). Post-
implementation, the authors observed a significant decrease in
health care-associated CDI (4.4 cases/10,000 patient days versus
0.9 cases/10,000 patient days; P = 0.02), a reduction in patient
isolation days (1,022 versus 364; P = <0.00001), fewer tests or-
dered (P = 0.02), and a reduction in the duration of empirical
metronidazole therapy for patients with negative C. difficile tests
(P =0.02) (154). In a study by Sydnor et al. (155), replacement of
a two-step algorithm using GDH detection and toxin EIA with an
algorithm using GDH detection with PCR resulted in a 54% re-
duction in empirical antimicrobial use. Unfortunately, those au-
thors did not assess cost savings in either study.

Others are using the assays that detect ribotype 027/NAP1
strains to control the use of more expensive antimicrobial agents
such as fidaxomicin. Based upon the original modified intention-
to-treat and per-protocol study analyses, fidaxomicin was nonin-
ferior to vancomycin with respect to clinical cure rates (156). Sig-
nificantly fewer patients in the fidaxomicin treatment group had
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recurrences, unless they were infected with NAP1/ribotype 027
strains, in which case there was no difference between the treat-
ment arms (156). Currently, there are no recommendations to
alter infection control practices or to change therapy on the basis
of detection of a specific ribotype alone (see the discussion on
strain types and disease severity elsewhere in this review).

Few papers have addressed the comprehensive laboratory costs
associated with various test methods, and none have measured the
impact on overall hospital costs. In one study comparing two-step
algorithms predicated upon a GDH result incorporating a cyto-
toxin test or the Xpert C. difficile assay for GDH-positive speci-
mens, performing the Xpert test alone was less expensive when
labor costs (accessioning, test performance, and reporting of re-
sults) were considered (138). In a study by Larson et al. (104), the
authors projected that in making the diagnosis of C. difficile 1 day
earlier in cases missed by EIA, PCR testing alone could save
$200,000 annually by avoiding the costs of repeat testing. Addi-
tional research is needed to assess the overall cost-effectiveness of
NAATS: for the diagnosis of C. difficile disease.

Evolution of Testing Methods

As suggested above in the sections describing diagnostic assays for
C. difficile, the methods used by clinical laboratories have evolved
over the last 2 decades, from CCCNA to toxin EIAs to NAATSs.
Table 6 summarizes the most common assays used for C. difficile
detection by clinical laboratories subscribing to the CAP profi-
ciency testing program from 2001 to 2012. These data were in-
cluded with permission from the CAP Microbiology Resource
Committee. One of the major differences noticed over time is that
a number of laboratories were using an EIA that detected only
toxin A in the early 2000s, but gradually, that changed, such that
no laboratories were using this type of assay. It is interesting to
note the shift away from CCCNAs and EIAs toward the use of
molecular testing methods; in 2012, nearly one-third of laborato-
ries reported using a molecular method. Although the methodol-
ogies have changed, the overall performance of laboratories in
these proficiency testing challenges, as well as the number of lab-
oratories participating in these challenges, has remained relatively
stable over this time period (Table 7).

Adjunctive tests and biomarkers for diagnosis of C. difficile
disease. A variety of fecal biomarkers of inflammation have been
developed over the last several decades in an attempt to distin-
guish inflammatory versus noninflammatory causes of diarrhea
and other gastrointestinal complaints. These assays have been em-
braced by gastroenterologists as noninvasive mechanisms for
screening of patients, particularly for inflammatory bowel disease
(IBD), where they have been shown to have some utility. Their
usefulness in the diagnosis of C. difficile disease is less clear. This
section only briefly touches upon this subject.

(i) Fecal lactoferrin. Lactoferrin is an iron binding glycoprotein
found in neutrophils and in secretions such as breast milk, and
therefore, this marker may be present in feces of children who are
breast fed, reducing its utility as an enticing marker for bacterial
enteritis in children <2 years of age (157). This protein is released
following neutrophil activation, and the concentrations in stool
and other fluids are proportional to the number of neutrophils
recruited (158). Fecal lactoferrin is resistant to proteolysis and is
not degraded by intestinal bacteria (159).

Fecal lactoferrin was first measured in stool samples in 1992 by
a latex agglutination assay developed by Guerrant et al., who as-
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TABLE 6 Summary of CAP survey results for the most common assays used for C. difficile testing, 2001 to 2012
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TABLE 7 Summary of CAP results for C. difficile testing, 2001 to 2012

Survey Total no. of Intended No. (%) of participants

Yr ID participants response with correct response
2001 D-C 2,384 Positive 2,220 (93.1)

2002 D-A 2,127 Negative 2,090 (98.3)

2003 D-B 2,207 Positive 2,162 (98)

2004 D-B 2,021 Negative 1,979 (97.8)

2005 D-A 1,972 Negative 1,919 (97.3)

2006 D-A 2,041 Positive 1,970 (96.5)

2007 D-A 2,304 Negative 2,235 (97)

2008 D-A 2,096 Positive 2,077 (99.1)

2009 D-A 2,170 Positive 2,156 (99.4)

2010 D-A 2,239 Positive 2,222 (99.2)

2011 D-B 2,324 Negative 2,310 (99.4)

2012 D-A 2,189 Negative 2,189 (96.6)

sessed the ability of the assay to detect patients with Shigella infec-
tion (160). Compared to uninfected controls, 96% of patients
with shigellosis had fecal lactoferrin titers that ranged from 1:200
to =1:5,000 (160). This same group also showed that 92% of pa-
tients with C. difficile enteritis had elevated latex agglutination
titers of fecal lactoferrin of >1:50, with 50% having titers of >1:
400 (161). Since then, others have reported on the utility of fecal
lactoferrin testing for assessing severity of C. difficile infection
(162), as a marker for infection associated with moxifloxacin-
resistant strains (163), and in testing algorithms as a first step in
deciding which patients with diarrhea should be tested for C. dif-
ficile (159). It has also been used to determine the clinical signifi-
cance of results using multistep algorithms that involve GDH
screening and PCR confirmation (164). In the latter scenarios,
lactoferrin levels were higher in patients who were GDH positive/
toxin positive than in GDH-positive/toxin-negative/PCR-positive
or GDH-negative patients (164). In a study by van Langenberg et
al., the authors reported a negative predictive value of 92% when
the manufacturer’s cutoff was lowered from 7.25 pg/ml to 1.25
pg/ml (159). More prospective studies specifically targeting pa-
tients with C. difficile disease need to be performed before firm
recommendations on the use of this test can be made.

(ii) Fecal calprotectin. Calprotectin is a calcium binding pro-
tein found within the cytosol of neutrophils, where it accounts for
approximately 60% of their cytoplasmic protein content (158).
Under inflammatory conditions of the intestinal tract where neu-
trophils accumulate, calprotectin is excreted in stool and is resis-
tant to bacterial degradation (158). Studies have shown that it is
stable at room temperature in feces for up to 7 days (158). In
studies of patients with IBD, cutoffs have been established to dif-
ferentiate functional from organic bowel disease; values of <50
pg/g indicate functional disease, and values of >150 pg/g of cal-
protectin are predictive of organic disease and highlight patients
who should be referred for colonoscopy (158). In those situations
where the values fall between 50 and 150 wg/g, other causes of
inflammation, such as infections with enteric pathogens, should
be considered (158). It should be noted that nonsteroidal anti-
inflammatory agents can also raise fecal levels of calprotectin be-
cause of mucosal damage to the small bowel, which recruits neu-
trophils to the site (158).

Few studies have been performed to evaluate the utility of cal-
protectin in the evaluation of patients with acute diarrhea. Shastri
et al. performed a large, prospective, multicenter, case-controlled
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study to evaluate the accuracy of fecal calprotectin, fecal lactofer-
rin, and fecal occult blood testing of patients with suspicion of
acute enteritis, including C. difficile infection (165). Initially, 2,185
patients from three centers were evaluated by routine bacterial
stool culture and a C. difficile toxin A and B EIA. Of this large
cohort, 9.2% of patients (n = 200) were positive for a bacterial
pathogen and were age and sex matched to a control group that
had negative results (165). Commercial assays were used to per-
form a quantitative fecal calprotectin test (Immunodiagnostik
ELISA kit; Immunodiagnostik AG, Bensheim, Germany), a qual-
itative fecal lactoferrin test (IBD-Chek; TechLab, Blacksburg,
VA), and fecal occult blood tests (Haemoccult; Beckman Coulter
Inc., Fullerton, CA) (165). There was an overlap of fecal calpro-
tectin levels between the pathogen-positive patients and the con-
trol group (0 to 994 mg/liter and 0.1 to 204.7 mg/liter, respec-
tively). Compared to the other tests, the fecal calprotectin
specificity and positive and negative likelihood ratios were statis-
tically better in predicting patients with infectious diarrhea (165).
Fecal calprotectin levels were highest for the 87 patients with C.
difficile diarrhea compared to patients with other infectious causes
of diarrhea (165). In this group, the sensitivity of the test with a
cutoff value of >15 mg/liter was 82.8% (165); however, this value
is below the level of acceptability to be used alone as a screening
test. The FDA-approved assay available in the United States has an
indication for inflammatory bowel disease.

In summary, both fecal lactoferrin and calprotectin are non-
specific markers of intestinal inflammation, and while studies
demonstrate that levels of these markers may be significantly ele-
vated in patients with C. difficile disease, the sensitivity is too low
in most studies to recommend their routine use for screening of
patients. However, it does appear to be the case that the absence of
fecal lactoferrin or fecal calprotectin is inconsistent with an in-
flammatory cause of diarrhea.

(iii) Cytokine analysis. There are no commercial assays avail-
able for measuring cytokine levels in fecal specimens. Some inves-
tigators have shown the correlation of elevated levels of IL-13 and
IL-8 in active disease, particularly in cases of moderate to severe
infection (162, 166, 167), with subsequent decreases in levels of
these cytokines in stool when the patient recovers from acute in-
fection (166). In a study by Jiang et al., the authors demonstrated
that a single-nucleotide polymorphism (SNP) (251 A/A) in the
IL-8 gene is associated with increased susceptibility to C. difficile
disease (167). Cytokine analysis of fecal specimens may be an area
to be pursued in future studies with respect to assessing severity of
infection, potentially to resolve whether a positive NAAT assay is
associated with disease or colonization, and perhaps to monitor a
patient’s response to treatment.

Algorithmic approaches. As alluded to in the sections above,
although NAAT: for C. difficile detection are more sensitive than
toxin EIAs and can be used as stand-alone tests, they are more
costly than EIAs. The amount of technologist time required to
perform the molecular assays can also be longer than for EIAs,
depending on the method used. To address these issues, some
laboratories have adopted two- or three-step algorithmic ap-
proaches to C. difficile testing. In the algorithmic approach, sam-
ples are screened by using a GDH assay, and if the GDH assay is
negative, the specimen is reported as negative without additional
testing. If the specimen is GDH positive, confirmatory testing
must be performed. In the two-step algorithm, the confirmatory
test is typically a molecular assay, and the sample is reported as
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either positive or negative based on the molecular test result. In
the three-step approach, samples are tested for GDH, and if pos-
itive, they are tested by using a toxin EIA. Toxin-positive samples
can be reported as positive, but GDH-positive/toxin-negative
samples are then tested by using a molecular test. Alternatively,
the samples can be screened by using a GDH/toxin combination
EIA, but since the toxin EIA component of these assays has a
sensitivity comparable to those of stand-alone tests (i.e., inade-
quate sensitivity), GDH-positive/toxin-negative samples should
be reflexed to testing (i.e., automatically tested without a physician
order when another test is positive in a multitest algorithm) via a
molecular method (87, 90, 91, 100, 122-124). These multistep
approaches can be especially enticing to laboratories without the
equipment or expertise for molecular testing, in order to mini-
mize the number of specimens sent to a reference laboratory for
this analysis.

Although algorithmic testing represents a potential cost sav-
ings to the laboratory, there are a number of factors to consider
when evaluating this approach. The first factor is the prevalence of
GDH-positive specimens in a given population. For example, in
pediatric patients (discussed below), the rate of GDH-positive
specimens may be very high, necessitating the use of two or more
assays on a large proportion of specimens submitted. In these
cases, cost savings may be negligible. Laboratories will need to
consider the clinical impact of the prolonged turnaround time to
reporting for specimens requiring multiple tests. Some other
practical considerations include the need for inventory, training
of staff, quality control, and maintenance of procedures and com-
petency for multiple assay types. There is also the caution that
GDH assays appear to be slightly less sensitive than NAATSs. These
issues are not trivial and must be taken into consideration. Thus,
each laboratory must evaluate the utility of multistep algorithms
for their patient population.

(i) The European perspective. NAAT assays for PCR detection
are highly sensitive for C. difficile detection, but they do not dif-
ferentiate between active infection and asymptomatic carriage. As
the antimicrobial agents used to treat C. difficile infection can also
induce C. difficile disease, unnecessary antimicrobial therapy as a
result of false-positive assay results is not without consequence.
The National Health Services (NHS) laboratories in England are
now following a different protocol from what is used in most of
the United States. The NHS algorithm uses either a molecular
assay or a GDH assay to screen for the presence of C. difficile,
followed by a “good” or “relatively sensitive” EIA to confirm
the diagnosis (https://www.gov.uk/government/uploads/system
/uploads/attachment_data/file/146808/dh_133016.pdf.pdf [ac-
cessed 25 April 2013]) (168). The rationale for this is that the GDH
and molecular assays have high NPVs and can be used to expedite
the exclusion of C. difficile infection. It has been proposed by the
NHS that patients who are positive for C. difficile by a molecular
assay but who are negative for toxin by EIA methods can be de-
clared “potential C. difficile excretors,” and the decision may be
made to apply isolation precautions for C. difficile for these pa-
tients, but they do not require treatment for disease; other causes
of the patient’s diarrheal illness should be considered at this point
(168, 169). This approach of a NAAT test followed by a toxin EIA
is very uncommon in the United States. At the time of preparation
of this article, the data supporting these recommendations are
under review for publication.

Antimicrobial susceptibility testing. The most commonly pre-
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scribed antimicrobial therapy for C. difficile infection is metroni-
dazole or oral vancomycin. As the concentrations of these drugs in
the feces are typically high, treatment failures are rarely thought to
be due to resistance of the organisms to the antimicrobial therapy
(34, 170). However, metronidazole concentrations in the stool
can be variable depending on the consistency of the stool and the
amount of inflammation in the gut. Some studies have demon-
strated that more treatment failures occur with metronidazole
therapy than with vancomycin and that higher rates of recurrence
are observed in severely ill patients whose C. difficile-associated
disease (CDAD) is treated with metronidazole (171, 172). In ad-
dition, there have been sporadic reports of C. difficile isolates with
increasing MICs of metronidazole (173-176). The method cur-
rently recommended by the Clinical and Laboratory Standards
Institute (CLSI) for C. difficile antimicrobial susceptibility testing
is the agar dilution method using Brucella agar supplemented with
hemin, vitamin K, and 5% (vol/vol) laked sheep blood (177). For
metronidazole and C. difficile, an MIC of <8 g/ml is considered
susceptible. The agar dilution method is very technically demand-
ing and labor-intensive. While this method may be appropriate
for epidemiological studies, it is difficult to implement for routine
use in the clinical laboratory. Several studies have evaluated the
use of disk diffusion and/or Etest/gradient diffusion methods, as
these are more amenable for routine use; however, there is much
variability in the methods that laboratories use to perform these
tests, including the use of both 5-pg and 30-pg disks, different
medium formulations, and different incubation times (178—180).
No CLSI standardization or guidelines for disk diffusion or Etest for
C. difficile have been established. In general, these methods exhibit
good agreement with one another and with agar dilution methods
(178), although the MICs obtained by using the Etest are slightly
lower than those demonstrated by agar dilution (179, 180).

EVOLVING EPIDEMIOLOGY

Clinical Implications of Strain Typing

Epidemiology. The epidemiology of C. difficile has been in a state
of flux over the last 2 decades. There has been an increase in the
incidence and severity of CDI in North America and Europe since
the early 2000s, and in 2003, the first reports emerged from Que-
bec, Canada, of a 4-fold increase in CDI rates (26, 181, 182). Dur-
ing 2005, an increase in the rate of C. difficile infection was noticed
around North America, with a large number of cases being attrib-
uted to NAP1/ribotype 027 strains, which exhibited high-level re-
sistance to fluoroquinolones; this trait is thought to be one of the
main factors contributing to the success of the rapid spread of this
strain type, although the increased toxin production observed in
vitro has also been postulated to contribute to the high rate of
outbreaks of this strain (29, 30, 46-50). Retrospective analysis
revealed that ribotype 027 strains were isolated as early as 1958. It
appears that different lineages evolved with phenotypic distinc-
tions resulting in different antimicrobial susceptibility patterns
and toxin production. Ribotype 027 has an 18-bp deletion and a
frameshift mutation due to a single-base-pair deletion at position
117 of tedC (183) that results in a truncated TcdC that lacks func-
tion. TcdC is a negative regulator of toxin A and toxin B produc-
tion, and the resultant hyperproduction of toxin is thought to
contribute to increased virulence. Increased sporulation capacity
has been hypothesized to contribute to increased transmission of
this strain type (46, 49). In contrast, other studies have shown that
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ribotype 027 is not more virulent than other strain types (184,
185) and that the sporulation rate and toxin production rate are
not linked to strain type (170, 186, 187), so this remains an area of
controversy.

The increased incidence and severity of C. difficile disease have
pushed C. difficile to the forefront as an important public health
problem (34, 182, 188-190). As a result, accurate and timely iden-
tification of patients with C. difficile infection has been an area of
focus for clinical laboratories in recent years.

In addition to the clinical importance of the evolving epidemiol-
ogy of C. difficile, changes in circulating strain types are also of impor-
tance for clinical laboratories. For example, with the emergence of
toxin A-negative strains associated with severe clinical disease, assays
that rely solely on detection of toxin A are generally no longer used
(36, 84, 191) (Table 6). It has also been reported that assay perfor-
mance might vary depending upon the strain type (118).

Community-acquired C. difficile infection. Although C. diffi-
cile is the number one cause of hospital-acquired diarrhea, it is not
exclusively a nosocomial pathogen (34, 192). Numbers of cases of
community-acquired and community-associated infection are in-
creasing worldwide; around the world, up to 25% of cases are com-
munity acquired, and these patients may not have the traditional risk
factors for CDI, such as advanced age, antibiotic exposure, and med-
ications to suppress gastric acid (188, 192-195). A pilot study was
recently conducted whereby whole-genome sequencing (this method
is discussed in more detail below) was performed in almost real time
to evaluate C. difficile transmission. In this analysis, samples from all
of the cases detected over a 6-week period in a single hospital were
sequenced and compared with local strain sequences from the previ-
ous 3 years. This analysis suggested community transmission, which
was not previously suspected (196).

Transmission in food has been proposed as a plausible and
enticing explanation for community-acquired disease. While C.
difficile has been isolated from food, food-borne transmission of
disease has not been demonstrated, even though the predominant
strain types isolated in food are ribotypes 027 and 078, strains well
established to cause human disease (197-201). One recent study
reported C. difficile recovery from 5 out of 119 seafood and fish
samples from a grocery store (all of which were of ribotype 078)
(200); in contrast, a large survey that tested for C. difficile in 1,755
retail meat samples from across the United States (ground beef,
ground turkey, chicken breast, and pork chop) found that no C.
difficile was isolated from any of these specimens (198), which
suggests a low prevalence of contaminated meat products. Thus,
the true impact of food as a vehicle for C. difficile transmission
remains to be clarified.

Strain Typing Methods

A number of characteristics are important for strain typing. Some
of the most important properties are the ability of the method to
group related isolates, the ability to differentiate unrelated iso-
lates, typeability (i.e., the ability to resolve isolates as similar or
distinct in an unambiguous manner), reproducibility (intra- and
interlaboratory), and cost-effectiveness, and if possible, the inter-
pretation should be objective (202). The different typing methods
employed embody various degrees of each of these characteristics.
The “discrimination index” (D) is a metric that has been devised
to compare the abilities of different typing methods to discrimi-
nate unique strains as different and is based on Simpson’s index of
diversity (203, 204). Values for D range from 0 to 1, and the closer
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the value is to 1, the more discriminatory the method. Historically,
strain typing methods relied on phenotypic patterns such as anti-
microbial susceptibility profiles, serotyping with slide agglutina-
tion methods, immunoblotting, or bacteriophage patterns. To-
day, most typing methods for microorganisms are based on
molecular analysis.

There has been great interest in strain typing of isolates of C.
difficile for a number of reasons (205). The first is for epidemio-
logical purposes at a global level, both to evaluate the strain types
circulating in different parts of the world and to evaluate the evo-
lution of these strain types. At the local level, strain typing can be
used to track transmission and outbreak events. From the per-
spective of diagnostic testing, it has been proposed that the per-
formance characteristics of some of the available assays may vary
depending upon the strain type, which could be of great clinical
and public health importance (118). As more and more laborato-
ries make the shift to molecular methods for C. difficile detection,
it will be important to monitor trends in the circulating strain
types to ensure that C. difficile variants that may arise have con-
served nucleic acid sequences in the regions targeted by these mo-
lecular assays, or we may see a shift in the sensitivity of the molec-
ular assays over time.

From the perspective of patient care, it is postulated that strain
typing might be important in some circumstances, although rou-
tine strain typing of all isolates is not currently indicated. Some
strain types may be more correlated with risk of recurrent disease,
although more investigation is needed to confirm this (2). In ad-
dition, new antimicrobial therapies for C. difficile are emerging,
such as fidaxomicin. Fidaxomicin is much more costly than tradi-
tional therapies for C. difficile, such as metronidazole or vancomy-
cin. Early studies evaluating fidaxomicin suggested that the effi-
cacy of this drug and/or risk of relapse on this drug may be variable
with the C. difficile strain type. For example, Louie et al. reported
that the rate of recurrence of non-NAP1 C. difficile infection was
significantly lower with fidaxomicin (156). Considering the cost of
this drug, if these initial findings are replicated in other studies, it
could result in an increased demand for real-time strain typing to
determine which patients are best suited to receiving this therapy.

In the future, there may be a role for strain typing of isolates
from patients with recurrent C. difficile disease in order to ascer-
tain if these patients have a relapse of the strain originally causing
the infection or if they have acquired or become reinfected with a
new strain from the environment. It is possible, with more data,
that this type of information may change how clinicians caring for
these patients stratify treatment options for individuals with re-
current disease.

A number of different strain typing methods for C. difficile have
been described and evaluated. To date, only one major study has
compared a number of these techniques simultaneously: Killgore
and colleagues evaluated restriction endonuclease analysis,
pulsed-field gel electrophoresis (PFGE), PCR-ribotyping, multi-
locus sequence typing (MLST), multilocus variable-number tan-
dem-repeat analysis (MLVA), amplified fragment length poly-
morphism analysis, and surface layer protein A gene sequencing
typing (206). The analysis included a relatively small sample set of
42 isolates from four countries. While this study was biased to-
ward NAP1 strains, it did provide an assessment of how these
typing methods related to one another. The strain typing tech-
niques for C. difficile that are used most frequently clinically or for
outbreak investigations are described in more detail below.
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Pulsed-field gel electrophoresis. PEGE was one of the first mo-
lecular typing methods used for C. difficile, and it is typically still
considered the standard for C. difficile typing in North America.
PFGE involves digestion of genomic DNA with a restriction en-
zyme that is a “rare cutter,” or infrequently cuts the genomic
DNA; for C. difficile, Smal is commonly used (207). The resultant
DNA fragments are separated by using agarose gel electrophoresis,
but the electric field is repeatedly switched in three different direc-
tions during this process (pulsed field). This allows resolution of
large fragments of DNA that would not be possible using conven-
tional agarose gel electrophoresis. The resulting banding patterns
are referred to as “North American pulsed-field” (NAP) types.
Strains with >80% similarity are usually regarded as a single pul-
sotype, although there can be a great deal of subjectivity in inter-
pretation of the banding patterns, especially when differences be-
tween the test strain and the reference strains are slight. In the
typing method comparison study by Killgore et al., the D value for
PFGE was reported to be 0.843 (206).

Ribotyping/PCR-ribotyping. Ribotyping is the strain typing
method used most frequently for C. difficile in Europe. This
method is based on amplification of the intergenic spacer (ITS)
region between the 16S and 23S rRNA genes. This operon has
several copies in the C. difficile genome, and the different copies
vary in length. Therefore, a single primer pair can result in a pat-
tern of bands, usually ranging from 200 to 700 bp (208, 209). The
bands can be resolved, visualized, and compared on an agarose gel
or by using commercial kits or analysis software (206, 208-210).

Two major primer sets have evolved for PCR ribotyping: the
“United States” primers and the “United Kingdom” primers
(206). The primers described by Stubbs et al. appear to be more
discriminatory for C. difficile strains than the primers described by
Bidet et al. (208, 209). In general, PCR-ribotyping exhibits good
discriminatory power but may not be able to differentiate between
strains of the closely related ribotypes 027, 106, and 017 (211). In
the method comparison study by Killgore et al., the D value for
PCR-ribotyping using the U.S. method was 0.700, and that using
the United Kingdom method was 0.688 (206).

It can be difficult to compare banding patterns between labo-
ratories if analysis software is not used. To circumvent the issues
related to manual interpretation of banding patterns, PCR-ri-
botyping has recently been adapted to high-resolution capillary
gel electrophoresis, which has improved the reproducibility of ri-
botype interpretation (212). In the United Kingdom, work is on-
going to standardize ribotyping protocols across the country using
this method.

In the United States, no natural or mandated surveillance sys-
tem is in place for C. difficile. In contrast, England has instituted a
C. difficile reporting program, whereby isolates are submitted to a
central laboratory and a portion of these isolates are ribotyped to
monitor epidemiological trends. Figure 1 depicts the presence of
different ribotypes in England by quarter from 2007 to 2009 (213).
In North America, ribotype 027 is predominant, although ri-
botype 078 is emerging. New ribotypes of clinical significance con-
tinue to emerge; two of the newly described ribotypes, 176 and
198, are closely related to ribotype 027 (and can be mistaken for
ribotype 027, depending upon the methodology used) (214).
These ribotypes all cluster together by multilocus sequence typing,
suggesting coevolution of these strain types and a common ances-
try. The fact that North America relies largely on PFGE and Eu-
rope relies largely on PCR-ribotyping for strain typing and strain
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FIG 1 Prevalence of C. difficile ribotypes in England, 2007 to 2011. Data are stratified by quarter. (Reproduced from reference 213 with permission from Public

Health England.)

designation can at times make interlaboratory exchange and epi-
demiological comparisons difficult. A limitation of both PFGE
and ribotyping methods is that laboratories require a library of
reference isolates for comparison in order to provide a “name” for
strain types, and outside reference or public health laboratories,
relatively few centers have access to such a library of strain types.

Multilocus variable-number tandem-repeat analysis. MLVA
is emerging as a typing method for C. difficile to be used in out-
break investigations and appears to be discriminatory enough to
monitor transmission events in the hospital setting (211, 215-
217). This method uses multiple variable-number tandem-repeat
(VNTR) loci, which are dispersed throughout the genome and
vary with regard to level of diversity to resolve phylogenetic rela-
tionships between isolates. The amplicons that are obtained are
resolved by using capillary electrophoresis, followed by auto-
mated analysis of the fragments. The “summed tandem-repeat
difference” (STRD) is used as a measure of genetic difference be-
tween isolates. To date, a consensus approach toward MLVA typ-
ing for C. difficile has not been established. Various approaches to
MLVA have been reported in the literature, each evaluating seven
loci on the C. difficile genome (215, 216, 218). Manzoor and col-
leagues reported an approach which they term “extended MLVA”
(eMLVA), which uses eight novel loci in addition to the seven loci
previously reported (211). Using 229 previously ribotyped isolates
from diverse locations around the world between 1996 and 2010,
this group was able to efficiently subtype all of the isolates in the
study while clustering like isolates concordant with PCR-ribotyp-
ing. The D value reported for this eMLVA method was 0.999,
whereas PCR-ribotyping for the same group of isolates resulted in
aDvalue 0f0.886 (211). Wei et al. evaluated 142 C. difficile isolates
by MLVA using different numbers of loci to devise a scheme with
an adequate discriminatory index but with correlation to estab-
lished PCR-ribotypes (219). Using various combinations of
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VNTR loci, they devised MLVA schemes, each with discrimina-
tory indices of 0.99, compared to PCR-ribotyping, which had a D
value of 0.96 for the same subset of isolates. The reported D value
for MLVA in the method comparison study by Killgore et al. was
0.964 (206).

MLVA can be useful for outbreak investigations and studies
evaluating local transmission events, but as of yet, it remains non-
standardized; there is no established method or naming scheme
that is portable across laboratories. MLVA is discriminatory and
reproducible, and if agreement can be reached regarding the op-
timal method, the results could be portable and provide interlabo-
ratory comparability.

Multilocus sequence typing. MLST is now commonly used on
many pathogens to assess the general population structure and
overall diversity within a species. MLST typically uses allele frag-
ments that are 300 to 600 bp in length; the historical reason for this
is that fragments of this size can be reliably and reproducibly read
on a single sequencing run using Sanger sequencing methods.
Most MLST schemes use between 6 and 12 loci, whereby each
unique combination of alleles is assigned its own sequence type
(ST), and databases of MLST data and STs are available in the
public domain (220, 221). The loci used are typically housekeep-
ing genes, as these are relatively conserved within a species, but
variants within these housekeeping genes can be used to distin-
guish strains. Essentially, isolates are grouped based on their evo-
lutionary proximity. When a novel allele is found, the investigator
can apply to have it added to the ST database. This platform there-
fore allows for portability of results between different laboratories;
on the Internet, freely accessible, curated databases of ST exist,
making this method portable between laboratories (220).

C. difficile is theoretically well suited to MLST, as the species is
relatively genetically heterogeneous. MLST was first described for
C. difficile typing in 2004 by Lemee and colleagues, who used seven
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housekeeping genes (aroE, ddl, dutA, tpi, recA, gmk, and sodA) to
analyze a group of C. difficile isolates (222, 223). The D value for
this method was calculated to be 0.958 (222). This was followed by a
study by Griffiths et al., who performed MLST on 152 isolates of C.
difficile isolated in culture, representing 49 ribotypes. The D value of
the MLST method was 0.90, which was roughly comparable to the D
value for PCR-ribotyping of the same collection, 0.92 (224). This
group also applied this MLST typing scheme directly to stool speci-
mens (rather than cultured isolates of C. difficile), with good success.
For a small number of the stool specimens, sequencing failed as a
result of inadequate amplification directly from the stool specimens.
For the specimens where adequate amplification was obtained, the
MLST data correlated with the ST of the isolate recovered in culture.
The D value reported for MLST in the study by Killgore et al. was
0.699, which is lower than that reported by Lemee et al. and Griffiths
et al. (207). This may reflect the fact that the study by Killgore et al.
contained a larger proportion of NAP1/ribotype 027 strains and
therefore inherently represented less diversity than the other two in-
vestigations (206, 222, 224).

Whole-genome sequencing. Whole-genome sequencing (WGS)
has the potential to be the “ultimate” typing method, and the extra
resolution can facilitate evaluation of specific transmission events
within clusters or outbreaks (225, 226). Historically, WGS had
been considered to be too expensive and cumbersome, with a
turnaround time inadequate for real-time outbreak investiga-
tions. However, the cost is decreasing consistently, while the speed
and throughput of WGS continue to improve (227-229). One
challenge or limitation to WGS is still the analysis; adequate bioin-
formatics are required to make use of the enormous amounts of
data that are generated.

Recently, WGS was used to study the transmission of C. difficile
whereby WGS was performed on 486 samples from cases docu-
mented over 4 years in Oxfordshire, United Kingdom (230), using
the Illumina platform. This analysis identified instances of direct
transmission for a subset of the isolates, but direct transmission
was ruled out for the majority of isolate pairs where direct trans-
mission events would have been suggested by using conventional
molecular typing techniques. In another pilot study, benchtop
WGS was performed in almost real time to evaluate a C. difficile
outbreak; samples from all cases identified over a 6-week period in
one hospital were sequenced and compared with local strain se-
quences from the previous 3 years. Analysis of these strains illus-
trated that WGS could provide early outbreak detection and also
suggested community transmission, which was not previously
suspected (196).

The ribotype 027/NAP1 strains have emerged worldwide and are
widespread in health care facilities. While the underlying reasons for
this are postulated and described in previous sections of this paper,
the reason for the rapid emergence and spread around the globe re-
main unknown. WGS also has a role in answering this question. He et
al. used WGS for phylogenetic analysis and surprisingly found that
two distinct lineages of this epidemic strain emerged in North Amer-
ica, termed FQR1 and FQR2 (45); they both acquired the same fluo-
roquinolone resistance-conferring mutation and a closely related
transposon. The FQR?2 lineage became more widespread, leading to
outbreaks associated with health care institutions in Europe, the
United Kingdom, and Australia (45).

WGS is reproducible and portable and does not require a library
of established isolates for strain type determination. Although the
cost and turnaround time continue to limit the routine use of WGS at
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the time of preparation of the manuscript, it is likely that WGS will be
more widely adopted for C. difficile strain typing in the future.

TESTING CONSIDERATIONS FOR THE CLINICAL
MICROBIOLOGY LABORATORY

Several professional societies and other organizations have pub-
lished guidelines for the diagnosis and treatment of C. difficile
disease (52,101, 231,232). These organizations include the SHEA/
IDSA in the United States (52), the European Society of Clinical
Microbiology and Infectious Diseases (ESCMID) (101), and the
Australian Society for Infectious Diseases (232). All of the guide-
lines have a list of patients for whom a diagnosis of C. difficile
disease should be considered; they also recommend that any hos-
pitalized patient who has =3 unformed stools in a 24-h period
should be tested. It is recommended that testing be performed
only on unformed stool except in rare instances, such as an ileus
(232). Laboratories should have specimen rejection policies that
restrict testing to watery, liquid, or unformed stools that take the
shape of the container. Asymptomatic patients should not be
tested, even for test of cure.

Repeat testing is of limited value but is still somewhat contro-
versial. The practice of sending “stools for C. difficile times three”
became the established norm in many clinical laboratories after
the widespread implementation of insensitive enzyme immuno-
assay methods (233) (the reader is referred to the section above on
EIA testing for more details). Physicians would send multiple
specimens to the laboratory to compensate for the poor perfor-
mance of these tests. Numerous studies have demonstrated that
regardless of the testing method, EIA (149, 234-236), cell culture
cytotoxicity neutralization assays (237, 238), or NAATSs (149, 239,
240), and the patient population tested, sending of repeat samples
does not increase the yield and can be misleading, as the positive
predictive value drops with each subsequent test (149). One sys-
tematic review of the literature noted that the yield with a second
EIA after an initial negative result dropped to 1.5 to 4.7% in hos-
pitalized patients (241). In an outbreak situation, this review and
other studies noted that the yield of repeat testing may be higher
(5%), suggesting that outbreak situations may be the one situation
where repeat testing may be helpful (234, 241). At least one study
has demonstrated that substantial cost savings may be incurred by
eliminating duplicate testing without adversely affecting patient
care (239). Since longitudinal studies suggest that after 7 days, the
frequency of positive results begins to increase again, most likely
reflecting new infections as opposed to false-negative tests (101,
234), many laboratories have implemented a 7-day rule; that is,
repeat tests following an initial negative result will not be per-
formed within a 7-day period of time.

SPECIAL PATIENT POPULATIONS

Children

High rates of C. difficile colonization have been well documented
in infants less than 1 year of age (242-245). Infants who are breast-
fed appear to have lower carriage rates (14%) than formula-fed
infants (30%) (246). One study illustrated that infants were usu-
ally colonized with a single clone of C. difficile and that they were
colonized for several consecutive months (242). Once new foods
are introduced to infants, they may acquire new strain types of C.
difficile (242).

Infants are almost invariably asymptomatic, although it can be
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difficult to discriminate asymptomatic carriage from true disease
ininfants <1 year of age. The mechanism and pathobiology of this
asymptomatic colonization in neonates are unknown, but many
hypotheses, including passive transfer of protective maternal an-
tibody and a protective fecal microbiome in infancy, have been
offered. There is some thought that infants lack the receptor for
the toxin, but considering that the receptor for toxin B is as yet
uncharacterized, this remains unproven.

Both nosocomial and community-associated C. difficile infec-
tions are on the rise in the pediatric population (247-250). Be-
tween 2001 and 2006, one study reported an increase in the inci-
dence of C. difficile disease in children from 2.6 to 4.0 cases per
1,000 hospitalized children (247); similarly, another study evalu-
ated C. difficile in hospitalized pediatric patients and found that
from 1997 to 2006, the incidence of C. difficile disease was 35 per
10,000 hospitalizations in children 5 to 9 years of age (249). NAP1
strains have been recovered from pediatric patients (251, 252).

Many pediatric institutions are converting or are in the process
of converting to molecular methods for detection of C. difficile
infection. When molecular testing is used on pediatric samples,
the increased sensitivity leads to an apparent increase in the inci-
dence of C. difficile disease in pediatric patients, just like adults.
Few studies have evaluated the performance characteristics of var-
ious diagnostic assays for pediatric patients specifically. One of the
first studies usinga NAAT for pediatric patients was conducted by
Luna et al., who tested 157 samples from 96 pediatric patients;
toxigenic culture was the gold standard in this investigation. The
laboratory-developed PCR assay used in this study was found to
be 95% sensitive (253), and once the PCR assay was implemented
(2007 to 2010), the overall volume of testing remained constant,
but the C. difficile positivity rate nearly doubled compared to when
the TechLab Tox A/B II EIA was used (2003 to 2006) (253).

Selvaraju et al. examined 200 stool samples from pediatric pa-
tients using toxigenic culture as the gold standard. Those re-
searchers evaluated the C. Diff Quik Check Complete, BD
GeneOhm, and ProGastro Cd PCR assays. The sensitivity and
specificity of each of these assays were as follows: 97.9 and 82.2%
for C. Diff Quik Chek Complete, 89.6 and 96.7% for GeneOhm
PCR, and 100 and 93.4% for ProGastro PCR, respectively (122).
In this study, a retrospective chart review was performed for all
patients who were positive for C. difficile by PCR methods only;
for 3 of these patients, C. difficile was a plausible diagnosis, but for
the remaining 8 patients, the clinical picture was not compatible
with a diagnosis of C. difficile. The authors of this study concluded
that future prospective studies of pediatric patients are needed to
fully elucidate the clinical significance of a positive NAAT assay for
C. difficile as well as the economic impact of NAAT testing in this
patient population (122).

A study by Ota and McGowan evaluated GDH, toxin EIA, and
NAAT assays, alone and as part of multistep algorithmic ap-
proaches. This was a prospective study including 141 samples
from patients aged 1 to 18 years (64). Similar to the findings of
Selvaraju et al., and similar to assay evaluations of adult patients,
the conclusions of this study were that toxin EIA had the lowest
sensitivity for C. difficile detection (56%) and that a molecular
assay (the Illumigene C. difficile assay) exhibited increased sensi-
tivity (89%), although the sensitivity of this assay in this popula-
tion is somewhat lower than what has been reported in other stud-
ies (64). This study does not reveal an assay that is clearly superior
for the diagnosis of C. difficile infection in pediatric patients.
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Although molecular methods may be problematic for C. difficile
diagnosis in pediatric patients, toxin EIAs may also produce false-
positive results. Toltzis and colleagues performed toxigenic cul-
ture on 112 stool specimens from pediatric patients that had pre-
viously tested positive for C. difficile by the Meridian Premier
Toxin A & B assay (254). Those authors found that toxigenic C.
difficile could be isolated from only 72 of these specimens. The
average age of the children with EIA-positive, culture-negative
samples was significantly lower than that of the children with EIA-
positive, culture-positive samples (0.53 years versus 2.86 years;
P =0.002), but otherwise, no differences between the two groups
of patients were detected (254). Thus, the PPV of a positive EIA for
C. difficile in pediatric patients is also suboptimal, which is
thought to be related to the low pretest probability for disease in
the patients. No methodology is clearly superior for making the
diagnosis of C. difficile disease in this patient population.

It should be noted that not all of the FDA-cleared C. difficile assays
have been evaluated or are approved for testing of specimens from
patients <2 years of age. It is incumbent upon laboratories perform-
ing these tests to confirm the indications for their assay and perform
additional validation and verification if appropriate.

The American Academy of Pediatrics has recently released a
policy statement on C. difficile infection in infants and children
(255). The guidelines caution that testing for C. difficile should be
performed only for children who meet the criteria for clinically
significant diarrhea and that test results for infants <1 year of age
can be difficult to interpret due to high rates of asymptomatic
colonization. Some of the general recommendations of this doc-
ument are that for children >3 years of age, diagnostic testing can
be performed as it would be for adult patients. In children 1 to 3
years of age with diarrhea, causes other than C. difficile (such as
viral causes) should be considered and tested for in addition to C.
difficile when C. difficile is suspected. The guidelines also caution
that no diagnostic test should be used as a test of cure, just as is the
case for adult patients.

Oncology Patients (Nontransplant)

Risk factors for C. difficile infections among oncology patients
include chemotherapeutic agents; antibiotics, especially cephalo-
sporins and clindamycin; frequent hospitalizations; and pro-
longed neutropenia (256-258). While it might be anticipated that
cancer patients receiving chemotherapy will have a severe course
and increased risk of death compared to other hospitalized pa-
tients, in at least one study, this was not the case (259). In a study
by Stewart et al., patients with hematological malignancy and C.
difficile disease had zero colectomies to control disease, compared
to four colectomies in the group without malignancy (259). No
differences were noted in terms of other markers of disease sever-
ity, such as the need for intensive care unit admission (259). The
only difference noted was a longer length of stay for patients with
C. difficile colitis and malignancy (259). This study was limited by
the small numbers of patients.

Solid-Organ Transplant Recipients

Longitudinal studies have shown a dramatic increase in the inci-
dence of C. difficile among solid-organ transplant (SOT) recipi-
ents that parallels that of the disease in the general population and
other at-risk groups. In a study by Boutros et al., the incidence of C.
difficile disease was 4.5% in 1999, peaked at 21.1% in 2005, and pla-
teaued at 9.5% in 2010 (260). These authors also noted that signifi-
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cant independent risk factors for C. difficile disease included a trans-
plant other than kidney, age of >55 years, and induction with
antithymocyte globulin (260). Once a patient with a SOT develops C.
difficile disease, there is an independent association with greater mor-
tality; longer length of stay, with the associated increased costs of
hospitalization; more complications associated with the transplanted
organ; and an increased need for colectomy (261).

Hematopoietic Stem Cell Transplant Patients

Diarrhea is common among hematopoietic stem cell transplant
(HSCT) recipients, but until recently, C. difficile was relatively
uncommon (262). A recent review reports the incidence of C.
difficile disease among HSCT patients to be as high as 20% (263).
In most studies, there do not appear to be any unique risk factors
among HSCT recipients that are not shared by other nontrans-
plant at-risk patients (256, 263). However, in a large study by
Dubberke et al., patients who received a third- or fourth-genera-
tion cephalosporin were more at risk for development of C. diffi-
cile disease (264). This study also demonstrated that the receipt of
growth factors was associated with decreased risk (264). These
findings, especially the potentially protective effect of growth fac-
tors, need to be verified by prospective studies.

Once patients develop symptomatic C. difficile disease, the in-
cidence of graft-versus-host disease (GVHD) greater than grade 2
and mortality not related to relapse of the underlying malignancy
are higher than in uninfected patients (264, 265). In a study by
Alonso et al., there was a strong relationship between early C.
difficile disease and the development of GVHD in the year follow-
ing infection. More prospective studies assessing the relationship
between C. difficile and GVHD are needed (266).

Patients with Inflammatory Bowel Disease

As is the trend among the general population, studies have shown
that the frequency of C. difficile disease among patients with in-
flammatory bowel disease (IBD) has increased by 2- to 3-fold
since 2000 (267-269). In contrast to what is observed for the non-
IBD population, two studies demonstrated that 66 to 75% of IBD
patients acquired infection in the outpatient setting and that only
61% had recent antibiotic exposure (267, 268). Risk factors for C.
difficile infections in IBD patients from these and other studies
include increasing age, comorbidities, malignancies, and immu-
nomodulatory therapy (267, 268). Immunosuppression increases
the risk 2-fold (270). Several studies reported an increased risk of
disease in patients with ulcerative colitis (UC) (colonic disease)
compared with those with Crohn’s disease as well as a greater risk
with pancolitis than with distal disease (267, 270, 271). These ob-
servations have resulted in the recommendation that any IBD pa-
tient with symptoms severe enough to result in hospitalization
should be tested for C. difficile upon admission, even in the ab-
sence of traditional risk factors such as antibiotic exposure (269,
271). Since there are no distinguishing clinical features that dis-
criminate a flare of inflammatory bowel disease from diarrhea
associated with C. difficile, testing is warranted for any IBD patient
with significant diarrhea.

Many studies also demonstrated that C. difficile can contribute
substantially to increased morbidity and mortality among IBD pa-
tients compared to non-IBD controls (270, 272). Mortality, especially
among patients with UC; the need for bowel surgery; and duration of
hospitalization are all substantially increased (267, 270, 272).

While there appears to be a substantial impact on the course of
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IBD in patients with active C. difficile disease, more definitive lit-
erature is needed to prove that C. difficile actually causes a flare of
IBD. Likewise, there are no data to support that the various testing
methods for C. difficile diagnosis perform differently among these
patients than among controls. That said, as with non-IBD pa-
tients, patients with IBD can be asymptomatically colonized with
C. difficile, and therefore, the same criteria for testing, namely,
significant diarrhea, should be applied.

SUMMARY AND CONCLUSIONS

C. difficile continues to evolve, and the changing biology and
growing lists of patient groups at risk have resulted in an unprec-
edented surge in the incidence and burden of disease. This review
details the methods for diagnostic testing for C. difficile. New
strain types have emerged, which have led to a marked increase in
the incidence of C. difficile disease since the early 2000s. The in-
creased incidence of C. difficile disease has highlighted the lack of
sensitivity of the toxin EIAs that are used by most laboratories for
the diagnosis of C. difficile and has ushered in a new era of molec-
ular assays for diagnosis. At present, eight FDA-approved molec-
ular assays for C. difficile are on the market. However, these assays
do not solve the diagnostic uncertainty surrounding C. difficile, as
detection of C. difficile in a fecal specimen does not automatically
imply disease. C. difficile-associated disease is a clinical diagnosis
supported by laboratory findings; this diagnosis continues to be a
challenge for clinicians and laboratories alike.
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