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Diagnosis of Coronavirus Disease 2019
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Abstract— Recently, the outbreak of Coronavirus Disease
2019 (COVID-19) has spread rapidly across the world. Due
to the large number of infected patients and heavy labor for
doctors, computer-aided diagnosis with machine learning
algorithm is urgently needed, and could largely reduce the
efforts of clinicians and accelerate the diagnosis process.
Chest computed tomography (CT) has been recognized as
an informative tool for diagnosis of the disease. In this
study, we propose to conduct the diagnosis of COVID-19
with a series of features extracted from CT images. To
fully explore multiple features describing CT images from
different views, a unified latent representation is learned
which can completely encode information from different
aspects of features and is endowed with promising class
structure for separability. Specifically, the completeness
is guaranteed with a group of backward neural networks
(each for one type of features), while by using class
labels the representation is enforced to be compact within
COVID-19/community-acquiredpneumonia (CAP) and also a
large margin is guaranteed between different types of pneu-
monia. In this way, our model can well avoid overfitting com-
pared to the case of directly projecting high-dimensional

Manuscript received April 12, 2020; revised April 24, 2020; accepted
April 25, 2020. Date of publication May 6, 2020; date of current ver-
sion July 30, 2020. This work was supported in part by the National
Natural Science Foundation of China under Grant 61976151 and Grant
61732011 and in part by the National Key Research and Development
Program of China under Grant 2018YFC0116400. (Hengyuan Kang,
Liming Xia, and Fuhua Yan contributed equally to this work.)
(Corresponding authors: Changqing Zhang; Dinggang Shen.)

Hengyuan Kang, Zhibin Wan, and Changqing Zhang are with the Col-
lege of Intelligence and Computing, Tianjin University, Tianjin 300350,
China (e-mail: kanghengyuan@tju.edu.cn; wanzhibin@tju.edu.cn;
zhangchangqing@tju.edu.cn).

Liming Xia is with the Department of Radiology, Tongji Hospital,
Tongji Medical College, Huazhong University of Science and Technology,
Wuhan 430030, China (e-mail: xialiming2017@outlook.com).

Fuhua Yan is with the Department of Radiology, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025,
China (e-mail: yfh11655@rjh.com.cn).

Feng Shi, Huan Yuan, Huiting Jiang, Dijia Wu, and Dinggang Shen
are with the Department of Research and Development, Shanghai
United Imaging Intelligence Company Ltd., Shanghai 201210, China
(e-mail: feng.shi@united-imaging.com; huan.yuan@united-
imaging.com; huiting.jiang@united-imaging.com; dijia.wu@united-
imaging.com; dinggan‘g.shen@gmail.com).

He Sui is with the Department of Radiology, China–Japan Union
Hospital of Jilin University, Changchun 130033, China (e-mail:
suihe910402@126.com).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2020.2992546

features into classes. Extensive experimental results show
that the proposed method outperforms all comparison
methods, and rather stable performances are observed
when varying the number of training data.

Index Terms— COVID-19, Pneumonia, Chest computed
tomography (CT), Multi-view representation learning.

I. INTRODUCTION

A
NOVEL coronavirus disease 2019 (COVID-19) was

recognized in December 2019, in Wuhan, China and has

rapidly spread over the world [1]–[5]. Recently, COVID-19

has been threatening all the world and the world health

organization (WHO) has declared that COVID-19 becomes

a global pandemic. The current clinical experience implies

that the RT-PCR detection of viral RNA has a low sensitivity

especially in the early stage [6]–[9]. As a form of pneumonia,

inflammation of air sacs in lungs has been found, and it has

shown that bilateral lung involvement could be observed for

early, intermediate, and late stage patients. Accordingly, a

high proportion of abnormal chest CT images were obtained

from patients with this disease [10]–[13]. Then, it is necessary

to complement nucleic acid testing with automatic technique

based on lung CT as one of the early diagnostic criteria for

this new type of pneumonia as soon as possible.

In this study, we focus on conducting diagnosis for

COVID-19 and community-acquired pneumonia [14]–[16],

i.e., characterizing the relationships between multiple types of

features from CT images and these diseases, which provides

a possible pipeline for automatic diagnosis and investiga-

tion. Specifically, multiple types of features are extracted

and the correlations to diagnosis are extensively evaluated

by conducting experiments with multiple baseline methods.

The experiment results show that both radiomic features and

handcrafted features are helpful for classifying these two

different categories of lung diseases. Therefore, we propose

a novel pipeline which can effectively integrate information

from different views. We also note that, although deep-learning

methods [17], especially CNN-based models, have shown

the power in image classification, they usually need large-

scale training data and have difficulty in exploiting expert

prior. Although there are thousands of CT images available

which is a quite large dataset for medical image analysis,
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Fig. 1. Examples of chest CT images with infection of COVID-19 (left)
and community-acquired pneumonia (right). The pneumonia becomes
more serious from top to bottom, and the yellow arrows indicate the
representative infection areas. It can be observed that it is quite similar
for the CT images of high-severity CAP and mild-severity COVID-19.

it is still not comparable with the large-scale image dataset

in the computer vision field, i.e., ImageNet [18]. Therefore,

extracting manually designed features to incorporate expert

prior is a reasonable and probably preferred approach which

could alleviate the overfitting problem in machine learning.

For computer-assisted medical diagnosis, a number of meth-

ods automatically learn classification models based on features

extracted with expert prior [19], [20]. However, some of them

are only applicable to single type of features thus cannot well

explore the complementary information from multiple types

of features. Fortunately, multi-view representation learning

provides tools for exploiting multiple types of heterogeneous

features [21], [22]. Although significant progress achieved,

existing multi-view representation learning methods cannot

guarantee the information completeness and promising struc-

ture for separability. This makes them tend to overfit training

data thus harm the performance in the testing stage.

Based on the above analysis, we propose a new classifi-

cation framework to diagnose these diseases, where the main

aim is to identify the COVID-19 from CAP. It is worth noting

that these different types of features are not directly used as

input for a classifier to output the final decision [23]–[25]

in our method. Instead, both the training and testing sam-

ples are mapped into a promising latent space [26], where

these latent representations are expected to encode comple-

mentary information from different types of features and

have promising structures revealing the underlying class

distribution.

First, since there are different types of features which are

quite different in distribution and quality as shown in Fig. 5, it

is very challenging and important to effectively integrate these

different types of features. For this issue, a novel integration

strategy is proposed with a group of neural networks, where

each one encodes the information from one type of features

into a latent representation. Second, we conduct projection

learning to build an accurate model to map a subject with

these multiple types of features into a latent representation,

thus a latent-representation regressor is obtained which can be

applied on new subjects. Third, a final classifier is trained

based on the latent representation, instead of the original

features. We should emphasize the advantages of our model

over existing methods that often directly learn projections

from original features into class labels. The first advantage

is the latent representation, which is usually compact and thus

may be more effective since it can avoid to overfit the high-

dimensional data and has better generalization in the testing

stage. Second, the proposed pipeline can encode information

from different types of features and produce a structured rep-

resentation which imposes simple bias on the model to further

enhance the generalization performance. Moreover, the learned

representation could be used in different classification models,

and the performance with the learned latent representations

clearly outperforms that of original features for all baseline

classifiers used in experiments. The main contributions of this

study are summarized as follows:

• We propose to conduct diagnosis of COVID-19 with

multi-view representation learning, where the com-

plementarity among different types of features is

well explored, achieving clear performance gain in

classification.

• We propose a full pipeline for diagnosis COVID-19 from

community-acquired pneumonia, which is quite different

from existing models that directly project features into

the class space. The key component is the structured

latent representation learning which brings robustness,

generalization and stability into the pipeline.

• The learned latent representation can be widely used for

different classifiers to promote the diagnosis accuracy.

Specifically, the latent representations are adopted by sev-

eral baseline models, and the results clearly demonstrate

the effectiveness of the latent representation compared

with original features.

• Extensive experiments on the CT images validate that

the proposed model can obtain a well-structured latent

representation, thus significantly promoting the diagnosis

in terms of accuracy, sensitivity and specificity compared

with different methods.

II. MATERIAL

There are 2522 CT images involved in this study, where

1495 cases are from COVID-19 patients and the left

1027 cases are from community-acquired pneumonia (CAP)

patients. These COVID-19 infected subjects were confirmed

with positive nucleic acid testing and confirmed by Chinese

Centers for Disease Control and Prevention (CDC). The dis-

tributions of subjects in terms of gender and age are shown
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TABLE I

SUBJECT DISTRIBUTIONS IN TERMS OF GENDER

Fig. 2. Subject distributions in terms of age.

in Table I and Fig. 2. Specifically, according to Table I, we

can find that the number of males with COVID-19 is slightly

larger than that of females, while, for CAP, the contrary is the

case. These subjects cover patients from 12-year old to 98-year

old. In addition, basically, the average age of patients infected

with COVID-19 is younger than that of CAP according to

Fig. 2. These CT images were provided by Tongji Hospital

of Huazhong University of Science and Technology, China-

Japan Union Hospital of Jilin University, Ruijin Hospital

of Shanghai Jiao Tong University, and their collaborators.

The COVID-19 images were acquired from Jan. 9, 2020 to

Feb. 14, 2020, and CAP images were obtained from Jul. 30,

2018 to Feb. 22, 2020.

Chest CT scans were performed on all patients with thin

section. The CT scanners used in the three hospitals men-

tioned include uCT 780 from UIH, Optima CT520, Discov-

ery CT750, LightSpeed 16 from GE, Aquilion ONE from

Toshiba, SOMATOM Force from Siemens, and SCENARIA

from Hitachi. Furthermore, CT scanners were carried out

with the protocol which include: 120 kV, reconstructed CT

thickness ranges from 0.625 to 2mm, with breath hold at full

inspiration.

In this study, all images were preprocessed with a V-Net

model [27] to extract the lung, lung lobes, and pulmonary

segments. The infected lesions were also segmented [28]. After

that, based on the lesion region, 189-dimensional features

were extracted from each CT image in total. First, according

to different approaches of extracting, we divide the features

into radiomic features and handcrafted features. Furthermore,

we split the radiomic features into two types of features

that characterize the CT images from different perspectives:

Gray features are composed of the first-order statistics which

describe the distribution of voxel intensities within the image

TABLE II

ABSTRACT FOR DIFFERENT TYPES OF FEATURES

region, such as maximum, minimum, median and so on.

Texture features are derived from gray level co-occurrence

matrix (GLCM), gray level size zone matrix (GLSZM), gray

level run length matrix (GLRLM), neighboring gray tone

difference matrix (NGTDM) and gray level dependence matrix

(GLDM) [29]. The handcrafted features are divided into

five groups based on different characteristics of the lesions:

Histogram features are composed of frequency of intensity

level in the infection area at 30 equal bins which are divided

from the intensity value ( between -1350 and 150 [30]) range

of lung area image. Number features are composed of the

total number of infected areas in the bilateral lungs, lung lobes,

and pulmonary segments, respectively. Intensity features are

composed of the mean and variance value of infection areas.

Volume features are composed of volume of infected areas

of the whole lung, each lobe and pulmonary segment, and the

percentage of the infected areas of the whole lung and two

lobes. Surface features are composed of the infection surface

and the lung boundary surface. Furthermore, they contain the

distance of each infection surface vertex to the nearest lung

boundary surface, and are divided into 5 ranges (3, 6, 9, 12

and 15 voxels (voxel spacing is 1.5mm)). We also calculate

the number of infection surface vertices to the lung wall in

terms of each range of distance, the percentage of infection

vertex number against the whole infection vertices in each

range, and the percentage of infection vertex number. These

189 features in total are spit into 7 different non-overlapping

groups as shown in Table II.

III. METHOD

There are different types of heterogeneous features from

CT images which provide complementary information to diag-

nosis the COVID-19, hence we employ multi-view machine

learning technique [31]–[33] for our task. Inspired by our

previous network (CPM-Nets) [26], we further develop a novel

diagnosis pipeline to classify COVID-19 and community-

acquired pneumonia (CAP). Specifically, these diverse types

of features extracted from CT images have extremely dif-

ferent properties, therefore it is unreasonable and ineffec-

tive to directly concatenate them without prepossessing or

machine learning technique, and this is also validated in

experiments.
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Fig. 3. Overview of the proposed latent-representation-based diagnosis framework. For the input, different colors indicate different types of features,
while for the class information yellow and purple indicate COVID-19 and CAP, respectively.

To effectively exploit these multiple types of features

from CT images, we propose a latent-representation-based

diagnosis pipeline, which is composed of three components

in the training stage as shown in Fig. 3. First, based on

the CPM-Nets we learn latent representations with informa-

tion completeness and promising class structure. The latent

representations act as bridge of different components. This

step is termed as Complete and Structured Representation

Learning. Second, for the consistency of latent space [26]

between training and testing, we train a projection model

termed as Latent-representation Regressor between the 7 types

of original features and the latent representations. Third, a

latent-representation-based classifier for diagnosis is trained.

Accordingly, in the testing stage, the original features are

projected into latent space with latent-representation regressor

and then the final diagnosis result can be obtained with the

latent-representation-based classifier.

A. Step-1: Complete and Structured Representation
Learning

Considering our aim is to discriminate two types of CT

images associated with COVID-19 and CAP, we learn latent

representations which not only encode information of het-

erogeneous features but also reflect the class distribution.

Then, the latent representations will be both informative and

separable. For clarification, we first give the formal definition

of notations as follows. Given the training set {Xn, yn}
N
n=1,

where Xn = {x
(v)
n }V

v=1 is a multi-view sample and yn is the

corresponding class label (i.e., yn = 1 or 0 indicates the

subject is infected with COVID-2019 or CAP, respectively).

N and V are the number of subjects in the training stage

and the number of types of features (i.e., V = 7 in current

experiments), respectively.

1) Completeness for Latent Representation: First, we aim to

flexibly and effectively integrate different types of information

for each subject into a low-dimensional space, where the

desired latent representation should involve information from

all types of features. From the perspective of reconstruction

[34], if a latent representation h can well reconstruct each type

of features with a stable mapping fv (·), i.e., x(v) = fv(h),

then it encodes the intrinsic information of different types of

features. Therefore, here we try to reconstruct each type of

features from the learned latent representation to guarantee

the information completeness.

Based on the above analysis, we can integrate information

from different types of features into a latent representation as

follows:

`r (Xn, hn) =

V
∑

v=1

k fv (hn; 2(v)
r ) − x(v)

n k2 (1)

where fv (·; 2
(v)
r ) is the reconstruction network for

the vth type of features parameterized by 2
(v)
r . hn

represents the learned latent representation. Ideally, by

minimizing Eq. (1), we can well encode information

from different types of features into the complete

representation hn .

2) Structure for Latent Representation: Second, we aim

to make the learned latent representation to be well struc-

tured with respect to these two different pneumonia diseases.

Specifically, the loss for structured representations is
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Fig. 4. Visualization of the latent representations in the training and testing stages. Given the original features, the visualization in (a) indicates
that the underlying class structure is not well revealed, while the learned latent representations in (b) are much better structured and consistent with
classes. Similar case is also observed in the testing stage, as shown in (c) and (d). The red and blue boxes in (c) and (d) indicate the same pair
examples for COVID-19 and CAP, respectively.

specified as:

1(yn, y) = 1(yn, g(hn; 2c)), (2)

with g(hn; 2c) = arg min
y�Y

Eh∼T (y)F(h, hn) (3)

where F(h, hn) = φ(h; 2c)
T φ(hn; 2c) with φ(·; 2c) being

the feature mapping function for h parameterized by 2c, and

T (y) being the set of latent representation from pneumonia

class y. In practice, we set h = φ(h; 2c) for simplicity which

makes the loss non-parametric. This loss will enforce the

compactness within the same type of pneumonia, and a margin

is between COVID-19 and CAP, guaranteeing the separability.

Then, we should minimize the following loss function

`c(yn, y, hn) = max
y�Y

(

0,1(yn, y) + Eh∼T (y)F(h, hn)

− Eh∼T (yn)F(h, hn)
)

. (4)

Based on above analysis, by jointly considering informa-

tiveness and separability, we should optimize the following

objective function

arg min
2r

1

N

N
∑

n=1

`r (Xn, hn; 2r ) + λ`c(yn, y, hn). (5)

where λ > 0 is a balance factor between completeness and

class labels.

B. Step-2: Learning Projection From Original Features to
Latent Representation

In the Step-1, one low-dimensional latent representation h

is obtained for each subject in the training set. As shown

in Fig. 3, these representations are rather promising for the

diagnosis of COVID-2019 and CAP since the representations

associated with COVID-19 and CAP are compact and there

is a clear margin between these two types of pneumonia.

However, we should note that we cannot obtain the latent

representation in the testing stage now. Therefore, we tar-

get to design a latent-representation regressor to accurately

transform the original features of a subject into a latent

representation.

The latent-representation regressor is implemented with

fully connected neural networks to learn a mapping 0(·),

i.e., h0
n = 0(Xn; 2e) with parameter 2e from the original

features, i.e., xn to the corresponding latent representations.

Specifically, the regressor is composed of four fully-connected

layers and two sigmoid layers. The optimization objective is

to minimize the MSE (Mean Squared Error) loss between

the output of the regressor and the corresponding latent

representations. It can be formulated as

arg min
2e

1

N

N
∑

n=0

(

hn − 0(Xn; 2e)
)2

. (6)

Then, given multiple types of original features of a CT image,

the corresponding latent representation can be calculated.



KANG et al.: DIAGNOSIS OF CORONAVIRUS DISEASE 2019 (COVID-19) 2611

C. Step-3: Latent-Representation-Based Classifier

After obtaining the latent representation, we then target to

train a latent-representation-based classifier which can diagno-

sis the subjects between COVID-2019 and CAP. For simplic-

ity, we employ a neural network with three fully-connected

layers as the latent-representation-based classifier. The widely

used cross-entropy loss is employed in our classification tasks.

Then, we should minimize the following loss function

` = −
1

N

N−1
∑

n=0

[

yn log(8θ (h
0
n))+(1 − yn) log(1−8θ(h

0
n))

]

(7)

where 8θ (h
0
n) indicates the prediction of pneumonia type from

the classifier with h0 as the input.

D. Testing Stage

After training, a full pipeline for diagnosis of COVID-19

and CAP is available. The latent-representation regressor and

latent-representation-based classifier play an essential role in

the testing phase, as shown on the right side of Fig. 3.

Specifically, subjects with different types of features are first

transformed into latent representation and then the diagnosis

result can be obtained with the latent-representation-based

classifier.

IV. EXPERIMENT AND RESULT

A. Experimental Setting

We conduct extensive experiments on the CT images data

to evaluate the proposed pipeline. The dataset is randomly

divided into 70% and 30% for training and testing, respec-

tively. Furthermore, we adopt 5-fold cross-validation strategy

on the training data to tune the parameter λ from the set

{0.1, 1, 10, 100}. In practice, promising performance can be

expected given a relatively large value for λ, which is fixed

as 100 in our experiments.

Data Preprocessing: The original features extracted from

CT images are of rather different scales. Accordingly, data

preprocessing is necessary before using them as input for

learning algorithm. There are several data preprocessing strate-

gies, e.g., normalization and standardization. Specifically, the

standardization for K features is computed as:

x̂ i =
x i − µi

σ i
, i = 1, 2, . . . , K (8)

where µi and σ i are mean value and standard deviation of

the feature x i , respectively. x̂ i denotes the standardization

feature of original feature x i . The features of normalization

are calculated as:

x̂ i =
x i − x i

min

x i
max − x i

min

, i = 1, 2, . . . , K (9)

where x i
min and x i

max are minimum and maximum values

of the feature x i respectively. Accordingly, x̂ i indicates the

normalization feature of original feature x i .

We conduct experiments on several baseline models by

concatenating all the original features, normalized features

TABLE III

EVALUATION OF PREPROCESSING OF FEATURES

and standardized features, respectively. The effects of the

data preprocessing for diagnosis are shown in Table III.

Specifically, the performance of using the original features

is relatively low, the main reason of which may be the

large scale difference among different features. Fortunately,

in terms of accuracy, both of these preprocessing methods

obtain a significant improvement (1.32% ∼ 25.69%) on

all classification models. For clarification and comparison

fairness, we employ the standardized data for all methods in

the following experiments. We compare the proposed method

with the following methods in the diagnosis task, including

SVM, Logistic-Regression (LR), Gaussian-Naive-Bayes

(GNB), K-Nearest-Neighbors (KNN), and Fully-Connected-

Neural-Networks (NN). For all these methods, we repeat

10 times and report the mean and standard deviation

performance. Diagnostic performance is evaluated in terms

of accuracy (ACC), sensitivity (SEN) and specificity (SPC).

B. Performance Evaluation

1) Discrimination Power of These Different Types of Features:

In order to investigate the discrimination power (related to

diagnosis) of different types of features, we visualize them

with t-distributed stochastic neighbor embedding (t-SNE) [35].

Fig. 5 demonstrates different distributions for these 7 types of

features and concatenated features (7 types). Furthermore, to

quantitatively evaluate these features, we conduct experiments

on each type of features for diagnosis task with baseline algo-

rithms. Table IV presents the diagnostic performance. First, we

can find that large performance gaps exist between different

types of features. For example, the baselines with gray features

and texture features achieve clearly better performances than

number features and intensity features. There are different

manifestations reported between COVID-19 and other types

of pneumonia, such as Influenza-A viral pneumonia [24]. As

expected, radiomic features including gray and texture fea-

tures have better discrimination ability. However, the number
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TABLE IV

DIAGNOSIS PERFORMANCE WITH BASELINE METHODS USING DIFFERENT TYPES OF FEATURES

Fig. 5. Visualization of each type of original features and concatenated features using t-distributed stochastic neighbor embedding (t-SNE) [35],
which is a nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data for visualization in a low-dimensional space.

features and intensity features are a little less discriminative,

and the possible reason is that the number of lesions and the

intensity in lung may be not quite different for COVID-19

and CAP. Note that, although different types of features have

different power in diagnosis, they are complementary to each

other. As shown in Table IV, the concatenated features (i.e.,

radiomic and handcrafted features) perform much better than

the case of using each individual type of features in terms

of accuracy, which strongly supports the necessity of jointly

using different types of features.

2) Effectiveness of Latent Representation Compared With the

Original Features: With latent-representation regressor, Fig. 4

intuitively demonstrates the effectiveness of the learned latent

representation with informativeness and structure compared

with the original features. Specifically, according to Fig. 4(a),

it is observed that the original (concatenated) features are

not well structured, while the learned latent representations

(Fig. 4(b)) encoding information from original features and

class labels can better reveal the underlying class structure.

As expected, the counterparts Fig. 4(c) and Fig. 4(d) in the
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Fig. 6. Evaluation for the latent representation on different classifiers.

Fig. 7. Stability of our method with different ratios of training data.

testing stage further validate the generalization ability of our

model. Therefore, promising performance in diagnosis can be

expected by using the learned latent representation.

For quantitatively evaluation, as shown in Fig. 6, both

conventional learning models and neural networks achieve

significant improvement with the learned latent representation

in terms of all three metrics. Specifically, Gaussian-Naive-

Bayes obtains a clear performance improvement (4.72% and

3.44%) in terms of accuracy and sensitivity, respectively, while

Logistic-Regression improves the performance by 3.13% in

terms of specificity. This further validates that the learned

latent representation is effective in diagnosis for COVID-19

and CAP.

3) Comparison for Different Methods: Fig. 6 also shows

diagnosis performance of the proposed method and compared

methods. It is observed that the proposed method achieves

the best accuracy, up to 95.50%. Compared to all baselines

which directly learn projections from the original features into

class labels, our latent-representation-based model improves

the diagnosis accuracy by 6.1% ∼ 19.9%. In terms of sensi-

tivity and specificity, our method also demonstrates the best

performance, improving the performance by 4.61% ∼ 21.22%

compared to the comparison methods. To further investigate

the effectiveness of our latent representation, we compare

different diagnosis models by using the original features and

our latent representation as shown in Fig. 6. We can find that

consistent better performances are achieved by using the latent

representation for all classifiers. Furthermore, neural network

with original features achieves promising performance, while

the same structure neural networks using our latent repre-

sentation achieve higher performance in terms of all metrics.

This further validates the advantage and potential of the latent

representation learned from our pipeline.

4) Stability of Proposed Method: We conduct experiments

to verify the stability of our proposed model under different

proportions of training data. For fair comparison, the testing

set is fixed in each experiment. Fig. 7 reveals the fluctuation of

performance as the ratio of training data changing from 2%

to 80%. We can find that the performance becomes clearly

better as the number of training samples increases. However,

when the ratio of training set exceeds 40%, the stability of

performance could be observed, which also reflects the law

of diminishing returns. For example, when 60% of data are

used, the model achieves the best results on all three metrics.

While, the worst performance is only about 1% lower than

the best. Therefore, the promising performance and stable

training results empirically validate that the proposed method

can accurately and stably identify COVID-19 from CAP.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed a novel automatic diagnosis

pipeline for COVID-19 which can fully leverage different

types of features extracted from CT images. We investigated

these different types of features and found they are comple-

mentary to each other. Then, with the proposed multi-view

representation learning technique, diagnosis performance is

promoted to 95.5%, 96.6% and 93.2% in terms of accu-

racy, sensitivity and specificity, respectively. More importantly,

compared to the original features, the learned latent repre-

sentation has potential for utilization in different classifiers.

In the future, we will consider diagnosis with more classes

(i.e., normal, different COVID-19 severity, and CAP) instead

of only two types of disease (i.e., COVID-19 and CAP). More-

over, clinical characteristics for patients might be beneficial for

diagnosis, which can be flexibly integrated into our framework

for performance promotion.
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