

Diagnosis of Defects on Scan Enable and Clock Trees

Yu Huang
Mentor Graphics Corporation,

Marlborough, MA, USA

Keith Gallie
LSI Logic Corporation

Milpitas, CA, USA

 Scan is the most widely used DFT technique in
today’s VLSI industry. Mux-DFF and Level Sensitive
Scan Design (LSSD) are the most popular scan
architectures. For Mux-DFF, when scan enable is set to
“1”, the scan chain is in shift mode. When scan enable
is set to “0”, the scan chain is in capture mode. For
LSSD, two clocks are used to control the shift. When
scan enable or scan clock has defects, it is desirable to
locate the defects at logic level by algorithmic
techniques to guide failure analysis.
 Similar to the defects on other signals, faulty scan
enable / clock signals may be caused by numerous types
of defects. E.g., a shorted net, an open net or an incorrect
timing with respect to clock or scan data stream. The
following examples are used to illustrate how to apply
various fault models for different defects.
 If a scan enable signal is shorted to VCC, only
incorrect capturing will result. Scan cells will capture
data from the previous scan cell instead of capturing data
from system logic. We may use a stuck-at-1 fault model
for this scenario. Clearly, the chain integrity test will
pass since these patterns don’t have the capture
operation. The scan patterns would fail and the scan
logic diagnosis will be used in this scenario. In rest of
this paper, we do not discuss this category of scan enable
defects.
 If a scan enable signal is shorted to ground, only
incorrect shifting will result. So we could use a stuck-at-
0 fault model in this scenario. We know that the shift
operation sometimes is not correct because instead
obtaining the data from the previous scan cell, it will get
the data from the system logic during each shift cycle.
 If a scan enable signal is shorted to some other part
in the design such that its logic value can be toggled, the
resultant value will depend on the signal strength of the
shorted parts. The fault on scan enable signal may be
modeled as a stuck-at-0 (e.g., AND-type bridging), or a
stuck-at-1 (e.g., OR-type bridging) or stuck-at-X (i.e.,
sometimes behaves like stuck-at-0, sometimes behaves
like stuck-at-1. e.g. dominant-type bridging). For an
open defect, it may also be modeled as one of the three
fault models, depending on how the downstream gates of
the open site interpret the floating signal. If an open
occurs on a stem, different branches may see different
stuck-at values based on different thresholds, which may
lead to a stuck-at-X fault model.

 It is also possible for a scan enable signal to have
incorrect timing with respect to the clock or data stream.
This could be caused by a design error (e.g., undersized
buffers may introduce extra delay) or signal integrity
problems (e.g., a crosstalk may speed up the scan enable
signal leading to unacceptable skew). Obviously, we
need use stuck-at-X fault model for the scan enable
timing defects since both shift and capture operations
may be incorrect.
 Defects on shift clocks in LSSD scan architecture
can be modeled in similar way as the fault models for
scan enable defects in Mux-DFF scan designs. Therefore
in the rest of the paper, we only discuss the diagnosis of
stuck-at-0 fault on scan enable signals for Mux-DFF
scan designs. Without loss of generality, the proposed
algorithm can also be applied to diagnosing defective
scan clocks in LSSD scan designs.
 If a chain integrity test fails, how would we know if
the failure is caused by defects in the scan chains or
defects in the scan enable tree? To identify the defects
on a scan enable tree, three approaches are proposed in
[CRO05]. The first method is to use a scan pattern and
vary the timing of the capture (scan enable deassertion)
with respect to the clock. The second method is to vary
the capture timing with respect to the data stream, which
requires the shift operation at very slow frequency to
have enough time to deassert / assert the scan enable.
The third method is to pad the capture cycle with “dead
clocks”. These proposed methods may identify timing
related defect on scan enable. However, it is not easy to
use them to identify other types of defects. That is, if the
defect can be modeled as a stuck-at-0, varying capture
timing may not help. In this paper, we propose a
different software based method that does not require
any extra effort manipulating test parameters. First, we
assume the defects are on scan chains and use previously
published chain diagnosis algorithms [HUA05] to
identify the suspect scan cells. Secondly, if there is at
least one faulty chain that is modeled with stuck-at-X
fault, we attempt to diagnose with stuck-at-0 fault model
at scan enable. As we mentioned earlier that the shift
operation is incorrect when the scan cell value is
obtained from the system logic for each shift cycle, it is
very likely we see both stuck-at-1 and stuck-at-0 at scan
cells. So stuck-at-X fault model at scan cells is a sign of
the stuck-at-0 fault model for scan enable defects.

3-9810801-0-6/DATE06 © 2006 EDAA

 The most import idea for diagnosing defects on scan
enable tree is to locate the faulty scan cells first,
followed by the analysis to find any common scan
enable signals that drive these faulty cells. Using stuck-
at-X model, we cannot locate all faulty cells. However,
we may identify the boundaries of two special faulty
cells: the faulty cell located closest to the scan input
(called input-end faulty cell) and the faulty cell located
closest to the scan output (called output-end faulty cell).
 First, we use a binary search algorithm to identify
the lower bound for the input-end faulty cell. Suppose
the design has only one faulty scan chain with 200 scan
cells. We partition the chain into two segments at the
middle (cell 100). Note cell 0 is the cell at scan output
end. For each scan pattern, we modify the loading values
on this faulty chain such that the loading values at cells
at downstream of cell 100 are X. Then we capture the
test responses based on the modified loading values.
Next, we compare the simulated results against the
observed results on good chains. Note that the failure
bits on good chains are the results of incorrect shifting
on faulty chain. If at least one cell on good chain shows
a conflict (simulation is 1/0, observe 0/1), we know that
the at least one cell in the range [199, 100] has incorrect
loading values. We then move our partition point to cell
150 and repeat the above binary search. If there is no
conflict in the upper section of the chain [199,100], we
move the partition point to cell 50 and repeat the above
binary search. The search will converge on a cell L such
that setting the partition point at cell L leads no conflict
at good chains whereas setting the partition point at cell
(L-1) (i.e. the adjacent downstream cell of L) leads to
conflict at good chains. We know that the cell L has an
incorrect loading for this conflict scan pattern, which
makes cell L a lower bound for the input-end faulty cell.
 Secondly, we use faulty chain simulation to identify
the upper bound for the output-end faulty cell. This is
same as the upper bound calculation method for single
fault proposed in [GUO01]. Let us review it by using an
example as follows. We first modify all loading values
to all Xs for each scan pattern. Then we perform
simulation to get captured values. Suppose a scan pattern
captures a known value (“0” or “1”) at cell 100 on the
faulty chain and this known value is observed as a
failure on the ATE. This implies that there must be a
fault in the range of [0, 100] on this faulty chain because
the value captured at cell 100 must be corrupted during
the unloading procedure. Therefore cell 100 is an upper
bound for at least one faulty cell based on this pattern. If
we find this scenario happened in multiple patterns, we
select the minimum upper bound among these patterns
as the upper bound for the output-end faulty cell.
 At this point, we obtain two ranges per faulty chain
that can be modeled with multiple stuck-at-X faults. If
we assume there is one defect on scan enable tree that
causes the defective chains, the scan enable signal must

drive at least one scan cell per range. Our purpose at the
final stage is to locate this faulty scan enable signal. It is
done by the following four steps:
 Step 1: We perform backward trace on the scan
enable tree from the scan cells in each range. For scan
cell i, we find a set of signals, denoted as SEi, on the
scan enable tree, which drives the scan enable pin of cell
i. Obviously, if a node drives a scan cell, all its parent
and ancestor nodes on the scan enable tree are the
drivers of this scan cell as well.
 Step 2: Find the union of the suspect nodes on scan
enable tree of all cells in the same range. For a range r,
we denote this union as Ur and Ur = ∪(all cell i in range r) SEi.
 Step 3: Find the intersection among all the unions
identified in the previous step. We denote this
intersection as I and I = ∩ (all range r on all faulty chains) Ur.
 Step 4: We order the nodes in set I based on its
depth on the scan enable tree, in decreasing order. Then
we perform forward trace from each node in set I to scan
cells. The forward trace is performed one node at a time
according to its order in I. If a node also drives at least
one scan cell on a good chain, it is not a suspect. So we
drop this node from I. Meanwhile, we drop all its parent
and ancestor nodes on the scan enable tree if any of them
are in I as well. The searching order of I avoids any
unnecessary forward tracing from higher level nodes.
After we apply this procedure to all nodes remained in
set I, we will find all suspect scan enable nodes that
satisfy the conditions (a) drive at least one scan cell per
range for all the ranges we identified on faulty chains
and (b) don’t drive any cell on good chains. These
remained nodes in I will be reported as suspect defect
locations in the scan enable tree.
 The proposed algorithm is implemented in a
commercial EDA tool. It has been applied to two
industrial VLSI circuits. Each test case has one signal on
scan enable tree shorted to ground, which is introduced
via a Focused Ion Beam (FIB) machine. The defective
chips are tested with both chain integrity patterns and
scan patterns. The failing data is collected from ATE
and read by the diagnosis tool. The tool reported
suspects, which include the injected defects. The
diagnosis resolutions are good: in one case the tool
reported two suspect signals and in the other case, the
tool reported 4 suspect signals. The proposed diagnosis
algorithm is proved to be an effective and efficient way
for diagnosing this special type of defects.

REFERENCES
[CRO05] A. Crouch, “Debugging and Diagnosing Scan
Chains,” EDFAS, Vol. 7, Feb., 2005, pp 16-24.
[GUO01] R. Guo et. al., “A Technique for Fault Diagnosis of
Defects in Scan Chains,” ITC, 2001, pp. 268-277.
[HUA05] Y. Huang et. al., “Using Fault Model Relaxation to
Diagnose Real Scan Chain Defects,” ASPDAC 2005, pp.1176-
1179.

