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Diagnosis of coronary layered 
plaque by deep learning
Makoto Araki 1,5, Sangjoon Park 2,5, Akihiro Nakajima 1, Hang Lee 3, Jong Chul Ye 2* & 
Ik‑Kyung Jang 1,4*

Healed coronary plaques, morphologically characterized by a layered phenotype, are signs of 
previous plaque destabilization and healing. Recent optical coherence tomography (OCT) studies 
demonstrated that layered plaque is associated with higher levels of local and systemic inflammation 
and rapid plaque progression. However, the diagnosis of layered plaque needs expertise in OCT image 
analysis and is susceptible to inter-observer variability. We developed a deep learning (DL) model for 
an accurate diagnosis of layered plaque. A Visual Transformer (ViT)-based DL model that integrates 
information from adjacent frames emulating the cardiologists who review consecutive OCT frames to 
make a diagnosis was developed and compared with the standard convolutional neural network (CNN) 
model. A total of 237,021 cross-sectional OCT images from 581 patients collected from 8 sites were 
used for training and internal validation, and 65,394 images from 292 patients collected from another 
site were used for external validation. In the five-fold cross-validation, the ViT-based model provided 
better performance (area under the curve [AUC]: 0.860; 95% confidence interval [CI]: 0.855–0.866) 
than the standard CNN-based model (AUC: 0.799; 95% CI: 0.792–0.805). The ViT-based model (AUC: 
0.845; 95% CI: 0.837–0.853) also surpassed the standard CNN-based model (AUC: 0.791; 95% CI: 
0.782–0.800) in the external validation. The ViT-based DL model can accurately diagnose a layered 
plaque, which could help risk stratification for cardiac events.

Acute coronary syndromes (ACS) are predominantly caused by plaque rupture or plaque erosion with super-
imposed occlusive thrombosis1. Plaque can destabilize without life-threatening thrombotic luminal occlusion, 
and most thrombotic lesions remain subclinical, especially when plaque burden is low2–4. Over the course of 
days or weeks, a silently developed thrombus become organized, which results in the formation of a healed 
plaque, characterized by layers of proteoglycans and type III collagen5. In autopsy studies, healed plaques were 
frequent in men who died of coronary events, with a prevalence of up to 61–73% in whole coronary arteries6,7. 
A histology validation study reported that optical coherence tomography (OCT) can recognize healed plaque 
as a plaque with one or more layers of different optical densities8. In recent in vivo studies, layered plaque at 
the culprit lesion was associated with higher levels of local and systemic inflammation9 and subsequent rapid 
plaque progression10. Identification of patients with layered plaques may help risk stratification for future events. 
With the early promising results, deep learning (DL) is widely applied to medical imaging due to its potential for 
automated diagnostic systems11,12, and cardiology is not an exception to this trend. Several studies have reported 
the results of DL application in OCT images13–15, but the tasks were limited to the classification or segmentation 
of plaque characteristics easily discernible by human eyes. In addition, the clinical significance of these studies 
is limited by the small number of data resulting from the lack of large and well-curated databases for the devel-
opment of a robust algorithm. Furthermore, previous convolutional neural network (CNN)-based DL models 
lacked the ability to utilize the information of adjacent OCT frames.

In this study, we developed a vision transformer (ViT)-based model, which has shown remarkable improve-
ment over the CNN-based model in computer vision16, to provide the automatic diagnosis of layered plaque 
using a large and well-curated multi-center database and externally validated in a separate database. The ViT-
based model not only utilizes its attention to detect the subtle change in OCT signal in layered plaque but also 
integrates the information of adjacent OCT frames by an ensemble, emulating the reading process by OCT 
experts to accurately diagnose layered plaque.
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Methods
Study design and datasets.  Patients presenting with acute coronary syndromes (ACS) who had pre-
intervention OCT imaging of the culprit lesion were selected for the training and validation data set from the 
Predictor study. The Predictor study was an international, multi-center, registry that included ACS patients who 
underwent OCT at 11 institutions in 6 countries17. The data used for the current project was from 8 institu-
tions in 4 countries (Table S1). To externally validate the developed model, patients from the EROSION study 
were used as a testing data set. The EROSION study was a single-center, prospective study that included ACS 
patients undergoing OCT and tested the safety of medical therapy instead of stent implantation18. Patients with 
ACS caused by uncommon pathologies such as calcified nodules, spontaneous coronary dissection, or coronary 
spasm were excluded from this study. The patient selection process is summarized in Fig. S1. The diagnosis of 
ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation acute coronary syndromes 
(NSTE-ACS) was made according to the concurrent American Heart Association (AHA)/American College of 
Cardiology (ACC) guidelines19,20. Demographic, clinical, and angiographic data were collected at each partici-
pating site and the anonymized data were sent to Massachusetts General Hospital (Boston, MA, USA). Details 
on the definition of the training, internal and external validation datasets are provided in the Supplemental 
Method. The Predictor study and the EROSION study were approved by the Institutional Review Boards at 
each participating site (Nara Medical University Hospital Institutional Review Board, Nippon Medical Chiba 
Hokusoh Hospital Institutional Review Board, Hirosaki University Hospital Institutional Review Board, Part-
ners Human Research Committee, the Chinese University of Hong Kong Institutional Review Board, Tsuchiura 
Kyodo General Hospital Institutional Review Board, Kitasato University Hospital Institutional Review Board, 
University Hospitals Leuven Institutional Review Board and the 2nd Affiliated Hospital of Harbin Medical Uni-
versity Institutional Review Board). For the Predictor registry, informed consent was waived by the Institutional 
Review Boards at each participating site. For the EROSION study, written informed consent was obtained before 
enrollment. The study protocol conforms to the ethical guidelines of the Declaration of Helsinki.

Image acquisition and data labeling.  The coronary segment that includes the culprit lesion was assessed 
using a frequency-domain (C7/C8, OCT Intravascular Imaging System, St. Jude Medical, St. Paul, Minnesota) 
OCT system and a 2.7-Fr OCT imaging catheter (Dragonfly, St. Jude Medical, St. Paul, Minnesota). In the train-
ing and internal validation dataset, 12 (2.1%) of patients had 0.25-mm intervals, 372 (64.0%) of patients 0.2-mm 
intervals, and 197 (33.9%) of patients 0.1-mm intervals. In the external test dataset, 277 (94.9%) of patients had 
0.25-mm intervals and 15 (5.1%) 0.2-mm intervals. OCT images were acquired before any percutaneous coro-
nary intervention (PCI) procedures. Aspiration thrombectomy was allowed for occlusive thrombus.

OCT images were analyzed at the core laboratory at Massachusetts General Hospital. Given that acquiring a 
definitive label through the collection of a histology sample is impractical for a large number of living patients, 
a reader with > 8 years of experience in OCT analysis (M.A.) who were blinded to patients’ data independently 
labeled all OCT images frame-by-frame using an offline review workstation (St. Jude Medical, St. Paul, Min-
nesota). Layered plaque is defined as a plaque with one or more layers of different optical densities and a clear 
demarcation from underlying components21. Labeling of cross-sectional OCT images in the training, validation, 
and external testing data sets was done frame-by-frame. Since the automated detection of layered plaque in an 
OCT pullback is preferred, sections with normal vessel segment, different types of artifacts, and guiding catheter 
were also included. To develop a DL model for the diagnosis of layered plaque, OCT frames were classified into 
two entities: (1) layered plaque and (2) other in which layered plaque is not observed (Fig. 1). Anonymized OCT 
images in DICOM format and their corresponding labels were transferred to the Bio-Imaging, Signal Processing, 

Figure 1.   Representative optical coherence tomography image classes. Arrows indicates a layered pattern. 
OCT frames were classified into two entities: (A) layered plaque and (B) other in which layered plaque was not 
observed. Since the automated detection of layered plaque during an OCT pullback is preferred, OCT images 
also contained sections with normal vessel segment, non-layered plaques, different types of artifacts, and views 
of guiding catheter.
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and Learning Laboratory (BISPL) at Korea Advanced Institute of Science and Technology (KAIST), South Korea 
for the development and validation of the DL model.

Development of the deep learning algorithm.  Since the detection of layered plaque is often challeng-
ing due to the subtle difference in OCT signal, we sought to develop a DL model tailored for the detection of 
small changes in OCT images. To diagnose a challenging entity like a layered plaque, OCT experts refer to adja-
cent frames by playing OCT recording back and forth to be more confident about the reading and devote more 
attention and time to suspicious findings within a given OCT frame. To emulate this, we adopted the ViT-based 
model by utilizing the self-attention mechanism22 which achieved state-of-the-art performance in computer 
vision with its inherent strengths of attention mechanism as well as by further enhancing the performance using 
the multi-frame-based decision with the ensemble of the information from the adjacent frames using a sliding 
window method (Fig. 2). As the preliminary experiments demonstrated that the multi-frame ensemble consist-
ently boosted the performances (Supplementary Results, Tables S3, S4), all experiments were performed apply-
ing this method. For comparison, the standard CNN-based model with similar model complexity (ResNet-34) 
was used23. We trained our DL models with frame-level annotation to enable the detection of layered plaque 
within a single OCT frame. To yield the optimal performance of the DL models with limited medical imaging 
data, transfer learning from ImageNet, which is popular in computer vision tasks, was used for both models. For 
more details on the development of DL algorithms, see the Supplementary Methods. We performed five-fold 
internal validation to find the best hyperparameters as well as to evaluate model performances in the internal 
set, and assess the final performance in the external validation with a totally different patient group to evaluate 
the generalization capacity of the model. To provide the interpretation of the models’ decisions, the visualization 
methods were used to give a transparent interpretation of the model attention. For the ViT-based model, a direct 
attention map was obtained as it is feasible to directly visualize the self-attention. On the other hand, the indirect 
attention map was visualized with Grad-CAM-based saliency map for the standard CNN-based model24, since 
it does not use the self-attention mechanism. Attention visualization methods are detailed in the Supplementary 
Methods.

Statistical analysis.  Continuous variables with a normal distribution were expressed as mean ± standard 
deviation (SD), while the median (interquartile range) was used to summarize non-normally distributed vari-
ables. Normally distributed variables were compared using the Student’s t test and non-normally distributed 
variables were compared using the Mann–Whitney U test. Categorical data were expressed as absolute frequen-
cies and percentages, and compared using the Chi-square test or Fisher exact test, as appropriate.

To evaluate the model performance, the area under the receiver-operating-characteristic curve (AUC) was 
calculated with 95% confidence intervals (CIs) using the DeLong test25. Likewise, sensitivities, specificities, 
accuracy, false-positive rate (FPR), and false-negative rate (FNR) were obtained with 95% CIs using the “exact” 
Clopper-Pearson confidence intervals. For model comparison, AUC was used as the performance metric and 
compared between models with the DeLong test to determine statistical significance. All analyses were performed 
using R software version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria) and the Python library 
scikit-learn version 1.3.3.

Results
Study population.  For the development and internal validation of the model, a total of 237,021 cross-
sectional OCT images collected from 581 patients from 8 institutions in 4 countries were used. For the cross-
validation, the 581 patients were randomly divided five-fold into training (n = 465) and internal validation 
(n = 116) datasets. The developed DL models were further evaluated in another database containing a total of 
65,394 images collected from 292 patients from another institution. Patient and lesion characteristics of train-
ing, internal validation, and external validation datasets are described in Table 1. The median number of OCT 

Figure 2.   Vision transformer (ViT)-based deep learning model for diagnosis of layered plaque. The proposed 
ViT-based deep learning model detects the faint sign of layered plaque more accurately than the standard 
convolutional neural network (CNN)-based deep learning model by maximally utilizing attention mechanism, 
and further improves its performance via multi-frame ensemble method, which resembles the recognition 
process of the experienced OCT reader. OCT, optical coherence tomography.
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Table 1.   Patient and lesion characteristics. Values shown are n (%), mean ± standard deviation, or median 
(25th–75th percentile). BMI body mass index, CABG coronary artery bypass graft, CK creatine kinase, CK-MB 
creatine kinase-MB, HbA1c hemoglobin A1c, HDL-C high-density lipoprotein-cholesterol, Hs-CRP high-
sensitivity C-reactive protein, LAD left anterior descending artery, LCx left circumflex artery, LDL-C low-
density lipoprotein-cholesterol, LVEF left ventricular ejection fraction, MI myocardial infarction, NSTE-ACS 
non-ST-segment elevation acute coronary syndrome, PCI percutaneous coronary intervention, RCA​ right 
coronary artery, STEMI ST-segment elevation myocardial infarction.

Total Training and validation External testing

Number of patients 873 581 292

Demographic data

 Age, years 61.9 ± 12.1 64.4 ± 12.2 56.9 ± 10.4

 Male 686 (78.6) 464 (79.9) 222 (76.0)

 BMI, kg/m2 25.1 ± 3.6 25.0 ± 4.1 25.2 ± 2.7

 Hypertension 492 (56.4) 358 (61.6) 134 (45.9)

 Hyperlipidemia 456 (52.2) 437 (75.2) 19 (6.5)

 Diabetes mellitus 254 (29.1) 187 (32.2) 67 (22.9)

 Current smoking 435 (49.8) 231 (39.8) 204 (69.9)

 Renal insufficiency 114 (13.1) 106 (18.2) 8 (2.7)

 Previous MI 42 (4.8) 34 (5.9) 8 (2.7)

 Previous PCI 46 (5.3) 41 (7.1) 5 (1.7)

 Previous CABG 3 (0.3) 1 (0.2) 2 (0.7)

Clinical presentation

 STEMI 653 (74.8) 366 (63.0) 287 (98.3)

 NSTE-ACS 220 (25.2) 215(37.0) 5(1.7)

Laboratory data

 Total cholesterol, mg/dl 189.5 ± 41.2 192.5 ± 40.7 183.2 ± 41.5

 LDL-C, mg/dl 127.2 ± 40.4 128.5 ± 41.4 124.2 ± 37.8

 HDL-C, mg/dl 46.5 ± 11.5 46.2 ± 11.6 47.4 ± 11.3

 Triglycerides, mg/dl 110.8 (67.0–161.3) 100.0 (58.0–150.0) 136.4 (96.6–185.6)

 HbA1c, % 6.4 ± 1.3 6.3 ± 1.3 6.5 ± 1.5

 Creatinine, mg/dl 0.87 ± 0.48 0.93 ± 0.57 0.75 ± 0.19

 Hs-CRP, mg/dl 0.34 (0.10–4.76) 0.10 (0.05–0.30) 7.15 (3.24–12.48)

 Peak CK, IU/l 1517.0 (413.8–2995.3) 1136.0 (270.0–2917.3) 1997.5 (1083.3–3079.5)

 Peak CK-MB, IU/l 160.9 (47.8–296.6) 132.3 (32.0–291.0) 182.3 (86.7–313.0)

 LVEF, % 56.1 ± 10.2 55.7 ± 11.4 56.8 ± 8.0

Angiographic data

 Infarct-related artery

  RCA​ 320 (36.7) 207 (35.6) 113 (38.7)

  LAD 458 (52.5) 305 (52.5) 153 (52.4)

  LCx 95 (10.9) 69 (11.9) 26 (8.9)

 Minimum lumen diameter, mm 0.64 ± 0.63 0.42 ± 0.57 1.08 ± 0.49

 Reference vessel diameter, mm 3.02 ± 0.68 2.88 ± 0.70 3.31 ± 0.52

 Lesion length, mm 15.9 ± 7.5 15.5 ± 6.9 16.7 ± 8.6

 Diameter stenosis, % 79.7 ± 18.4 86.1 ± 17.1 67.2 ± 14.0

OCT findings

 Pathobiology

  Plaque erosion 337 (38.6) 251 (43.2) 86 (29.5)

  Plaque rupture 536 (61.4) 330 (56.8) 206 (70.5)

 Lipid-rich plaque 647 (74.1) 389 (67.0) 258 (88.4)

 Thin-cap fibroatheroma 383 (43.9) 199 (34.3) 184 (63.0)

 Macrophage 629 (72.1) 401 (69.0) 228 (78.1)

 Cholesterol crystal 222 (25.4) 138 (23.8) 84 (28.8)

 Calcification 296 (33.9) 236 (40.6) 60 (20.5)

 Layered plaque 271 (31.0%) 159 (27.4%) 112 (38.4%)
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frames for each patient was 375 (range, 217– 540) for the training and internal validation dataset and 217 (range, 
206–374) for the external validation dataset. In the training and internal validation dataset, 159 (27.4%) patients 
had layered plaque, whereas 112 (38.4%) patients had layered plaque in the external validation dataset. At the 
frame-level, 3894 (1.6%) frames were classified as layered plaque in the training and internal validation dataset, 
and 1984 (3.0%) were classified as layered plaque in the external validation dataset.

Model performances in the five‑fold cross‑validation and the external validation.  Diagnostic 
performance for layered plaque in the five-fold cross-validation is shown in Fig. 3 and Table 2. In the internal 
five-fold cross-validation, the ViT-based model showed significantly improved performances (p < 0.001) with 
an AUC of 0.860 (95% CI 0.855–0.866), a sensitivity of 77.7% (95% CI 76.4–79.0), specificity of 77.6% (95% CI 
77.4–77.8) and accuracy of 77.6% (95% CI 77.4–77.8) to detect layered plaque within a given OCT frame, com-
pared to those of 0.799 (95% CI 0.792–0.805), 71.7% (95% CI 70.2–74.0) and 73.8% (95% CI 73.6–74.0), 73.8% 
(95% CI 73.6–73.9) for the standard CNN-based model. The improved performances with the ViT-based model 
over the standard CNN-based model were maintained with the statistical significance (p < 0.001) in the external 
validation, showing the AUC of 0.845 (95% CI 0.837–0.853), the sensitivity of 76.5% (95% CI 74.6–78.4), speci-
ficity of 76.0% (95% CI 75.7–76.3), and accuracy of 76.0% (95% CI 75.7–76.3) compared to those with 0.791 
(95% CI 0.782–0.800), 71.4% (95% CI 69.3–73.4), 71.9% (95% CI 71.6–72.3), and 71.9% (95% CI 71.6–72.2) of 
the standard CNN-based model. After adapting the model for the patient-level diagnosis, the diagnostic perfor-
mances at the patient-level are provided in Supplementary Results and Fig. S5, Table S5.

Analysis of the false estimate rates (Table 3).  In the internal five-fold cross-validation, the FPR and 
FNR of the ViT-based model were 22.4% (95% CI 22.2–22.6) and 22.3% (95% CI 21.0–23.6), which was lower 
than those of 26.2% (95% CI 26.0–26.4) and 28.3% (95% CI 26.0–29.9) for the standard CNN-based model. In 
the external validation, the ViT-based model exhibited FPR and FNR of 24.0% (95% CI 23.7–24.3) and 23.5% 
(95% CI 21.6–25.3), while those of the standard CNN model was 28.1% (95% CI 27.7–28.4) and 28.6% (95% CI 
26.6–30.7).

Figure 3.   Diagnostic performances of deep learning models in the internal five-fold cross validation and 
external validation. (A) In the internal five-fold cross validation, the vision transformer (ViT)-based model 
significantly outperformed the convolutional neural network (CNN)-based model (p < 0.001). (B) In the 
external validation, the ViT-based model also showed significantly better performance than the CNN-based 
model (p < 0.001), showing better generalizability in unseen data distribution.

Table 2.   Performance of the deep learning models for frame-level diagnosis in the internal and external 
validation. AUC​ area under the curve, CI confidence interval, PPV positive predictive value, NPV negative 
predictive value, DL deep learning, ViT vision transformer, CNN convolutional neural network.

AUC (95% CI) Sensitivity (%) (95% CI) Specificity (%) (95% CI) Accuracy (%) (95% CI)

Internal validation

 ViT-based model 0.860 (0.855—0.866) 77.7 (76.4–79.0) 77.6 (77.4–77.8) 77.6 (77.4–77.8)

 Standard CNN-based model 0.799 (0.792–0.805) 71.7 (70.2–74.0) 73.8 (73.6–74.0) 73.8 (73.6–73.9)

External validation

 ViT-based model 0.845 (0.837–0.853) 76.5 (74.6–78.4) 76.0 (75.7–76.3) 76.0 (75.7–76.3)

 Standard CNN-based model 0.791 (0.782–0.800) 71.4 (69.3–73.4) 71.9 (71.6–72.3) 71.9 (71.6–72.2)
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Model interpretability.  To provide a better interpretation of the attention by DL models, we visualized 
the models in two ways. We first visualized the prediction of two DL models and compared them to the ground 
truth annotation (label), for both positive and negative cases of layered plaque. As shown in the representative 
cases in Fig. 4, the ViT-based model showed a high correlation with the ground truth annotation in both posi-
tive and negative cases, while the standard CNN-based model did not. As shown in Fig. 5, the attention within 
a given frame provides the interpretation of the model’s decision by localizing the most “attended” area within 
the OCT image. The ViT-based model located the layered plaques in the representative case, suggesting that the 
novel model may “attend” more properly on clinically relevant features. The standard CNN-based model showed 
inappropriate attention to the background signal suggesting the sign of overfitting26.

Table 3.   Performance of the deep learning models in the false-positive rate and false-negative rate analysis. 
FPR false-positive rate, CI confidence interval, FNR false-negative rate, DL deep learning, ViT vision 
transformer, CNN convolutional neural network.

False-positive rate (%) (95% CI) False-negative rate (%) (95% CI)

Internal validation

 ViT-based model 22.3 (21.0–23.6) 22.4 (22.2–22.6)

 Standard CNN-based model 28.3 (26.0–29.9) 26.2 (26.0–26.4)

External validation

 ViT-based model 23.5 (21.6–25.4) 24.0 (23.7–24.3)

 Standard CNN-based model 28.6 (26.6–30.7) 28.1 (27.7–28.4)

Figure 4.   Visualization of the model predictions in sequence-level. As shown in the representative cases, the 
vision transformer (ViT)-based model showed higher agreement with the ground truth annotation than the 
convolutional neural network (CNN)-based model, both in (A) the negative case and (B) the positive case for 
layered plaque.
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Discussion
In this study, we developed and evaluated the deep learning models for the diagnosis of layered plaque, which 
often exhibits a subtle OCT signal change in the plaque. To this end, a ViT-based model leveraging the self-
attention mechanism as well as the multi-frame ensemble was devised, which resembles the reading process of 
the experienced OCT reader. The experimental results suggest that the ViT-based model can accurately diagnose 
the layered plaque with AUC over 0.850, which is difficult even for a human reader without years of experience 
in OCT image interpretation, outperforming the standard CNN-based model in both internal five-fold cross-
validation and external validation (p < 0.001 for both).

Pathology studies have shown that atherosclerotic plaques frequently destabilize without clinical 
consequences6,7. Whether an ACS develops following disruption of a plaque depends on the severity of steno-
sis, and the balance between systemic/local thrombogenicity and endogenous anti-thrombotic/thrombolysis 
mechanisms. Thrombus becomes organized, with connective tissue deposition of predominantly proteoglycans 
and types III collagen21,27. During the healing process, type III collagen is gradually replaced by type I collagen, 
which appears as a band of high backscattering signal on OCT21,27. Layered plaque has been reported to be asso-
ciated with multivessel coronary disease, complex lesions, and vulnerable plaque features9,28. In a recent study, 
layered plaque was reported to be a predictor of subsequent plaque progression10,29.

When interventional cardiologists diagnose a layered plaque, layered pattern is sought by visual inspection. 
This approach is subjective and involves the risk of inter-observer variability. Indeed, inter-observer kappa 

Figure 5.   Visualization of the attention of deep learning models. (A,C) The direct visualization of multi-head 
attention of vision transformer (ViT)-based model more accurately locate the target lesion than (B,D) the 
indirect visualization of network attention via gradient-weighted class activation map in convolutional neural 
network (CNN)-based model.
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values were not excellent (0.73–0.78) in previous studies10,28,30,31. Therefore, we devised the DL algorithm for the 
objective diagnosis of layered plaque. Until now, only a few studies have reported the results of the application 
of deep learning to the diagnosis of specific OCT findings. Although Min et al. have reported the deep learning 
model for the diagnosis of thin-cap fibroatheroma15, the results were drawn from a small single-center database 
without external validation. Likewise, Avital et al. developed a standard CNN-based deep learning model for the 
identification of coronary calcification32; however, they used a small number of data with only 8000 and 1500 
frames for the model development and the evaluation, respectively. Of note, these two datasets were derived from 
the same population. In contrast, we utilized a large, well-curated database collected from multiple institutions. 
The performance of the developed model was evaluated in a separate database collected from another institu-
tion to ensure that the model works stably in populations with different characteristics. Our model retained the 
excellent performance with AUC around 0.850 in the external validation.

With its early success, CNN has been recognized as the de-facto DL model in classification, detection, and 
segmentation tasks in medical imaging33. However, CNN may not be optimal for processing OCT images because 
the sequential structure within OCT frames cannot be modeled. When OCT experts diagnose a layered plaque, 
they need to assess a set of OCT frames as a whole. Because of this complex recognition process, the standard 
CNN-based model, which utilizes the selected frame only, failed to show optimal performance for the diagnosis 
of layered plaque. Instead, we adopted the recently developed deep learning model, named Vision Transformer 
(ViT)16, which can find important areas in an image with an attention mechanism and has rapidly become a 
state-of-the-art model in many computer vision tasks. We adapted this model to pinpoint the indistinct signal 
change of layered plaque in OCT images and utilize the global relationship between adjacent OCT frames. Our 
results indeed demonstrated that the ViT-based model can diagnose OCT findings more accurately compared 
with the standard CNN-based model.

Interestingly, DL models could differentiate layered plaque from the normal vessel wall with a three-layer 
structure (intima, media, and adventitia) (Fig. 5). Furthermore, thanks to the attention mechanism, the ViT-based 
model could point out the location of layered patterns more accurately compared with the CNN-based model. 
The suspected lesion locations can be annotated on real-time OCT images to assist cardiologists in making an 
accurate diagnosis. The viT-based model can also be applied in medical imaging which requires the review of 
sequential images such as intravascular ultrasound, computed tomography, or magnetic resonance imaging.

Study limitations.  Our study has some limitations. First, interpretation by an experienced reader was used 
as the ground truth rather than histology validation. This approach was taken, as it was impossible to use his-
tology validation for the development of a new deep learning model using intracoronary imaging. Histology 
validation rather than interpretations by OCT experts would be ideal as the ground truth. However, obtaining 
a large number of cases is vital for the development of a DL model, which is not feasible in histology validation 
studies. Second, the decision to perform OCT was left at the discretion of each operator, although OCT was 
routinely used at the participating institutions. Patients with poor OCT image quality were excluded. Therefore, 
selection bias cannot be excluded. Third, although this is the largest study so far for the development of DL mod-
els for OCT, the number of positive cases of layered plaque is relatively small and still not sufficient to generalize 
the results of the current study. Fourth, although the final performance was assessed in the external validation 
dataset with a totally different patient group to evaluate the generalization capacity of the model, labeling of OCT 
images in the external validation dataset was done by the same reader as in the training and validation datasets. 
Therefore, it is possible that the deep learning model has learned reader-specific habits. Fifth, the intra-patient 
clustering within the OCT volumes might have decreased the standard error estimates and therefore increased 
the possibility of the type 1 error, which may result in decreased range of the CIs. Sixth, the indirect attention 
map was visualized with a Grad-CAM-based saliency map for the standard CNN-based model, while a direct 
attention map was obtained for the ViT-based model. Hence, it is difficult to compare the saliency results directly.

Conclusions
In this study, we demonstrated that the ViT-based model, which has the attention mechanism, can accurately 
diagnose layered plaque, outperforming the standard CNN-based model. Further studies that evaluate the pos-
sible application of this novel diagnostic model in clinical practice may facilitate the widespread utilization of 
OCT for the diagnosis of layered plaque.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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