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Summary Statement: An artificial intelligence algorithm differentiated between COVID-19 

pneumonia and non-COVID-19 pneumonia in chest x-ray radiographs with high sensitivity and 

specificity.   

 

Key Results:  

 The overall performance of artificial intelligence (AI) algorithm achieved an area under 

the curve of 0.92 on the test dataset of 5869 chest x-ray radiographs (CXRs) from 2193 

patients (acquired from multiple hospitals and multiple vendors)  

 Over a set of 500 randomly selected test CXRs, the AI algorithm achieved an AUC of 

0.94, compared to an AUC of 0.85 from three experienced thoracic radiologists. 

 

Abbreviations:  

AUC = area under the receiver operating characteristic curve, COVID-19 = coronavirus disease 

2019, CXR = chest x-ray radiograph, ROC = receiver operating characteristic, RT-PCR = 

reverse transcriptase polymerase chain reaction, SARS-CoV-2 = severe acute respiratory 

syndrome coronavirus 2 
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Abstract 

Background  

Radiologists are proficient in differentiating between chest x-ray radiographs (CXRs) with and 

without symptoms of pneumonia, but have found it more challenging to differentiate CXRs with 

COVID-19 pneumonia symptoms from those without.   

Purpose 

To develop an artificial intelligence algorithm to differentiate COVID-19 pneumonia from other 

causes of CXR abnormalities.  

Materials and Methods 

In this retrospective study, a deep neural network, CV19-Net, was trained, validated, and tested 

on CXRs from patients with and without COVID-19 pneumonia. For the COVID-19 positive 

CXRs, patients with reverse transcriptase polymerase chain reaction positive results for severe 

acute respiratory syndrome coronavirus 2 with positive pneumonia findings between February 1, 

2020 and May 30, 2020 were included. For the non-COVID-19 CXRs, patients with pneumonia 

who underwent CXR between October 1, 2019 and December 31, 2019 were included. Area 

under the receiver operating characteristic curve (AUC), sensitivity, and specificity were 

calculated to characterize diagnostic performance. To benchmark the performance of CV19-Net, 

a randomly sampled test dataset containing 500 CXRs from 500 patients was evaluated by both 

the CV19-Net and three experienced thoracic radiologists.  

Results 

A total of 2060 patients (5806 CXRs; mean age 62 ± 16, 1059 men) with COVID-19 pneumonia 

and 3148 patients (5300 CXRs; mean age 64 ± 18, 1578 men) with non-COVID-19 pneumonia 

were included and split into training + validation and test datasets. For the test set, CV19-Net 
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achieved an AUC of 0.92 (95% confidence interval [CI]: 0.91, 0.93) corresponding to a 

sensitivity of 88% (95% CI: 87%, 89%) and a specificity of 79% (95% CI: 77%, 80%) using a 

high sensitivity operating threshold, or a sensitivity of 78% (95% CI: 77%, 79%) and a 

specificity of 89% (95% CI: 88%, 90%) using a high specificity operating threshold. For the 500 

sampled CXRs, CV19-Net achieved an AUC of 0.94 (95% CI: 0.93, 0.96) compared to a 0.85 

AUC (95% CI: 0.81, 0.88) of radiologists.   

Conclusion 

CV19-Net was able to differentiate COVID-19 related pneumonia from other types of 

pneumonia with performance exceeding that of experienced thoracic radiologists. 
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Introduction 

The outbreak of coronavirus disease 2019 (COVID-19) (1) began with the initial diagnosis of an 

unknown viral pneumonia in late 2019 in Wuhan, China and subsequently spread around the 

globe as a pandemic.  Ribonucleic acid sequencing of respiratory samples identified a novel 

coronavirus (called severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2) as the 

underlying cause of COVID-19. Patients with COVID-19 present with symptoms that are similar 

to other viral illnesses, including influenza, as well as other coronaviruses such as severe acute 

respiratory syndrome (2,3) and Middle East respiratory syndrome (4). Symptoms are nonspecific 

and include fever, cough, fatigue, dyspnea, diarrhea, and even anosmia (5,6). The radiographic 

signs are also nonspecific and can be observed in patients with other viral illnesses, drug 

reactions, or aspiration (5,7,8).  

The similarities in clinical presentation across other reactions and illnesses creates challenges 

towards establishing a clinical diagnosis. Currently, reverse transcriptase polymerase chain 

reaction (RT-PCR) is the reference standard method to identify patients with COVID-19 

infection (9). In addition to the RT-PCR test, CT has also been widely used in China, and 

occasionally in other countries, to provide additional means in COVID-19 diagnosis and 

treatment response monitoring process (5,10,11). However due to concerns of contamination of 

CT imaging facilities and exposure to health care workers, healthcare professional organizations 

(12-14) do not recommend CT imaging as a general diagnostic imaging tool for patients with 

COVID-19.  

Rather, major medical societies recommend the use of chest x-ray radiography (CXR) as part of 

the workup for persons under investigation for COVID-19 due to its unique advantages: almost 

all clinics, emergency rooms, urgent care facilities, and hospitals are equipped with stationary 
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and mobile radiography units, including both urban and rural medical facilities. These units can 

be easily protected from exposure or disinfected after use and can be directly used in a contained 

clinical environment without moving patients. However, the major challenge with the use of 

CXR in COVID-19 diagnosis is its low sensitivity and specificity in current radiological practice. 

A recent study found that the sensitivity of CXRs was poor for COVID-19 diagnosis (11). To 

some extent, this poor diagnostic performance can be attributed to the fact that many radiologists 

are seeing COVID-19 induced pneumonia cases for the very first time and radiologists need to 

read more cases to learn both the common and unique imaging features of this disease. 

In this regard, machine learning, particularly deep learning (15,16) methods, have unique 

advantages in quick and tireless learning to differentiate COVID-19 pneumonia from other types 

of pneumonia using CXR images. The purpose of this study was to train and validate a deep 

learning method to differentiate COVID-19 pneumonia from other causes of CXR abnormalities 

and test its performance against thoracic radiologists. 

 

Materials and Methods 

This retrospective, Health Insurance Portability and Accountability Act -compliant study was 

approved by the Institutional Review Board at both Henry Ford Health System, Detroit, MI and 

the University of Wisconsin-Madison, Madison, WI. Written informed consent was waived 

because of the retrospective nature of the data collection and the use of de-identified images. 

Patient Datasets 

 For algorithm development, we included CXRs from patients with and without COVID-

19 (COVID-19 positive and non-COVID-19) pneumonia from Henry Ford Health System, which 

includes five hospitals and more than 30 clinics. The pneumonia findings for both COVID-19 
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and non-COVID-19 pneumonia were found using a commercial natural language processing tool 

(InSight, Softek Illuminate) that searched radiologist reports for positive pneumonia findings. 

Searches were performed over all radiologist reports at the institution over the COVID-19 and 

non-COVID-19 timeframes. The patients with non-COVID-19 pneumonia were selected based 

solely on positive pneumonia findings in the report and the date of study (October-December 

2019). The patients with pneumonia from the COVID-19 timeframe were cross-referenced with 

the list of patients positive for COVID-19 to find the list of patients that had both positive 

pneumonia and positive COVID-19. 

 The inclusion criteria for the non-COVID-19 pneumonia were patients that underwent 

frontal view CXR, had pneumonia diagnosis, and imaging was performed between October 1, 

2019 and December 31, 2019 (before the first COVID-19 positive patient in the United States 

was confirmed on January 19, 2020 in Seattle, WA [17]). Since these CXRs predate the first 

confirmed COVID-19 cases in the United States, we consider these CXRs to be positive for non-

COVID-19 pneumonia. Patients under the age of 18 were excluded.  

 The inclusion criteria for the COVID-19 positive group were patients that underwent 

frontal view CXR, with RT-PCR positive test for SARS-CoV-2 with a diagnosis of pneumonia 

between February 1, 2020 and May 31, 2020. Patients were excluded if CXR was performed 

more than 5 days prior or 14 days after RT-PCR confirmation.  

  

 The resulting datasets consisted of 5805 CXRs with RT-PCR confirmed COVID-19 

pneumonia from 2060 patients and 5300 CXRs with non-COVID-19 pneumonia from 3148 

patients for use in this study (Figure 1 and 2).  
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CXR Acquisition 

 These CXRs were from six different vendors: Carestream Health (DRX-1, DRX-

Revolution), GE Healthcare (Optima-XR220, Geode Platform), Konica Minolta (CS-7), Agfa 

(DXD40, DXD30, DX-G), Siemens Healthineers (Fluorospot Compact FD), and Kodak (Classic 

CR). 

Training, Validation, and Test Datasets 

 It is important to consider any variables from CXR acquisition (such as x-ray tube 

potential [kVp values] and x-ray exposure levels) to mitigate any biases in algorithm training (for 

additional details see Appendix E1).  Since our overarching objective was to develop a deep 

learning algorithm that could be successfully applied broadly to CXRs taken at different 

hospitals and clinics where CXR imaging systems from different vendors are used, our strategy 

was to train the deep learning method using a dataset with images from different vendor systems. 

CXRs were randomly selected from the four major vendors (Carestream Health, GE Healthcare, 

Konica Minolta, and Agfa) of the dataset and these vendors were randomly anonymized as V1, 

V2, V3 and V4. The curated CXRs were first grouped by vendors and a total of 5236 CXRs 

(2582 CXRs from the COVID-19 cohort and 2654 CXRs from the non-COVID-19 pneumonia 

cohort) were used as training and validation to develop our deep learning algorithm, which is 

referred to as CV19-Net.  

 The remaining data were used for performance evaluation of the developed CV19-Net 

algorithm, including 3223 positive COVID-19 CXRs from 1007 patients and 2646 non-COVID 

pneumonia CXRs from 1186 patients. A patient-based data partition scheme was used to ensure 

that CXRs of any particular patient will only appear in either the training dataset or test dataset, 

but not both. See Table 1 for details of the data partition. 
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Image Preprocessing in Machine Learning 

 The Digital Imaging and Communications in Medicine files of the collected CXRs were 

resized to 1024 x 1024 pixels and saved as 8-bit Portable Network Graphics grayscale images. 

Before being fed into the CV19-Net, images were further downscaled to 224 x 224 pixel, 

converted to red-green-blue images and normalized based on the mean and standard deviation of 

images in the ImageNet dataset (18). (See Appendix E2) 

Neural Network Architecture and Training Strategy 

 The CV19-Net used in this work is an ensemble of 20 individually trained deep neural 

networks.  Each deep neural network consists of four modules of the well-known DenseNet (19) 

architecture, with a binary classifier to differentiate COVID-19 pneumonia from other types of 

pneumonia. A three-stage transfer learning approach was used to train the 20 individual deep 

learning neural networks of the same architecture. After the CV19-Net was trained, an input 

CXR was fed into the CV19-Net to produce 20 individual probability scores, then a final score 

was generated by performing a quadratic mean. This process is similar to the group diagnosis 

protocol used in difficult clinical decision-making processes in that 20 individual “experts” are 

asked to evaluate the same input image, and then a final group score is generated by a voting 

scheme. This final probability score was then compared with a chosen decision-making threshold 

value to classify the input CXR images as COVID-19 or non-COVID-19 pneumonia (For details 

of the network architecture and the training process, see Appendix E3. The code is available at 

https://github.com/uw-ctgroup/CV19-Net). 

Human Radiologists Reader Study to Generate Performance Reference 

 To benchmark the performance of the developed CV19-Net, three experienced thoracic 

radiologists (JDN, TKS, and MLS with more than 9, 14 and 34 years of experience, respectively) 
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performed binary classification (COVID-19 positive or COVID-19 negative) reader study using 

a randomly selected subset of the test images (Figure 1): 500 CXRs from 500 different patients 

(250 COVID-19 pneumonia and 250 non-COVID-19 pneumonia).  All three readers have recent 

experience with COVID-19 CXR interpretation. The three readers were blinded to any clinical 

information and read all exams independently between June 1, 2020 and June 15, 2020.  The 

three readers dictated each CXR as either COVID-19 positive or COVID-19 negative pneumonia 

using a picture archiving communication systems workstation under standard reading conditions. 

To compare the performance between CV19-Net and the three readers on the same test data set, 

the threshold of CV19-Net was adjusted to match the corresponding specificity of the radiologist 

and then the diagnostic sensitivity was compared between each radiologist and CV19-Net. 

Statistical Analysis 

To evaluate the diagnostic performance of the trained CV19-Net, the area under the receiver-

operating-characteristic curve (AUC), sensitivity, and specificity were calculated over the entire 

test cohort of 5869 CXRs from 2193 patients. The 95% confidence intervals (CI) for the 

performance metrics were calculated using the statistical software R (version 4.0.0) with the 

pROC package (20). The CI for AUC was calculated using DeLong’s nonparametric method 

(21); CIs for sensitivity and specificity were calculated using the bootstrap method (22) with 

2000 bootstrap replicates. The McNemar test was performed to compare the sensitivity of CV19-

Net to the three radiologists. P-value hypothesis testing method was used for each comparison 

(For details see Appendix E5). P < .05 was considered to indicate a statistically significant 

difference. 

 

Results 
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Patient Overview 

 A total of 3507 (5672 CXRs) patients with non-COVID-19 pneumonia met the inclusion 

criteria. There were 359 patients (372 CXRs) that were under 18 years of age that were excluded. 

A total of 2086 patients (6650 CXRs) with COVID-19 pneumonia met the inclusion criteria and 

340 patients (845 CXRs) were excluded for having CXRs performed outside of the preferred 

time window of RT-PCR (-5 to +14 days since positive test).  

 The resulting datasets that were used for the development (training + validation and 

testing) consisted of 5805 CXRs with RT-PCR confirmed COVID-19 pneumonia from 2060 

patients (mean age, 62 ± 16 years; 1059 men) and 5300 CXRs with non-COVID-19 pneumonia 

from 3148 patients (mean age, 64 ± 18; 1578 men). 

 The data was randomized and partitioned based on data acquired on CXR equipment 

from different vendors. A total of 2654 CXRs (1962 patients) with non-COVID-19 pneumonia 

and 2582 CXRs (1053 patients) with RT-PCR confirmed COVID-19 were used for training and 

validation. A total of 2646 CXRs (1186 patients) with non-COVID-19 pneumonia and 3223 

CXRs (1007 patients) with RT-PCR confirmed COVID-19 were used for CV19-Net testing, 

resulting in 5869 CXR images from 2193 patients (mean age 63 ± 16 years, 1131 men) within 

the test dataset (Figure 1). 

Overall Performance of CV19-Net 

 The performance of the CV19-Net achieved an AUC of 0.92 (95% confidence interval 

[CI]: 0.91, 0.93) for the overall test dataset. As shown in Figure 3A and Table 2, for a high 

sensitivity operating threshold, this method showed a sensitivity of 88% (95% CI: 87%, 89%) 

and a specificity of 79% (95% CI: 77%, 80%); for a high specificity operating threshold, it 

showed a sensitivity of 78% (95% CI: 77%, 79%) and a specificity of 89% (95% CI: 88%, 90%). 



In
 P

re
ss

The performance of CV19-Net for four major vendors and five major hospitals is presented in 

Figure 3C. 

 The three radiologists’ interpretation results from the subset of 500 test images were 

summarized by sensitivities of 42%, 68%, and 90%, respectively, and specificities of 96%, 85%, 

and 55%, respectively. Using the interpretation results of the same image from three readers, an 

averaged receiver operating characteristic (ROC) curve with an AUC of 0.85 (95% CI: 0.81, 

0.88) was generated for radiologists. As a comparison, when the CV19-Net was applied to the 

same sub-set of test images, it yielded an AUC of 0.94 and sensitivities of 71%, 87%, and 98%, 

respectively, and specificities of 96%, 85%, and 55%, respectively, when choosing a matched 

specificity to the performance of each radiologist (Figure 3B). All P-values were < .001, 

indicating CV19-Net had better sensitivity than human radiologists at all matched specificity 

levels. Figure 4 shows two example images in the reader study test dataset, which were correctly 

labeled by CV19-Net, but incorrectly labeled by all three radiologists. The heatmaps generated 

by CV19-Net are also shown in Figure 4. See Appendix E4 for details on the heatmap 

generation. 

Performance by Age Group and Sex 

 The performance of CV19-Net is presented for patients with different age groups in 

Table 3 and for the two sexes in Table 4. There was no difference in CV19-Net performance 

between sex (P = .17). However, results showed a difference in performance between well-

separated age groups (eg, age group of 18-30 years is different from age groups of 45-60 years 

[P = .02], 60-75 years [P = .002], and 75-90 years [P < .001]) while no difference in neighboring 

age groups (eg age groups 18-30 years compared to 30-45 years; P = .31) was found. See Table 

E1 for details. 
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Performance vs Training Sample Size 

The relationship between the achievable AUC of CV19-Net vs the needed training sample sizes 

was systematically investigated to determine the training sample size used in this paper (See 

Figure E5). The results demonstrated that more than 3000 training samples (1500 positive 

COVID-19 cases and 1500 non-COVID-19) are needed to achieve an AUC better than 0.90. 

After the training sample size goes beyond 3000 the performance gain is diminished with the 

increase of training samples. 

Discussion  

It has been a routine clinical practice for radiologists to interpret chest x-ray radiographs with 

and without symptoms of pneumonia. However, it has been much more challenging to 

differentiate CXRs with COVID-19 pneumonia symptoms from those without due to the lack of 

the training in reading in this pandemic. In this work, we have demonstrated that an artificial 

intelligence algorithm can be trained and used to differentiate coronavirus disease 2019 

(COVID-19) related pneumonia from non-COVID-19 related pneumonia using CXR images, 

with excellent performance on the same test image data set in terms of AUC of 0.94 (95% CI: 

0.93, 0.96) compared to a 0.85 AUC (95% CI: 0.81, 0.88) of three thoracic radiologists.  

Intensive efforts have been made globally through 2020 to seek fast and reliable machine 

learning solutions to help diagnose patients with COVID-19 and triage patients for proper 

allocation of rather limited resources in combating this global pandemic (See Table E2 for a 

summary of related studies). Most related studies used small datasets with fewer than 200 

COVID-19 CXRs collected from various sources including cropped images from published 

journals or from authors’ access to other image databases. Further, evaluations of these neural 
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networks were only performed over the same small data cohort. Due to the non-uniformity of 

image quality in these small datasets, the apparent test performances were often biased (23).  

 In contrast, two recent studies (24,25)  reported their results using relatively larger data 

sets from clinical centers (one from Brazil with a total of 558 COVID-19 positive CXRs and the 

other from the Netherlands with a total of 980 COVID-19 positive CXR images used in both 

training and testing).  Schwab et al (24) trained a small number of conventional machine learning 

algorithms from their dataset and reported an area under the curve (AUC) of 0.66 (95% 

confidence interval [CI]: 0.63, 0.70).  In Murphy et al (25), a deep learning model was trained 

using 512 COVID-19 positive CXRs combined with 482 COVID-19 negative CXRs and 

reported a performance of AUC = 0.81 on CXRs from 454 patients. The potential variance of the 

reported AUC performance values remains unclear since there was no 95% CI reported. Their 

results were compared with that of six human radiologists, showing that the performance of their 

deep learning model is comparable with radiologists.  

 In our study, we systematically studied the performance of the trained deep learning 

model and how it changes with an increase of the training dataset size (For details, see Figure 

E5). With a training sample size of 1000 (500 positive and 500 negative cases), the achievable 

AUC was found to be 0.86, similar to what was reported (0.81) in Murphy et al (25). The slightly 

higher performance of our network may be attributable to differences in data curation strategies, 

as we included CXRs obtained contemporaneously with RT-PCR, within a narrow window (-5 to 

+14 days).  

 This study has several limitations. First, we only considered the binary classification task: 

COVID-19 pneumonia versus other types of pneumonia. Therefore, at this stage, the developed 

algorithm should be used in adjunction to radiologist’s findings of pneumonia image features in 
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CXRs. For an automated artificial intelligence-assisted diagnostic system, it would be ideal to 

have finer classification categories such as “Normal”, “Bacterial”, “Non-COVID-19 viral”, and 

“COVID-19”. With global efforts in collecting CXRs with the above four labels, the work 

presented here may be further enhanced in future work. Second, the data collection of data from 

patients with COVID-19 pneumonia was conducted in the first peak of the COVID-19 pandemic. 

As a result, the collected data may not reflect the true prevalence of the disease. We also 

included multiple CXRs from the same patient since some patients took multiple exams as their 

diseases progress. One may question whether the use of multiple CXRs changes the performance 

evaluation, to address this question, a single CXR image was randomly selected from multiple 

CXRS per patient to participate in the overall test performance evaluation, and the overall AUC 

did not change from 0.92. Third, although the method was tested over multiple hospitals and 

clinics, the test sites need to be further expanded to determine whether the developed artificial 

intelligence algorithm in this work is generalizable to even broader population distributions over 

different regions and continents. Finally, in radiologist reader studies, only the averaged receiver 

operating characteristic (ROC) curve and the corresponding AUC was calculated based upon the 

diagnosis of each CXR from three readers. Thus, the reported ROC curve and AUC are averaged 

results from three independent readers. Ideally, each reader should have been asked to report 

their degree of confidence level in their diagnosis for each CXR and individual ROC and AUC 

for each reader can then be calculated and reported.  

 In conclusion, the combination of chest radiography with the proposed CV19-Net deep 

learning algorithm has the potential as an accurate method to improve the accuracy and 

timeliness of the radiological interpretation of COVID-19 pneumonia.  
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Figures 

 

 

 

Figure 1: Study flowchart for data curation and data partition. Vendors 1-4 (V1-V4) are four 

major vendors of the acquired chest x-ray radiographs (CXR) in the dataset. AI = artificial 

intelligence, RT-PCR = reverse transcriptase polymerase chain reaction. 
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Figure 2: Detailed data characteristics. A, Age distribution of included patients. B, Distribution 

of the delta (time between the positive reverse transcriptase polymerase chain reaction [RT-PCR] 

test and the chest x-ray examination) for the positive cohort. A positive delta value indicates that 

the chest x-ray examination was performed after the RT-PCR test. C, Distribution of the x-ray 

radiograph vendors. D, Distribution of the use of computed radiography (CR) or digital 

radiography (DX). E, Distribution of data from different hospitals (H01-H05 indicates the five 

different hospitals and C01 to C30 indicate the 30 different clinics).  
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Figure 3: Performance of CV19-Net. A, Receiver operating characteristic (ROC) curve of the total 

test dataset (left) with 5869 CXRs and the probability score distribution (right), T1 and T2 denote 

high sensitivity operating point and high specificity operating point, respectively. B, Pooled 

performance of the three chest radiologists compared with CV19-Net for the 500 test cases. C, 

ROC curves of CV19-Net for different vendors (V1-V4) and hospitals (H01-H05) in the test 

dataset. 
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Figure 4: Examples of CXRs and the network generated heatmaps from the reader study test set. 

A, Left: a COVID-19 pneumonia case (64-year-old, male) that was classified correctly by CV19-

Net but incorrectly by all three radiologists. Right: the heatmap generated by CV19-Net overlaid 

on the original image. The red coloring highlights the anatomical regions that contribute most to 

the CV19-Net prediction. B, Left: a non-COVID-19 pneumonia case (58-year-old, female) which 

was classified correctly by CV19-Net but incorrectly by all three radiologists. Right: the heatmap 

highlights the anatomical regions that contribute most to the CV19-Net prediction. 
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Tables 

Table 1. Training, Validation, and Test Datasets 

 Training and validation Test 
 COVID-19 Non-COVID-19 COVID-19 Non-COVID-19 

 Patients CXR Patients CXR Patients CXR Patients CXR 

V1 623  1399 1122 1497  743  1757 417  1042 

V2 269  458 332 457  424  715 289  556 

V3 108  544 308 400  106  527 300  373 

V4 53  181 200 300  80  159 280 375 

VO NA NA NA NA 56 65 269  300 

Total 1053  2582 1962 2654  1007  3223 1186  2646 

 

Note.—Number of patients and CXRs in each dataset are shown. V1-V4 denotes Carestream Health, GE 

Healthcare, Konica Minolta and Agfa, respectively. VO denotes Siemens Healthineers and Kodak. CXR 

= chest x-ray radiography, COVID-19 = coronavirus disease 2019 

 

Table 2. Test Performance of CV19-Net for Different Vendors 

 

 Vendors 

Parameter V1 V2 V3 V4 Overall 

A. Performance 

No. 

images 
2799 1271 900 534 5869 

No. 

patients 
1160 713 405 360 2193 

AUC 
0.92 (0.91-

0.93) 

0.90 (0.88-

0.92) 
0.93 (0.91-0.94) 

0.91 (0.88-

0.94) 

0.92 (0.91-

0.93) 

B. High sensitivity operating point* 

Sensitivity 
90% (88%-

91%) 

86% (83%-

88%) 
87% (84%-90%) 

89% (84%-

93%) 

88% (87%-

89%) 

Specificity 
78% (76%-

81%) 

77% (73%-

80%) 
82% (78%-85%) 

78% (73%-

82%) 

79% (77%-

80%) 

C. High specificity operating point† 

Sensitivity 
80% (78%-

82%) 

75% (72%-

78%) 
77% (73%-81%) 

77% (70%-

83%) 

78% (77%-

79%) 

Specificity 
90% (88%-

92%) 

88% (85%-

91%) 
90% (87%-93%) 

88% (85%-

92%) 

89% (88%-

90%) 

 
Note.—Values in parenthesis are 95% confidence intervals.  AUC = area under the receiver operating 

characteristic curve.  

 
* Threshold of T1 = 0.4. 
† Threshold of T2 = 0.6. 
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Table 3. Test Performance of CV19-Net for Different Age Groups 

 Age group 

Parameter 18-30 30-45 45-60 60-75 ≥75 

A. Performance 

No. images 211 532 1519 2259 1348 

No. patients 93 218 509 800 573 

AUC 
0.96 (0.94-

0.98) 

0.94 (0.93-

0.96) 

0.93 (0.91-

0.94) 

0.92 (0.91-

0.93) 

0.89 (0.88-

0.91) 

B. High sensitivity operating point* 

Sensitivity 
90% (84%-

96%) 

91% (87%-

94%) 

92% (90%-

94%) 

88% (86%-

90%) 

82% (79%-

85%) 

Specificity 
89% (84%-

95%) 

83% (79%-

88%) 

73% (70%-

77%) 

79% (76%-

81%) 

80% (77%-

83%) 

C. High specificity operating point† 

Sensitivity 
78% (70%-

87%) 

85% (80%-

89%) 

84% (81%-

86%) 

78% (75%-

80%) 

69% (66%-

72%) 

Specificity 
94% (89%-

98%) 

91% (88%-

94%) 

85% (83%-

88%) 

89% (88%-

91%) 

90% (88%-

92%) 

 

Note.—Values in parenthesis are 95% confidence intervals.  AUC = area under the receiver operating 

characteristic curve.  

 
* Threshold of T1 = 0.4. 
† Threshold of T2 = 0.6. 

 

  



In
 P

re
ss

Table 4. Test Performance of CV19-Net for Men and Women 

 Sex 

Parameter Men Women 

A. Performance 

No. images 3521 2348 

No. patients 1131 1062 

AUC 0.92 (0.91-0.93) 0.91 (0.90-0.92) 

B. High sensitivity operating point* 

Sensitivity 88% (87%-89%) 89% (87%-90%) 

Specificity 79% (77%-81%) 78% (75%-80%) 

C. High specificity operating point† 

Sensitivity 78% (76%-80%) 79% (76%-81%) 

Specificity 90% (88%-91%) 89% (87%-91%) 

 

Note.—Values in parenthesis are 95% confidence intervals.  AUC = area under the receiver operating 

characteristic curve.  

 
* Threshold of T1 = 0.4. 
† Threshold of T2 = 0.6. 
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Appendix E1: Bias Mitigation 

In image classification tasks, machine learning methods use image intensity values to extract 

digital image features and then use these image features to compute, for example, the COVID-19 

probability score of an input CXR. Therefore, the actual digital values in each CXR image 

determine the final machine learning classification decision of the input CXR. However, 

different vendors of CXR imaging systems use different proprietary postprocessing algorithms to 

process digital CXRs (ie each vendor will adjust their final digital values differently for desired 

image contrast for interpretation). Further, many hospitals and clinics often use multiple CXR 

imaging systems from different vendors. Additionally, different clinics and different 

technologists may choose different imaging parameters such as x-ray tube potential (kVp values) 

and x-ray exposure levels (mAs values) to acquire the CXR. As a result, similar pneumonia 

findings may have very different digital image representations in retrospectively collected digital 

CXRs. Without taking these variables into account, machine learning algorithms may produce 

biased results.  

 

Appendix E2: Image Preprocessing 

The DICOM files were resized to 1024 × 1024 and saved as 8-bit PNG grayscale images. The 

image intensity value was adjusted based on the window level and window width attributes in 

the DICOM file. Contrast inversion is applied for images with DICOM attribute 

MONOCHROME1. See Figure E1 for the flow chart of the image preprocessing step.  

Before being fed into the network, PNG images were further downscaled to 224 × 224, 

converted to red (R)- green (G) -blue (B) images and normalized based on the mean and standard 

deviation of images in the ImageNet dataset: 
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𝑅 = (𝑅 − 0.485)/0.229 𝐺 = (𝐺 − 0.456)/0.224 𝐵 = (𝐵 − 0.406)/0.225 

 

Appendix E3: Network Architecture and Training 

The DenseNet-1211 architecture with 50 convolutional neural network (CNN) layers was used as 

the image feature extraction module of CV19-Net. Followed by the last convolutional layer of 

DenseNet-121 (layer 120) is a fully connected (FC) classifier with a Softmax activation function 

to combine the extracted feature vector for the final predicted probability score.  

A three-stage transfer learning process was used in model training (see Figure E2):  

1. Stage one:  The image feature extraction module was trained on ImageNet images with 14 

million images to differentiate between 1,000 image classes.  

2. Stage two: The network was initialized with weights trained in stage one and was further 

trained using the NIH data set with 112,120 chest x-ray images from 30,805 unique patients 

to classify chest x-ray images into 14 different disease classes. A similar design was used in 

CheXNet.2 This step allows the network to learn CXR-specific image features.  

3. Stage three: The network was initialized using weights obtained from stage two and trained 

using our training dataset consists of 5,236 CXRs (2,582 CXRs from the COVID-19 cohort 

and 2,654 CXRs from the non-COVID-19 pneumonia cohort) to train the network to perform 

the final binary classification: COVID-19 and non-COVID-19 pneumonia classification. 

CV19-Net (Figure E3) was developed using the PyTorch framework. The network was trained to 

minimize the binary cross entropy loss. Adam optimizer was used with an initial learning rate 

=6.0 × 10  for all convolutional layers and 1.0 × 10  for the FC classifier. The minibatch size 
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was empirically selected to be 50. Data augmentation techniques including rotation (30-degree 

range) and horizontal flipping were used. To prevent model overfitting, an early stopping 

strategy was adopted by monitoring the training loss on the validation set. The validation set was 

randomly sampled from the total training dataset (25% of the training samples). The model with 

the lowest validation loss was taken as the final model for prediction. To reduce fluctuations of 

prediction results, the well-known ensemble averaging technique common in machine learning 

was introduced in this work. The prediction scores of input images from N=20 individually 

trained networks with identical training parameters, but different random seeds in model 

initialization and different randomly sampled validation sets. A quadratic mean of the prediction 

probability scores was taken to generate the final predication probability score: 

𝑆 = ∑ 𝑆 (𝑖) /

 (N=20). 

This final probability score was compared with the selected threshold values in decision making 

to perform binary classification.  

 

Appendix E4: Class Activation Maps 

To help visualize which part of the input images contributed most to CV19-Net's decision used 

to produce the final probability score, a heat map employing the gradient-weighted Class 

Activation Mapping (Grad-CAM)3 was used to highlight those key image pixels in the CXR 

image primarily responsible for COVID-19 pneumonia. The paired heatmap of COVID-19 

image features and the original CXR images are presented in Figure E4 to help aid human eyes 

to identify the key morphological and contextual features in CXR images.  
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Appendix E5: Additional Statistical Analyses 

(a) Test performance difference on men and women 

The following statistical hypothesis testing was performed: 

 

      H0: AUC(male) = AUC(female) vs. 

 H1: AUC(male) ≠ AUC(female) 

 

P-value method was used in hypothesis testing with a rejection p-value of .05. Result shows 

P=.17, therefore no statistically significant difference between two groups. 

(b) Test performance difference on patients of different age groups 

The following statistical hypothesis testing was performed: 

 

       H0: AUC(Group-i) = AUC(Group-j) vs. 

 H1: AUC(Group-i) ≠ AUC(Group-j) 

 

Results are shown in Table E1. 
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Supplementary Figures 

 

 
Figure E1: Flow chart showing the image preprocessing method. 

 

 

 
Figure E2: Individual network architecture and training process in CV19-Net. 
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Figure E3: CV19-Net: An ensemble of individually trained deep neural network models to 

perform ensemble prediction of an input image. 

 

 

 

 

 
 

Figure E4: Class activation map examples. 
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Figure E5: AUC vs. training sample size and the increment of AUC vs increment of training 

sample size. After the training sample size goes beyond 3000 (1500 positive and 1500 negative 

cases), the performance gain with the increase of training sample is diminished.  
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Supplementary Tables 

 

 

 

Table E1. Paired AUC Difference between Different Age Groups 

 

Table E1. Age group AUC difference, P-value 

 18-30 30-45 45-60 60-75 75-90 

18-30  .31 .02 .002 <.001 

30-45   .13 .01 <.001 

45-60    .25 .002 

60-75     .02 

75-90      
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Table E2. Related Works 

 

Reference 

Number of positive 

CXRs in 

training/validation 

Number of positive 

CXRs in testing 
Data type 

Pereira et al.4 63 27 Cohen5 

Rahimzadeh et al.6 149 31 Cohen 

Zokaeinikoo et al.7 267 Cohen 

Ozturk et al.8 127 Cohen 

Kishore et al.9 150 Cohen 

Narin et al.10 269 Cohen 

Gil et al.11 288 Cohen 

Horry et al.12 100 Cohen 

Khan et al.13 284 Cohen 

Elasnaoui et al.14 231 Cohen 

Afshar et al.15 Not clear Cohen 

Karim et al.16 149 31 Cohen 

Oh et al.17 144 36 Cohen 

Wang et al.18 358 Wang 

Luz et al.19 152 31 Wang 

Ucar et al.20 66 10 Wang 

Farooq et al.21 68 Wang 

Shibly et al.22 232 51 Wang 

Majeed et al.23 111 73 Cohen, Kaggle 

Zhang et al.24 258 60 Cohen, Kaggle 

Kumar et al.25 42 20 SIRM 

Tahir et al.26 338 85 
Cohen, SIRM, 

Radiopaedia,  

Yeh et al.27 415 95 Local hospital 

Schwab et al.28 391 167 Local hospital 
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Murphy et al.29 512 468 Local hospital  

 

SIRM: https://www.sirm.org/category/senza-categoria/covid-19 

Cohen: https://github.com/ieee8023/covid-chestxray-dataset 

Kaggle: https://www.kaggle.com/andrewmvd/covid19-X-rays 

Wang: https://github.com/lindawangg/COVID-Net 

Radiopaedia: https://radiopaedia.org/playlists/25975? 

 

  



In
 P

re
ss

References for Supplementary Materials 

1. Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional 

Networks. Proc - 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017 2016;2017-

Janua:2261–9.  

2. Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: A 

retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med 

2018;15(11):e1002686. 

3. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual 

explanations from deep networks via gradient-based localization. Proceedings of the IEEE 

international conference on computer vision 2017 (pp. 618-626). 

4. Pereira RM, Bertolini D, Teixeira LO, et al. COVID-19 identification in chest X-ray images 

on flat and hierarchical classification scenarios. Computer Methods and Programs in 

Biomedicine. 2020 May 8:105532. 

5. Cohen JP, Morrison P, Dao L. COVID-19 image data collection. arXiv preprint 

arXiv:2003.11597. 2020 Mar 25. 

6. Rahimzadeh M, Attar A. A modified deep convolutional neural network for detecting COVID-

19 and pneumonia from chest X-ray images based on the concatenation of Xception and 

ResNet50V2. Informatics in Medicine Unlocked. 2020 May 26:100360. 

7. Zokaeinikoo M, Kazemian P, Mitra P, Kumara S. AIDCOV: An Interpretable Artificial 

Intelligence Model for Detection of COVID-19 from Chest Radiography Images. medRxiv. 

2020. 

8. Ozturk T, Talo M, Yildirim EA, et al. Automated detection of COVID-19 cases using deep 

neural networks with X-ray images. Computers in Biology and Medicine. 2020 Apr 28:103792. 



In
 P

re
ss

9. Jamil M, Hussain I. Automatic Detection of COVID-19 Infection from Chest X-ray using 

Deep Learning. medRxiv. 2020. 

10. Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (covid-19) using x-

ray images and deep convolutional neural networks. arXiv preprint arXiv:2003.10849. 2020 Mar 

24. 

11. Gil D, Díaz-Chito K, Sánchez C, Hernández-Sabaté A. Early Screening of SARS-CoV-2 by 

Intelligent Analysis of X-Ray Images. arXiv preprint arXiv:2005.13928. 2020 May 28. 

12. Horry MJ, Paul M, Ulhaq A, Pradhan B, Saha M, Shukla N. X-Ray Image based COVID-19 

Detection using Pre-trained Deep Learning Models. https://engrxiv.org/wx89s/ 

13. Khan AI, Shah JL, Bhat MM. Coronet: A deep neural network for detection and diagnosis of 

COVID-19 from chest x-ray images. Computer Methods and Programs in Biomedicine. 2020 Jun 

5:105581. 

14. Elasnaoui K, Chawki Y. Using x-ray images and deep learning for automated detection of 

coronavirus disease. Journal of Biomolecular Structure and Dynamics. 2020 May 9(just-

accepted):1-22. 

15. Afshar P, Heidarian S, Naderkhani F, et al. Covid-caps: A capsule network-based framework 

for identification of covid-19 cases from x-ray images. arXiv preprint arXiv:2004.02696. 2020 

Apr 6. 

16. Karim M, Döhmen T, Rebholz-Schuhmann D, et al. Deepcovidexplainer: Explainable covid-

19 predictions based on chest x-ray images. arXiv preprint arXiv:2004.04582. 2020 Apr 9. 

17. Oh Y, Park S, Ye JC. Deep learning covid-19 features on cxr using limited training data sets. 

IEEE Transactions on Medical Imaging. 2020 May 8. 



In
 P

re
ss

18. Wang L, Wong A. COVID-Net: A Tailored Deep Convolutional Neural Network Design for 

Detection of COVID-19 Cases from Chest X-Ray Images. arXiv preprint arXiv:2003.09871. 

2020 Mar 22. 

19. Luz E, Silva PL, Silva R, et al. Towards an efficient deep learning model for covid-19 

patterns detection in x-ray images. arXiv preprint arXiv:2004.05717. 2020 Apr 12. 

20. Ucar F, Korkmaz D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet based Diagnostic of the 

Coronavirus Disease 2019 (COVID-19) from X-Ray Images. Medical Hypotheses. 2020 Apr 

23:109761. 

21. Farooq M, Hafeez A. Covid-resnet: A deep learning framework for screening of covid19 

from radiographs. arXiv preprint arXiv:2003.14395. 2020 Mar 31. 

22. Shibly KH, Dey SK, Islam MT, et al. COVID Faster R-CNN: A Novel Framework to 

Diagnose Novel Coronavirus Disease (COVID-19) in X-Ray Images. medRxiv. 2020 

23. Majeed T, Rashid R, Ali D, et al. Covid-19 detection using CNN transfer learning from X-

ray Images. medRxiv. 202. 

24. Zhang Y, Niu S, Qiu Z, et al. COVID-DA: Deep Domain Adaptation from Typical 

Pneumonia to COVID-19. arXiv preprint arXiv:2005.01577. 2020 Apr 30. 

25. Kumar R, Arora R, Bansal V, et al. Accurate Prediction of COVID-19 using Chest X-Ray 

Images through Deep Feature Learning model with SMOTE and Machine Learning Classifiers. 

medRxiv. 2020. 

26. Tahir A, Qiblawey Y, Khandakar A, et al. Coronavirus: Comparing COVID-19, SARS and 

MERS in the eyes of AI. arXiv preprint arXiv:2005.11524. 2020 May 23. 

27. Yeh CF, Cheng HT, Wei A, et al. A Cascaded Learning Strategy for Robust COVID-19 

Pneumonia Chest X-Ray Screening. arXiv preprint arXiv:2004.12786. 2020 Apr 24. 



In
 P

re
ss

28. Schwab P, Schütte AD, Dietz B, et al. predCOVID-19: A Systematic Study of Clinical 

Predictive Models for Coronavirus Disease 2019. arXiv preprint arXiv:2005.08302. 2020 May 

17. 

29. Murphy K, Smits H, Knoops AJG, et al. COVID-19 on the Chest Radiograph: A Multi-

Reader Evaluation of an AI System. Radiology 2020;201874. 

 

 

 

 

 

 

 

 


	Diagnosis of COVID-19 Pneumonia Using Chest Radiography: Value of Artificial Intelligence
	Recommended Citation
	Authors

	Microsoft Word - ry_202944_In Press.docx

