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Diagnosis of Continuous Valued
Systems in Transient Operating Regions

Pieter J. Mosterman and Gautam Biswas, Senior Member, IEEE

Abstract— The complexity of present day embedded systems
(continuous processes controlled by digital processors), and the
increased demands on their reliability motivate the need for
monitoring and fault isolation capabilities in the embedded pro-
cessors. This paper develops monitoring, prediction, and fault
isolation methods for abrupt faults in complex dynamic systems.
The transient behavior in response to those faults is analyzed in
a qualitative framework using parsimonious topological system
models. Predicted transient effects of hypothesized faults are
captured in the form of signatures that specify future faulty
behavior as higher order time-derivatives. The dynamic effects
of faults are analyzed by a progressive monitoring scheme till
transient analysis mechanisms have to be suspended in favor
of steady state analysis. This methodology has been successfully
applied to monitoring of the secondary sodium cooling loop of a
fast breeder reactor.

I. INTRODUCTION

T
HE complexity and sophistication of the new generation

of engineered systems along with growing demands for

their reliability, safety, and low cost operation, is being met

by the use of more automated monitoring and fault detection

and isolation (FDI) subsystems. The goal is to accurately1

isolate problems and restore the system to normal operation

by making control changes to bring system behavior back to

desired operating ranges or at least a safe mode of operation.

This defines a paradigm for fault detection, isolation, and

recovery (FDIR).

Functional redundancy schemes use measured system vari-

able values with relations imposed by the system configuration

and functionality to analyze discrepancies among the mea-

sured values [20]. Deviations in measurement values can be

expressed in terms of changed component parameter values,

which are then mapped to faulty components. Traditional

functional redundancy schemes employ state and parameter es-

timation methods, adaptive filtering, and logic based schemes

for analysis [4]–[6].

System models capture relations between measured vari-

ables and system component parameters. FDI methods often
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employ failure models to establish the relations between

measurements and a pre-enumerated set of faults [9], [18], but

the disadvantage of this approach is that it fails to identify

unusual and novel faults. More general functional models

describe system behavior, and fault isolation is based on

analysis of reported deviations in the context of the given

model [1], [15]. Faults can be characterized as follows [4].

• Incipient faults occur slowly over time, and are linked

to the wear and tear of components and drift in control

parameters.

• Intermittent faults are only present for very short periods

in time, but sometimes can have disastrous consequences.

• Abrupt faults are dramatic and persistent, and they cause

significant deviations from steady state operations called

transients. In time the system either moves into a new

steady state or returns to its original steady state.

The difference in fault characteristics requires different

schemes for effective and reliable detection and isolation.

For example, parameter estimation methods which compute

parameter values from input-output relations work well for

incipient faults because the system changes slowly and tends

to remain in steady state [5].

Our primary focus is on abrupt fault analysis in continuous

dynamic systems. This makes it essential to track and analyze

system behavior at frequent intervals from the point of failure

so transient characteristics are not lost. Capturing behavior at

or very close to the point of failure is important, because,

as time progresses, compensating effects such as dynamic

feedback may begin to mask the effects of the fault. Moreover,

it may be impractical to rely on subsequent steady state

analysis because the system may take a long time to reach

a new steady state.

Fig. 1 illustrates a generic model based approach to fault

detection and isolation [5], [6]. A set of variables, called

observations, are monitored at frequent intervals. Deviations

in observations imply faults.

Definition 1 (Observation): An observation is a variable in

the system model that is measured.

Models that reason about dynamic behavior of the sys-

tem are utilized to predict operating values for the chosen

observations. Residuals, , are computed as the difference

between the observations, , and predicted normal behavior,

(Fig. 1). Nonzero residuals trigger the diagnosis algorithm.

The analysis of these residuals in the context of the model

generates one or more hypothesized causes, , that explain

the observed deviations. System models with imposed hypoth-

esized faults are then used to predict future system behavior.
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Fig. 1. Diagnosis of dynamic systems.

Continued monitoring and comparison with these predictions

helps refine the initial fault set, . Faults whose predictions

remain consistent with the observations establish the root-

causes for the observed failures. Monitoring, comparison, and

refinement continues till a unique fault has been isolated or

transient analysis has to be suspended. The overall process of

monitoring, hypothesizing faults, prediction, and fault isolation

with explicit system models as the core of the analysis scheme

is referred to as model based diagnosis.

In processes that operate mostly in steady state, nominal

values and their upper and lower limits can often be re-

trieved from design specifications or documentation created by

process engineers. For systems whose normal operation modes

include transients and dynamic behaviors, it is harder to de-

termine nominal values and thresholds from which deviations

in process variables can be derived [19]. A fairly accurate

process model that simulates system behavior under normal

conditions is required to run in parallel with the operating

process. In reality, approximations in the models and drift in

the system may result in the estimated state vector slowly

deviating from the actual system values. To prevent this, an

observer mechanism [6] is employed to make corrections to

the estimated state vector. A critical issue with observers

is the model adaptation rate, especially in case of incipient

faults. If this rate is too fast, the model quickly adapts to

changes in the system variables caused by the incipient faults,

therefore, the generated nominal values do not indicate a

deviation. The comparison of actual measurements to predicted

nominal values of measured system variables leads to fault

detection. To account for the effects of noise and measurement

inaccuracies, based on design documentation, a margin of error

is added to the nominal values to increase robustness and avoid

false alarms [19]. When error thresholds are exceeded, the

diagnosis system responds by setting corresponding alarms.

The monitoring stage plays a crucial role in successful fault

detection, isolation, and refinement. Monitoring parameters

such as sampling rates affect measurement interpretation,

and, therefore, fault hypothesis generation and refinement.

Depending on the monitoring implementation, certain faults

may or may not be distinguishable from others, and this deter-

mines the overall diagnostic accuracy. A critical and related

issue in FDI is sensor placement and measurement selection.

This is an integral component of diagnosability analysis,

i.e., choosing measurements that help isolate and differentiate

among possible faults that may occur in the system [9], [14].

This paper develops an integrated framework for monitoring,

prediction, and diagnosis from transients TRANSCEND, based

on the architecture presented in Fig. 1.

II. MODEL BASED DIAGNOSIS

Our approach to diagnosis uses qualitative dependency re-

lations between parameters and observed variables to generate

hypothesized faults from observed deviations and to predict

their future transient and steady state behavior.

A. Model Based Diagnosis System

In previous work, static models based on qualitative con-

straint equations [1] and signed directed graphs (SDG) [16]

led to under constrained models that caused combinatorial

problems in the diagnosis task. These system models did

not incorporate dynamics, therefore, temporal feedback effects

could not be dealt with, or had to be re-introduced on an ad

hoc basis [15].

1) Modeling for Diagnosis: Generating successful models

for diagnosis of continuous dynamic systems introduces a

unique set of requirements.

• The models should describe both normal and faulty sys-

tem behavior. The former provides the reference variable

values for the monitoring task, and the latter forms the

core for the prediction algorithm.

• The model should generate dynamic behavior under faulty

conditions, so fault transients can be predicted by the

model.

• The model should incorporate sufficient behavioral detail

so deviations in observed variables can be mapped back

to system components and parameters.

• When faults occur, the system may undergo a structural

change. Analyzing structural changes is beyond the scope

of this paper. However, they constitute an important

category of failures, so it is important to not preclude

them from the underlying framework. In parallel, we

have been developing modeling techniques that combine

discrete changes with continuous behavior analysis [11].

In addition, to constrain the inherently exponential search

space for diagnosis, it is important that the model impose all

relevant physical constraints on the search process. Also, given

the limits of purely qualitative and purely quantitative schemes

that have been discussed elsewhere [5], [6], [16], models that

generate and use both qualitative and quantitative information

are preferred to prevent loss of a priori information.

Analyzing the effects of abrupt faults is the key to successful

fault isolation. Abrupt changes in the parameter values of

energy storage elements may cause an abrupt change in some

measured variables [10], [13]. To illustrate, assume that at

time , a rock falls into an open tank with capacity , and an

outflow resistance for a connected outlet pipe (Fig. 2). The

capacity of the tank decreases abruptly to . Since ,

and , the amount of liquid in the tank is conserved (assuming

no overflow), the abrupt change in the capacitance value must

reflect as an abrupt change in pressure, , to . This

does not have to be the case always. For example, an abrupt

change in pipe resistance, may cause an abrupt change in

outflow, but not an abrupt change in .

2) Bond Graphs for Diagnosis: Bond graphs [17] provide

a systematic framework for building consistent and well con-

strained models of dynamic physical systems across multiple
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Fig. 2. Discontinuous change in tank capacitance.

domains. They include causality constraints that provide the

mechanisms for effective and efficient diagnosis. An added

advantage of bond graph representations is their direct ap-

plicability to qualitative processing, making them useful in

situations where precise numerical information may not be

available. Analytic system models derived from bond graphs

are also amenable to quantitative simulation and analysis.

Tangina et al. [21] derived analytic redundancy relations, and

Linkens and Wang [7] compute local qualitative relations for

fault isolation. Our work exploits the topological constraints

of bond graph model for efficient diagnosis.

To extend bond graph modeling to component oriented diag-

nosis requires establishing correspondence between individual

components and bond graph elements. In the bond graph

framework, primitive elements, such as resistors and capacitors

represent mechanisms which may not always be in one-to-one

correspondences with individual system components [2]. An

individual component may have multiple aspects represented

in the bond graph. For example, a component such as a pipe

may be represented in the bond graph by its build-up of flow

momentum and resistance to flow . Biswas and Yu

[2] describe a compositional methodology for deriving bond

graph models for diagnosis from a physical system description

so that the bond graph elements directly correspond to system

components and mechanisms under diagnosis scrutiny. The

modeling methodology is further developed by Mosterman and

Biswas [11], [13]. In our framework, a fault manifests as a

deviation of a component parameter in the bond graph model.

Definition 2 (Fault): Faults are defined by model parame-

ters that have deviated from their normal operating values.

B. Diagnosis from Transients

Abrupt faults like sudden blockages in pipes create tran-

sients in dynamic system behavior. This differs from a pipe

that slowly accumulates dirt creating an incipient fault, which

is more likely to cause a gradual drift in the system steady

state behavior.

1) Characterizing Transients with Time Constants: Time

constants play a key role in characterizing the dynamic behav-

ior of physical systems. Faults cause instantaneous changes

in some system variables. For other variables, energy stor-

age elements acting as buffers introduce propagation delays

and changes take longer to manifest. In general, variables

with larger time constants take longer to produce observ-

able changes when compared to variables with smaller time

constants. If measurement snapshots are available from the

Fig. 3. Delay times of two first order systems (�1 and �2), their
sum (�1 + �2), and the actual delay time of their combined effects
(F (t; �1) � F (t; �2)).

(a) (b)

Fig. 4. Delay times for observing deviations.

system at rates that are faster than the smallest time constant, it

becomes easier to track transients, and relate them to primary

fault causes. In this work, without much discussion, this is

assumed to be true.

Assumption 1 (Time Scale of Observation): Observations

are sampled at rates that are faster than modeled system time

constants in both normal and faulty operation.

Physical systems are inherently continuous, and hypothesized

abrupt changes (e.g., the abrupt pressure change caused by

the falling rock) actually occur on time scales smaller than

the sampling rate for the observations. Therefore, they seem

to manifest as discontinuous changes, but this is a sampling

artifact attributed to the time scale of observation.

Definition 3 (Discontinuity): A change in a signal value

that takes place on a time scale much smaller than the time

scale of observations is classified as abrupt, and called a

discontinuity.

Observed transients in system behavior may be affected

by the combination of multiple time constants in subsystems

that define the overall delay. The combined effects are a

convolution rather than the sum of individual time constants

[10]. As an illustration, Fig. 3 shows the step response of two

first order systems with time constants and , respectively.

The combined effect of these systems is given by

(convolution) whereas the sum of their individual

delay times is shown by . Tracking of the measured

values will produce significant error if the sum of the time

constants is used instead of the convolution. This approach is

further complicated by the fact that nominal time constants

change when faults occur.

A qualitative framework mitigates this tracking problem to

some extent but introduces problems in temporal ordering.

Qualitatively, a measurement is considered normal if it is

within a certain percentage (say 2%–5%) of its nominal value

and deviant otherwise. Fig. 4(a) shows two variables affected

by a fault, a first order effect, , and a second order effect, .

The delay times, i.e., the time before these variables cross the

error threshold are and , respectively. At times between
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and is reported deviant but is reported normal.

Although embodies a second order effect with a zero value

first-order derivative at the point of failure, it crosses the

error threshold before a first order effect. This is contrary to

expectations; a first order effect is expected to dominate (i.e.,

be much faster than) a second order effect. Fig. 4(b) compares

two signals whose first order time constants are equal. The

pure first order effect is faster than the signal that combines

the first order effect with a second order effect.

This brings up an important issue when dealing with normal

values and deviations from normal in a qualitative reasoning

framework. A temporal ordering of first and higher order

effects in studying deviations from normal is, in general,

impossible unless the sensor system is wired and calibrated

with extreme care to guarantee a temporal ordering in response

times. Also, an observation being reported normal at a given

time may actually be a slowly changing value that has not

crossed the threshold, and, therefore, it should not be used

to refute faults. This invariably produces contradictions in

consistency based diagnoses.

In our approach, deviant observations are individually an-

alyzed to generate sets of single fault hypotheses. Normal

observations are not necessarily used to refute faults because

it is hard to differentiate between a truly normal signal

versus one that is changing slowly and will cross the normal

threshold at some future point in time. Only in situations

where discontinuities can be reliably detected can normal

observations be used to refute faults that would cause a

discontinuous change for that observation.

2) Feature Detection: Individual signal features are the

prime discriminating factor between competing fault hy-

potheses. Signals can be noisy, therefore, prudence must

be exercised in distilling information from them. Magnitude

or zero order changes are measurable within a given error

tolerance that is determined by the properties of the associated

sensors. Slopes or first order derivatives can be reliably

computed from measured signals in a qualitative framework

[no change (0) and increasing or decreasing ] using

standard filtering techniques. However, the measurement or

derivation of higher order derivatives produces unreliable

results [3]. Dedicated transducers, such as accelerometers,

may be employed to measure second derivatives, but only for

specific kinds of measurements. Therefore, our monitoring and

feature detection subsystem focuses on making magnitude and

slope measurements. Like magnitude, a slope that is currently

within bounds and labeled normal (0) cannot be used to derive

diagnostic conclusions because its value may change with

time. Only when the measured slope deviates significantly

from the expected value is this value directly used for fault

isolation and refinement.

Specialized algorithms may be employed to derive other

useful features from signals in a qualitative framework. For

example, a simple discontinuous change detection mechanism

can be based on observing that the magnitude and slope

of an observed signal at the time point of failure have

opposing signs. This discontinuity detection scheme has been

successfully applied to systems in the hydraulics domain.

Not all discontinuities take this form, and, therefore, the

Fig. 5. Bi-tank system and its causally augmented bond graph model.

characteristic forms a necessary but not sufficient condition

for discontinuity detection.

Another general characteristic of most physical systems is

that dissipative effects eventually cause the system to return

to a steady state. This translates to another feature that aids

the fault isolation process. If it can be determined from the

monitoring process that the eventual steady state will be above,

below, or at the previous steady state value, one can distinguish

between certain resistive and energy storage element faults.

Overall, our approach uses three features that take on the

following values in our qualitative reasoning framework:

• magnitude:

—low, high;

—discontinuity low, no discontinuous change, discontin-

uously high.

• slope: below normal, above normal;

• steady state: below, at, above original.

III. FAULT HYPOTHESES AND SIGNATURES

The general FDI methodology illustrated in Fig. 1 is im-

plemented using bond graphs as the underlying modeling

language. Dynamic characteristics of system behavior derived

from the bond graph are represented as a temporal causal

graph. Our algorithms for monitoring, fault isolation, and pre-

diction are based on this representation. The fault analysis and

refinement process continues till fault transients are masked

by interactions or the system reaches a steady state. The goal

is to uniquely identify the true fault using a combination of

transient and steady state analysis.

A. The Temporal Causal Graph

The temporal causal graph is derived in two steps [12].

1) An extension of the SCAP algorithm [17], [22] is used to

generate a graph that incorporates cause-effect relations

among the power variables in the bond graph.

2) Component parameters and temporal information are

added to individual causal edges to form the temporal

causal graph. This adds temporal characteristics to the

relations between variables.2

The temporal causal graph for the bi-tank system in Fig. 5 is

shown in Fig. 6. The graphical structure represents effort and

flow variables as vertices, and relations between the variables

2 Note that the bond graph formalism presents one way to derive temporal
causal graphs. Other modeling formalisms that support the physical modeling
paradigm and allow for the generation of a temporal causal graph may be
employed in its place.
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Fig. 6. Temporal causal graph of the bi-tank system.

as directed edges. The relations can be attributed to junctions

and system components. Junctions are of two types:

1) parallel or common effort (0-) junctions;

2) series or common flow (1-) junctions.

0-junctions require that the effort (e.g., pressure) values of

all bonds incident on that junction be equal, and the sum

of the flow (e.g., the fluid flow rate) values be zero. 1-

junctions require that the flow values of all incident bonds

be equal, and the effort values sum to zero. In the qualitative

framework these relations impose labels 1, 1, and on

graph edges. The implies that the junction constrains the

two variable vertices associated with the edge to take on equal

values, 1 implies a direct proportionality and 1 implies an

inverse proportionality for the variables associated with the

two incident vertices. An edge associated with a component

represents the component’s constituent relation. For example,

the edge corresponding to a resistive element involved in an

effort to flow relation is labeled , and for a capacitor in

integral causality the edge from flow to effort is labeled .

Junctions, transformers, and resistors define instantaneous

magnitude relations, whereas capacitors and inductors in-

troduce magnitude and temporal effects on causal edges.

In general, the temporal effects are integrating, and their

associated rate of change is determined by the path that links

an observed variable to the initial point where a deviation

occurs. Natural feedback mechanisms in dynamic physical

systems result in closed paths in the temporal causal graph

(see Fig. 6). For loops with passive elements, these feedback

mechanisms always have a negative gain [23] (e.g., the

loop). Loops that include an integrating

effect (e.g., ) are

referred to as state loops.

Definition 4 (State Loop): A closed causal path with one

and only one time-integrating effect is called a state loop.

In previous diagnosis work, where temporal aspects of rela-

tions were not modeled explicitly, these ubiquitous negative

feedback mechanisms caused difficulties in assigning deviation

values in a consistent manner during the fault generation stage

(see Section III-B). The problem was addressed by employing

ad hoc criteria to break loops. In our work, this problem is

easily addressed by exploiting the time delays in propagating

signal values introduced by the integrating effects in state

loops.

An added advantage of bond graph models is that they allow

automatic derivation of the steady state model of the system.

For the bi-tank system, both the tank capacities in steady state

can be replaced by flow sources with value 0, since no change

Fig. 7. Steady state bond graph of the bi-tank system and its corresponding
causal graph.

Fig. 8. Backward propagation given e
+
7 to find faults.

of stored energy takes place. The steady state bond graph and

its resulting steady state causal graph are shown in Fig. 7. In

steady state, causality assignments do not imply a temporal

ordering, and a steady state graph represents a set of algebraic

equations rather than differential equations. Therefore, causal

links in the steady state graph have less meaning. Because

the set of algebraic equations is invariant, parameter deviation

effects do not change for different causality assignments.

B. Component Parameter Implication

For every recorded discrepancy between measurement

and nominal value a backward propagation algorithm

(Algorithm 1) is invoked on the temporal causal graph

to implicate component parameters. Implicated component

parameters are also labeled (below normal) and (above

normal). The algorithm propagates observed deviant values

backward along the directed edges of the temporal causal

graph and consistent and deviation labels are assigned

sequentially to vertices along the path if they do not have a

previously assigned value. An example of its application is

shown in Fig. 8 for a deviant pressure, , in the right tank

of the two tank system in Fig. 5. When is measured to be

above its nominal value, backward propagation starts along

and implicates as below normal or

as above normal . Backward propagation from along

implies , and the inverse relation on

implies . Propagation along a path is terminated when a

conflicting assignment is reached.

Backward propagation accounts for temporal effects by

propagating deviant values along edges with instantaneous

relations first. This ensures that no faults associated with

higher order effects conflict with faults identified with lower

order effects. An example is shown in Fig. 9. Backtracking

along the path , hypothesizes

as a fault consistent with the observation , but the link

introduces a first order effect. However, the path

depicts a set of instantaneous relations

that support the hypothesis, implies . At the point of

failure, the instantaneous effect dominates the

first order effect. When analyzing an individual
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Fig. 9. Instantaneous edges propagate first.

signal’s transient behavior, it is clear that its lower order

effects manifest before its higher order effects. Therefore, the

backward propagation algorithm is designed to propagate in a

depth-first manner in increasing order of time-derivatives. All

component parameters along a propagation path are possible

faults. As discussed earlier, observed normal measurements do

not terminate the backward propagation process. The result of

backward propagation is a set of hypothesized single faults

that are consistent with the reported deviant observations.

—————————————————————————

Algorithm 1 Identify Possible Faults

—————————————————————————

for all reported discrepant measurements do

add vertex corresponding to deviant measurement to

and mark vertex with qualitative deviation value

while is not empty do

the first vertex in (and delete

from )

while has unmarked ancestors do

if ancestor relation includes a parameter then

add the parameter with consistent label to the

end if

if ancestor vertex is unmarked then

ancestor value new value(current value,

relation)

if relation is instantaneous then

add the ancestor vertex to the beginning of

else

add the ancestor vertex to the end of

end if

end if

end while

end while

end for

—————————————————————————

C. Prediction

Once faults are hypothesized, prediction and refinement

schemes are employed to converge on the true fault. A more

complete prediction module may be required to handle model

changes when faults cause structural changes in the system. We

assume faults do not cause changes in system configuration,

and the system model remains valid even after faults occur

in the system.

Assumption 2 (No Structural Changes): Faults do not

cause the system model to undergo configuration changes.

The prediction module uses the system model to compute the

dynamic, transient, behavior of the observed variables and the

eventual steady state behavior of the system under the fault

conditions. Future behavior is expressed in qualitative terms:

magnitude (zeroth order time-derivative), slope (first order

time-derivative) and higher order effects.

Definition 5 (Signature): The prediction of zeroth, first, and

higher order time-derivative effects of a system variable as

qualitative values: below normal (low), normal, and above

normal (high) in response to a fault is called its signature.

—————————————————————————

Algorithm 2 Predict Future Behavior for a Fault

—————————————————————————

add initial vertex, i.e., immediate consequence of the fault

to list

mark vertex order derivative with qualitative value

while is not empty do

the first vertex in

while has successors not determined to

sufficient order do

if successor relation includes a time integral effect

then increase current derivative order

end if

if derivative order maximum order then

if successor derivative is no mark then

successor derivative value new value(current

value, relation)

else if successor derivative has opposite value of

current

then

successor derivative value conflict

end if

add the successor to end of

end if

end while

end while

for all vertex derivatives do

if value no mark and any higher order derivative

no mark

then

replace no mark with normal

end if

if value conflict then

replace conflict with no mark

end if

end for

—————————————————————————

The method for predicting future system behavior is pre-

sented as Algorithm 2. The algorithm propagates the effects

of a hypothesized fault to establish a qualitative value for

all measured system variables. Forward propagation along

temporal edges implies an integral effect, therefore, the cause

variable affects the derivative of the effect variable. All

deviation propagations start off as zeroth order effects, i.e., as

magnitude changes. When an integrating edge is traversed, the

magnitude change becomes a first order change, i.e., the first

derivative of the affected quantity changes. This is illustrated
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Fig. 10. Forward propagation forimplicated component R+
b2

to establish its
signature.

by an in the propagation example in Fig. 10. Similarly,

a first order change propagating across an integrating edge

produces a second order change , i.e., the second

derivative of the affected variable changes. Second order

changes propagate to third order changes, and so on. The

forward propagation algorithm operates breadth-first along the

temporal causal graph.

The forward propagation algorithm terminates when a sig-

nature of sufficient order is generated. A complete signature for

an observation contains derivatives specified to its sufficient

order. The sufficient order of a signature depends on the set

of chosen measurement variables and the desired level of

diagnosability for the system.

Definition 6 (Diagnosability): Diagnosability is a function

of the number of possible faults that can be uniquely identified

by a fault isolation system.

A fault detection scheme is completely diagnosable for a

given set of measurements if it can isolate all possible single

faults with the set of measurements.

Definition 7 (Complete Diagnosability): A fault isolation

system is completely diagnosable if it can uniquely isolate all

possible hypothesized faults.

Diagnosability depends on the selected observation set

and the chosen order of their signatures [14]. In theory,

consideration of higher order variable effects is likely to results

in greater diagnosability. Therefore, the same diagnosability

can be achieved with a smaller number of total observations

but considering higher order signatures, or using a larger num-

ber of observations with lower order signatures. In practice,

using signatures of lower order has advantages. Higher order

effects take longer to manifest, and fault patterns take longer

to establish after failure occurs. During this time, feedback

effects in the system may be superimposed on initial fault

behavior and change the nature of the patterns. This problem

is compounded even further when cascading faults occur.

The steady state causal graph derived from the bond graph

model of the system determines the final steady state value

for each observed variable under the faulty conditions. The

predicted steady state value for each observed variable, i.e.,

below the original, at the original, or above the original steady

state, is attached to the signature and used in the monitoring

stage.

IV. MONITORING

The monitoring module compares predicted signatures of

the hypothesized faults to actual measurements as they change

dynamically. A number of issues of practical importance,

related to the quality and characteristics of the measurements,

are incorporated into the monitoring scheme so dynamic

effects can be realistically measured using local mechanisms.

Fig. 11. Signal interpretation.

Fig. 12. Progressive monitoring.

A. Sensitivity to the Time Step

The monitoring time step is critical to the success of the

overall fault isolation scheme. The step size depends on the

different rates of response that the system exhibits. Too large

a time step may produce incorrect inferences as shown for the

signal (solid curve) at the left in Fig. 11. A large monitoring

time step gives the appearance that this signal undergoes

a discontinuous change (dashed curve). Decreasing the time

step helps in differentiating discontinuities (abrupt changes)

from continuous effects but if the time step is too small, it

appears that the signal does not change for a large number

of steps (see plot on right of Fig. 11). Too small a time step

may result in lack of sensitivity to changes and unnecessary

computational expense on the analysis task. If the variable cor-

responding to a slowly changing measurement is prematurely

reported to be normal, or to have reached a new steady state

value, this may result in elimination of true faults. To mitigate

this problem, fault refutation based on a given observation is

only invoked after an initial deviation is detected. As discussed

earlier, the sampling rate also determines whether the effect

of a fault is observed to be discontinuous.

B. Progressive Monitoring

Transient characteristics at the time of failure tend to

change over time as other phenomena in the system affect

the measured variables. The signatures for a candidate fault

can change dynamically. For example, a fault in the system

may have no effect on the initial magnitude ( th order value)

of a variable, but it may affect its st derivative, predicting

that it will be above normal. Therefore, immediately after

the fault occurs the variable value will be observed to be

normal (its deviation is within the 2–5% threshold), but as

time progresses, the derivative effect will cause the variable

value to go above normal. Fig. 12 depicts time stamps marked

1, 2, and 3, where a lower order predicted effect is replaced

by a higher order effect. The notion of employing higher

order derivatives in analyzing measured variables during the

monitoring process is referred to as progressive monitoring.

When as observed variable does not match a predicted normal

value, the comparison is successively extended to predicted

higher order derivatives in the variables signature. If the higher
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Fig. 13. Progressive monitoring forfault R+
b2

.

order derivatives match the observed value, the hypothesized

fault is considered plausible, otherwise it is rejected.

To illustrate, Fig. 13 shows the predicted and monitored

behavior for a sudden increase in outflow resistance in

the bi-tank system in Fig. 5, where 1, 0, 1 maps onto low,

normal, high and a period indicates that the value is unknown.

The two observed variables are the outflow of the left tank,

, and the pressure in the right tank, . Not all monitoring

output is shown; the boxes depict the monitored values at

time steps where the set of hypothesized faults changes or

where the tracking of an observation’s transient behavior is

terminated. The actual observations and the newly inferred

set of possible faults and their signatures are listed. The

values on the top of each box represent the measured signal

magnitude (zeroth order), slope (first derivative), and second

derivative3 expressed in qualitative terms. Below the reported

measurements are the predicted signatures of the measured

variables for each hypothesized fault. Consider fault and

measurement in Fig. 13. At step 9, the reported value for

is still normal (its value has not exceeded the error threshold),

and this agrees with the signature 0, 0, 1 for . At step 23,

the reported value for is 1, 0 (magnitude above normal),

which no longer appears to be consistent with fault ’s

signature. However, when progressive monitoring is applied,

the second derivative, which is positive, makes an impact

on both the first derivative and magnitude of the signal, and

the prediction for is changed to 1, 1, 1. Updating the

prediction in this manner keeps the signature consistent with

the observation, and is still a viable fault hypothesis.

Hypothesized faults are dropped if their signatures do not

match observations. Note that in step 23 the slope for is

reported to be 0 whereas the magnitude deviates. This is an

artifact of our implementation as the deviation in a slope is

computed using the first set of observations after an initial

magnitude deviation is detected.

Fig. 14 illustrates progressive monitoring with discontinuity

detection (see Section II-B). The change in and when the

fault occurs in the bi-tank system is listed. A fourth field

3 As discussed earlier, second and higher order derivatives are not mea-
sured. This slot is retained to make it easier to match actual and predicted
observations.

Fig. 14. Results of the diagnosis system with C�
2

faulty and discontinuity
detection is used.

Fig. 15. Typical signal transients in physical systems that exhibit different
qualitative behavior over time.

is added to the actual observation; a value of 1 in this field

implies a positive discontinuous deviation occurred at the time

of failure. Matching an initial discontinuous change produces

a unique fault after the second time step. The discontinuous

change observed for measurement at step 2 implicates

and the other hypothesized faults are eliminated. The flow is

observed to have a positive deviation and positive slope

as opposed to for . Therefore, the change in is

not labeled discontinuous by our criteria. The discontinuity

detection criteria is a necessary but not sufficient condition.

The diagnosis engine can correctly detect and isolate all

single fault parameter deviations if the pressure in one tank

and the outflow from the other or the flow between them

were measured and first order signatures are used. In this

case, discontinuity detection is not required but steady state

detection is. If steady state detection is not feasible, three

observations and discontinuity detection have to be used, or

a second order signature without discontinuity detection can

be employed. The task of measurement selection to achieve

complete diagnosability is discussed in greater detail elsewhere

[14]. Detailed results for two-tank and three-tank systems are

presented in [12].

C. Temporal Behavior

Two distinct characteristics of signals in response to fault

disturbances, transients and steady state, carry the most distinc-

tive discriminative information for diagnosis. For monitoring

it is important to know when, after a time of failure , the

transient detection phase terminates, and the system moves

into the steady state mode, requiring steady state detection to

be activated.

Palowitch [16] reports that signals may exhibit a com-

pensatory [Fig. 15(a)] or an inverse response [Fig. 15(b)].
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A compensatory response exhibits a decreasing slope and

gradually moves toward a new steady state value. For an

inverse response, after an initial increase or decrease, the signal

may reverse direction. An additional phenomenon resulting

from abrupt faults can be categorized as a reverse response

[Fig. 15(c)]. A reverse response occurs if a discontinuous

signal overshoots, and, consequently, its qualitative magnitude

reverses sign (i.e., goes from above normal to below normal

or vice versa).

In the qualitative analysis framework, the transition to

steady state analysis is detected from an initial magnitude

deviation by noting the following.

• For a compensatory response, the slope eventually be-

comes 0.

• For an inverse response no discontinuous change of

magnitude is associated with . The switch from transient

to steady state detection occurs when the magnitude and

slope deviations take on opposing signs. Eventually the

slope may become 0.

• For a reverse response the signal has a discontinuous

initial magnitude deviation with sign that is opposite of

the current magnitude deviation. The switch to steady

state detection occurs when the magnitude changes sign.

When any of these situations are detected, transient verification

for that particular signal is suspended (stage in Fig. 15),

and steady state detection is activated (stage in Fig. 15).

After a period of time, some signals may be processed in the

transient mode, whereas others are processed in the steady state

mode. Steady state is detected when a first order derivative

becomes 0 for a sufficient period of time. The sufficient period

of time is usually based on design information. The

in Fig. 13 illustrates that transient detection was suspended

for from time step 10. At this point in time, steady state

detection is activated for this signal only. At step 26 transient

detection for is suspended and steady state detection is

initiated. Both these are examples of a compensatory response.

However, the difficulty in detecting the final steady state value

results in it not being used as a verification mechanism here,

and, the diagnosis process ends at time step 26. In Fig. 14,

the diagnosis process terminates at step 7. As part of future

research, more sophisticated steady state detection techniques

will be investigated.

D. Summary

Monitoring plays a key role in the robustness of the fault

analysis scheme. The following issues summarize the moni-

toring and measurement selection process.

1) Only deviating signals play a role in transient fault

analysis. This circumvents the problem of insensitivity

to small time steps.

2) During this transient monitoring stage a progressive

monitoring scheme defines the dynamic characteristics

of the initial fault transients.

3) After a period of time, signal behavior may deviate

significantly from transient behavior at the time of

failure (e.g., it may reverse its slope). In this situa-

tion, the transient prediction and verification process is

Fig. 16. Secondary sodium cooling loop.

suspended, and steady state analysis is activated. This

is based on the three characteristic qualitative signal

behaviors discussed earlier in this section. Suspension

of transient analysis and steady state detection are non

trivial tasks in the monitoring and fault isolation scheme.

4) An off-line measurement selection algorithm [14] iden-

tifies the sufficient order of predictions for fault isolation

to achieve a degree of diagnosability.

V. LIQUID SODIUM COOLING SYSTEM

The scalability of our FDI methodology was tested by con-

ducting experiments on the simulation model of the secondary

liquid sodium cooling loop in a fast breeder nuclear reactor.

The need for a qualitative approach in this system is motivated

by the fact that it is modeled as a nonlinear sixth order,

system. This makes it hard to develop accurate numeric models

for generating system behavior in different modes. Moreover,

the precision of the sodium flow sensors used in the system

is limited and hardware redundancy is difficult to achieve

because of the expense involved in adding flow sensors.

A. Secondary Sodium Cooling Loop

In a nuclear reactor, heat from the reactor core is transported

to the turbine by a primary and secondary cooling system. The

primary cooling sub-system connects directly to the reactor

and transfers heat to the secondary cooling sub-system which

then transfers heat carried by the liquid sodium to the steam in

the generator (Fig. 16). Heat transfer from the primary cooling

loop to the liquid sodium in the secondary loop happens

through an intermediate heat exchanger. The heated sodium

is then pumped through two stages: the super heater and the

evaporator vessel, both of which heat up the water and steam

in the steam–water loop that then drives the turbine.

1) Bond Graph Model: The model used for diagnosis ap-

plies energy and mass balance of the system in the hydraulics

domain combined with the mechanical characteristics of the

main motor and pump. The bond graph that captures system

behavior in these domains is a nonlinear, sixth order model

(Fig. 17). The main motor driver (Fig. 18) is a synchronous

ac motor. As a simplification the electrical subsystem is not

modeled. The electrical part of the motor system can be

represented as a source of mechanical energy with a given

torque/angular velocity characteristic. The inertia of the rotor

and the mass of the transmission gear is modeled by , and
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Fig. 17. Bond graph model for the secondary sodium cooling system.

Fig. 18. Synchronous ac motor that drives a pump.

the transmission ratio between motor and pump by . Pump

losses in the fluid connection between the motor and pump are

modeled by a dissipation element, , and the pump inertia

is represented as . The model of a centrifugal pump can

be derived using conservation of power and momentum [23].

Given that the amount of mass moved by the pump depends

on the total area of its veins, , minus the effective loss in

moved mass due to the curvature of the veins, , this yields the

constituent relations and

. This describes a modulated gyrator with modulus

, where if the pump veins are not curved.

The hydraulics of the sodium loop are modeled by a closed

power loop (Fig. 17). The coil in the intermediate heat ex-

changer accounts for flow momentum build-up, represented by

a fluid inertia, . The piping from the main pump through

the heat exchanger to the evaporator vessel is represented

by resistance . The two sodium vessels are modeled by

capacitances, and and the connecting pipe by

its resistance, . An overflow column, , maintains a

desired sodium level in the main motor, and the piping between

the evaporator and this column is represented by resistance

. This storage facility is connected to a sump, , by a pipe

with resistance, .

Solving the algebraic equations in the steady state model

(i.e., all elements in Fig. 17 are replaced by and all

elements by ) results in a third order equation because of

the quadratic modulus of the gyrator. A closed form symbolic

solution was derived using Mathematica. This solution has

one real root that represents the steady state solution, and

symbolically provides the values for nominal operation.

2) The Temporal Causal Graph: The temporal causal

graph (Fig. 19) of the system is derived from the bond

graph in Fig. 17. Because of its nonlinear character, the MGY

requires more detailed analysis. The derivation of the causal

relations of the modulated gyrator is shown in Fig. 20. First

it is observed that the modulation factor

is directly proportional to and inversely proportional to

. The dependency of on and can be explicitly

Fig. 19. Temporal causal graph of dynamic behavior.

Fig. 20. Temporal causal graph of a modulated gyrator.

Fig. 21. Detailed sensitivity analysis of @e8=@f9.

modeled by edges between these variables and the affected

variables. The bond graph indicates that and affect

and . The corresponding edges are added to the causal graph

(Fig. 20). The added influences on result in ambiguity. This

is revealed by studying the relation between and . From

the bond graph . The plot

in Fig. 21 reveals that the to link can have a positive

or negative value depending on the values of and .

From nominal steady state values, the link sign can be pre-

computed. However, once a fault occurs, changes in the values

of and may cause a change in the sign. Since the exact

values of the two variables are not known at monitoring time,

the sign on the link may or may not reverse. The reversal

occurs only when is predicted to be high based on the

proportional influence ( 1 or 1). Since a predicted decrease

in is unambiguous it is propagated, but a predicted increase

in is propagated as unknown. The two pump parameters

and are represented by one positive parameter, , that is

linked to pump fault.

B. Simulation Results

The numerical simulation model for the secondary cooling

loop utilizes the forward Euler integration, .
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TABLE I
SECONDARY SODIUM COOLING LOOP PARAMETER VALUES

To ensure stability, the numerical time step was chosen

to be , where is the smallest time constant of the

model [23].

From system specification documents and by consulting

domain experts, the parameter values listed in Table I were

chosen. Those values do not represent actual system parameter

values, but their relative magnitudes are such that the generated

qualitative characteristics of the behavior are correct. The

parameter indicates the maximum level of the liquid

sodium in the evaporator vessel. The overflow mechanism was

modeled but not included in the temporal causal graph to avoid

model configuration changes. The simulation used a numerical

time step of , which produced numerically stable

simulations in both normal and failure situations. Thus

for the model, which is equivalent to a minimal time

constant in the order of minutes for the actual system. This

was also chosen as the monitoring time step, which results in

a sampling rate of about 20 s for the actual system.

Failure was simulated in the system by changing the model

parameters by a factor of five. Conservation of state [13] was

applied when capacitance and inductance failures occurred.

Keeping the stored momentum or the amount of liquid constant

resulted in an abrupt change of angular velocity/flow or

pressure, respectively. Simulation was stopped when either the

transients of all observations were detected or 3913 samples

had been processed.4

The quality of the results depended on the parameter dif-

ferences in the model and unmodeled configuration changes.

For detection of high and low values for signals, a qualitative

margin of error of 2% was used to avoid spurious deviations

due to noise.

Table II summarizes the results. Columns 1 and 4 are the

introduced faults, column 2 and 5 list the faults reported by

TRANSCEND and columns 3 and 6 indicate the number of

measurement samples required to arrive at the result. Three

faults, , and , were not accurately detected or

isolated. Because of the overflow mechanism in the evaporator

vessel, a decrease in capacity, , does not result in an

increase in level and this is not detected. To detect this

failure, flow of sodium through the overflow mechanism has

to be monitored. The two other faults, and , were

detected but not correctly isolated, again because the overflow

mechanism was not modeled in the temporal causal graph.

If this phenomenon is included by tagging a predicted value

unknown instead of high when it would have predicted an

evaporator level that is high, the faults would be accurately

isolated as indicated by the entries in parentheses in Table II.

Not all faults can be uniquely isolated because of the

4 This number is derived from the time it takes a signal with time constant
1 to reach its steady state value within 2%.

TABLE II
FAULT DETECTION FOR ff2; f7; f11; e14; e19; e22; e33g

WITH �t = 0:001; order = 3; qmargin = 2%

lack of required measurements, or certain predicted deviations

are too small to be observed.

VI. CONCLUSIONS

This paper presents an effective mechanism for fault iso-

lation in complex dynamic systems by analysis of qualitative

transients and progressive monitoring of the evolving behavior

of the system after initial fault occurrences. The work makes

a number of important contributions:

1) use of the bond graph language to develop a systematic

framework for dynamic and steady state analysis of

physical systems;

2) use of qualitative signatures defined by higher order

derivatives for tracking system behavior based on hy-

pothesized faults;

3) progressive monitoring scheme for comparing evolving

temporal system behavior to the signatures for fault

refinement.

A number of experiments with two-tank and three-tank sys-

tems have produced excellent results. To demonstrate the value

of the system in more realistic situations, we have applied

it to a complex, sixth order model of a secondary sodium

cooling loop system for a fast breeder reactor. Results obtained

are encouraging, and the difficulties encountered are not an

issue of scalability, but more the ability to model complex

nonlinearities, the time-scales of different subsystems, and

processing the effect of structural changes in the system.

Currently we are focusing on improving the analysis of

the dynamic transients in the fault isolation mechanisms by

incorporating order of magnitude relations of the temporal

effects of integrating edges and developing more sophisti-

cated discontinuity detection algorithms. We are developing

systematic methods for handling structural faults like leaking

pipes that cause changes in system configuration. We are also

designing and implementing an environment for monitoring

and analyzing real data from an operating automobile engine.

This presents interesting challenges for developing signal

interpretation techniques that are robust to noise, and the

development of real time monitoring, prediction, and fault

isolation algorithms.



MOSTERMAN AND BISWAS: DIAGNOSIS OF CONTINUOUS VALUED SYSTEMS 565

ACKNOWLEDGMENT

The authors acknowledge the help of S. Yoshikawa and Dr.

T. Washio in constructing the secondary sodium cooling loop

models.

REFERENCES

[1] G. Biswas, R. Kapadia, and X. W. Yu, “Combined qualitative quantita-
tive steady state diagnosis of continuous-valued systems,” IEEE Trans.

Syst., Man, Cybern. A, vol. 27, pp. 167–185, Mar. 1997.
[2] G. Biswas and X. Yu, “A formal modeling scheme for continuous

systems: Focus on diagnosis,” in Proc. IJCAI-93, Chambery, France,
Aug. 1993, pp. 1474–1479.

[3] M. J. Chantler, S. Daus, T. Vikatos, and G. M. Coghill, “The use of
quantitative dynamic models and dependency recording for diagnosis,”
in Proc. 7th Int. Workshop Principles Diagnosis, Val Morin, P.Q.,
Canada, Oct. 1996, pp. 59–68.

[4] R. N. Clark, P. M. Frank, and R. J. Patton, “Introduction,” in Fault

Diagnosis in Dynamic Systems: Theory and Applications, R. Patton, P.
Frank, and R. Clark, Eds. Englewood Cliffs, NJ: Prentice-Hall, 1989,
ch. 1, pp. 1–19.

[5] P. Frank, “Fault diagnosis: A survey and some new results,” Automatica,
vol. 26, no. 3, pp. 459–474, 1990.

[6] R. Isermann, “A review on detection and diagnosis illustrate that process
faults can be detected when based on the estimation of unmeasurable
process parameters and state variables,” Automatica, vol. 20, no. 4, pp.
387–404, 1989.

[7] D. A. Linkens and H. Wang, “Qualitative bond graph reasoning in
control engineering: Fault diagnosis,” Int. Conf. Bond Graph Modeling

Simulation, Las Vegas, NV, 1995, pp. 189–194.
[8] J. Mauss, “Diagnosis by algebraic modeling and fault-tree induction,”

in Proc. 6th Int. Workshop Principles Diagnosis, Goslar, Germany, Oct.
1995, pp. 73–80.

[9] A. Misra, J. Sztipanovits, A. Underbrink, R. Carnes, and B. Purves,
“Diagnosability of dynamical systems,” in Proc. 3rd Int. Workshop

Principles Diagnosis, Rosario, WA, Oct. 1992, pp. 239–244.
[10] P. J. Mosterman, “Hybrid dynamic sysytems: A hybrid bond graph

modeling paradigm and its application in diagnosis,” Ph.D. dissertation,
Vanderbilt Univ., Nashville, TN, 1997.

[11] P. J. Mosterman and G. Biswas, “Formal specifications for hybrid
dynamical systems,” in Proc. IJCAI-97, Nagoya, Japan, Aug. 1997, pp.
568–573.

[12] , “An integrated architecture for model-based diagnosis,” in Proc.

7th Int. Workshop Principles Diagnosis, Val Morin, P.Q., Canada, Oct.
1996, pp. 167–174.

[13] P. J. Mosterman and G. Biswas, “A theory of discontinuities in dynamic
physical systems,” J. Franklin Inst., vol. 335, no. 6, pp. 401–439, 1998.

[14] P. J. Mosterman, G. Biswas, and N. Sriram, “Measurement selection and
diagnosability of complex dynamic systems,” in Proc. 8th Int. Workshop

Principles Diagnosis, Oct. 1997.
[15] O. O. Oyeleye, F. E. Finch, and M. A. Kramer, “Qualitative modeling

and fault diagnosis of dynamic process by MIDAS,” in Readings in

Model-Based Diagnosis, W. Hamscher, L. Console, and J. de Kleer,
Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 249–254.

[16] B. L. Palowitch, “Fault diagnosis of process plants using causal models,”
Ph.D. dissertation, Mass. Inst. Technol., Cambridge, Aug. 1987.

[17] R. C. Rosenberg and D. Karnopp, Introduction to Physical Systems

Dynamics. New York: McGraw-Hill, 1983.
[18] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.

C. Teneketzis, “Failure diagnosis using discrete-event models,” IEEE

Trans. Automat. Contr., vol. 40, pp. 1555–1575, Sept. 1995.

[19] H. Schneider and P. M. Frank, “Observer-based supervision and fault
detection in robots using nonlinear and fuzzy logic residual evaluation,”
IEEE Trans. Contr. Syst. Technol., vol. 4, pp. 274–282, May 1996.

[20] J. L. Stein, “Modeling and state estimator design issues for model-based
monitoring systems,” Trans. ASME, vol. 115, pp. 318–327, June 1993.

[21] M. Tangina, J. P. Cassar, G. Dauphin-Tanguy, and M. Staroswiecki,
“Monitoring of systems modeled by bond graphs,” in Int. Conf. Bond

Graph Modeling Simulation, Las Vegas, NV, 1995, pp. 275–280.
[22] J. van Dijk, “On the role of bond graph causality in modeling mecha-

tronic systems,” Ph.D. dissertation, Univ. Twente, The Netherlands,
1994.

[23] J. J. van Dixhoorn and P. C. Breedveld, Technische Systeemleer, 4th ed.
The Netherlands: Univ. Twente, Feb. 1985.

Pieter J. Mosterman was born in The Netherlands
on March 16, 1967. He received the B.Sc. and M.Sc.
degrees from the University of Twente, Twente,
The Netherlands, in 1987 and 1991, respectively. In
1997, he received the Ph.D. degree in electrical and
computer engineering from Vanderbilt University,
Nashville, TN.

Since 1997, he has been a Research Associate
with the Control Design Engineering Group, In-
stitute of Robotics and System Dynamics, German
Aerospace Center. As part of his thesis research, he

investigated principles that govern discontinuous behavior in physical systems.
The thermodynamic properties of bond graphs were exploited to extend the
modeling formalism to hybrid bond graphs, which was further developed into
the rigorous mathematical representation to facilitate simulation and analysis.
In the area of model based diagnosis, he developed algorithms for monitoring,
prediction, and isolation of abrupt faults in physical systems. Currently, he is
investigating the requirements for modeling complex dynamic systems, which
involves integrating sophisticated formalisms for modeling and simulating
both continuous time and discrete event phenomena.

Gautam Biswas (S’78–M’82–SM’91) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology, Bombay, India, in
1977, and M.S. and Ph.D. degrees in computer sci-
ence from Michigan State University, East Lansing,
in 1979 and 1983, respectively.

He is an Associate Professor of computer science
and engineering and management of technology at
Vanderbilt University, Nashville, TN. He conducts
research in artificial intelligence with primary inter-
ests in modeling and analysis of complex systems

and their applications to diagnosis, design, and control. He is also involved
in developing simulation based environments for learning and instruction. His
research is currently supported by NSF, ONR, PNC Japan, and HP Research
Labs. He has published in a number of journals and contributed book chapters.

Dr. Biswas has served on the program committees of a number of
conferences. He was co-chair of the 1996 Principles of Diagnosis Workshop,
and on the Senior Program committee for AAAI-97 and AAAI-98. He is a
senior member of the IEEE Computer Society, ACM, AAAI, and the Sigma
Xi Research Society.


