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 Scan is the most widely used DFT technique in 
today’s VLSI industry. Mux-DFF and Level Sensitive 
Scan Design (LSSD) are the most popular scan 
architectures. For Mux-DFF, when scan enable is set to 
“1”, the scan chain is in shift mode.  When scan enable 
is set to “0”, the scan chain is in capture mode. For 
LSSD, two clocks are used to control the shift. When 
scan enable or scan clock has defects, it is desirable to 
locate the defects at logic level by algorithmic 
techniques to guide failure analysis. 
 Similar to the defects on other signals, faulty scan 
enable / clock signals may be caused by numerous types 
of defects. E.g., a shorted net, an open net or an incorrect 
timing with respect to clock or scan data stream. The 
following examples are used to illustrate how to apply 
various fault models for different defects.  
 If a scan enable signal is shorted to VCC, only 
incorrect capturing will result. Scan cells will capture 
data from the previous scan cell instead of capturing data 
from system logic. We may use a stuck-at-1 fault model 
for this scenario. Clearly, the chain integrity test will 
pass since these patterns don’t have the capture 
operation. The scan patterns would fail and the scan 
logic diagnosis will be used in this scenario. In rest of 
this paper, we do not discuss this category of scan enable 
defects.   
 If a scan enable signal is shorted to ground, only 
incorrect shifting will result. So we could use a stuck-at-
0 fault model in this scenario. We know that the shift 
operation sometimes is not correct because instead 
obtaining the data from the previous scan cell, it will get 
the data from the system logic during each shift cycle.  
 If a scan enable signal is shorted to some other part 
in the design such that its logic value can be toggled, the 
resultant value will depend on the signal strength of the 
shorted parts. The fault on scan enable signal may be 
modeled as a stuck-at-0 (e.g., AND-type bridging), or a 
stuck-at-1 (e.g., OR-type bridging) or stuck-at-X (i.e., 
sometimes behaves like stuck-at-0, sometimes behaves 
like stuck-at-1. e.g. dominant-type bridging). For an 
open defect, it may also be modeled as one of the three 
fault models, depending on how the downstream gates of 
the open site interpret the floating signal. If an open 
occurs on a stem, different branches may see different 
stuck-at values based on different thresholds, which may 
lead to a stuck-at-X fault model.    

 It is also possible for a scan enable signal to have 
incorrect timing with respect to the clock or data stream. 
This could be caused by a design error (e.g., undersized 
buffers may introduce extra delay) or signal integrity 
problems (e.g., a crosstalk may speed up the scan enable 
signal leading to unacceptable skew). Obviously, we 
need use stuck-at-X fault model for the scan enable 
timing defects since both shift and capture operations 
may be incorrect.  
 Defects on shift clocks in LSSD scan architecture 
can be modeled in similar way as the fault models for 
scan enable defects in Mux-DFF scan designs. Therefore 
in the rest of the paper, we only discuss the diagnosis of 
stuck-at-0 fault on scan enable signals for Mux-DFF 
scan designs. Without loss of generality, the proposed 
algorithm can also be applied to diagnosing defective 
scan clocks in LSSD scan designs. 
 If a chain integrity test fails, how would we know if 
the failure is caused by defects in the scan chains or 
defects in the scan enable tree? To identify the defects 
on a scan enable tree, three approaches are proposed in 
[CRO05]. The first method is to use a scan pattern and 
vary the timing of the capture (scan enable deassertion) 
with respect to the clock. The second method is to vary 
the capture timing with respect to the data stream, which 
requires the shift operation at very slow frequency to 
have enough time to deassert / assert the scan enable. 
The third method is to pad the capture cycle with “dead 
clocks”. These proposed methods may identify timing 
related defect on scan enable. However, it is not easy to 
use them to identify other types of defects. That is, if the 
defect can be modeled as a stuck-at-0, varying capture 
timing may not help. In this paper, we propose a 
different software based method that does not require 
any extra effort manipulating test parameters. First, we 
assume the defects are on scan chains and use previously 
published chain diagnosis algorithms [HUA05] to 
identify the suspect scan cells.  Secondly, if there is at 
least one faulty chain that is modeled with stuck-at-X 
fault, we attempt to diagnose with stuck-at-0 fault model 
at scan enable. As we mentioned earlier that the shift 
operation is incorrect when the scan cell value is 
obtained from the system logic for each shift cycle, it is 
very likely we see both stuck-at-1 and stuck-at-0 at scan 
cells.  So stuck-at-X fault model at scan cells is a sign of 
the stuck-at-0 fault model for scan enable defects.  
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 The most import idea for diagnosing defects on scan 
enable tree is to locate the faulty scan cells first, 
followed by the analysis to find any common scan 
enable signals that drive these faulty cells. Using stuck-
at-X model, we cannot locate all faulty cells.  However, 
we may identify the boundaries of two special faulty 
cells: the faulty cell located closest to the scan input 
(called input-end faulty cell) and the faulty cell located 
closest to the scan output (called output-end faulty cell).  
 First, we use a binary search algorithm to identify 
the lower bound for the input-end faulty cell. Suppose 
the design has only one faulty scan chain with 200 scan 
cells. We partition the chain into two segments at the 
middle (cell 100). Note cell 0 is the cell at scan output 
end. For each scan pattern, we modify the loading values 
on this faulty chain such that the loading values at cells 
at downstream of cell 100 are X. Then we capture the 
test responses based on the modified loading values. 
Next, we compare the simulated results against the 
observed results on good chains. Note that the failure 
bits on good chains are the results of incorrect shifting 
on faulty chain. If at least one cell on good chain shows 
a conflict (simulation is 1/0, observe 0/1), we know that 
the at least one cell in the range [199, 100] has incorrect 
loading values. We then move our partition point to cell 
150 and repeat the above binary search. If there is no 
conflict in the upper section of the chain [199,100], we 
move the partition point to cell 50 and repeat the above 
binary search. The search will converge on a cell L such 
that setting the partition point at cell L leads no conflict 
at good chains whereas setting the partition point at cell 
(L-1) (i.e. the adjacent downstream cell of L) leads to 
conflict at good chains. We know that the cell L has an 
incorrect loading for this conflict scan pattern, which 
makes cell L a lower bound for the input-end faulty cell.   
 Secondly, we use faulty chain simulation to identify 
the upper bound for the output-end faulty cell. This is 
same as the upper bound calculation method for single 
fault proposed in [GUO01]. Let us review it by using an 
example as follows. We first modify all loading values 
to all Xs for each scan pattern. Then we perform 
simulation to get captured values. Suppose a scan pattern 
captures a known value (“0” or “1”) at cell 100 on the 
faulty chain and this known value is observed as a 
failure on the ATE. This implies that there must be a 
fault in the range of [0, 100] on this faulty chain because 
the value captured at cell 100 must be corrupted during 
the unloading procedure. Therefore cell 100 is an upper 
bound for at least one faulty cell based on this pattern. If 
we find this scenario happened in multiple patterns, we 
select the minimum upper bound among these patterns 
as the upper bound for the output-end faulty cell.  
 At this point, we obtain two ranges per faulty chain 
that can be modeled with multiple stuck-at-X faults. If 
we assume there is one defect on scan enable tree that 
causes the defective chains, the scan enable signal must 

drive at least one scan cell per range. Our purpose at the 
final stage is to locate this faulty scan enable signal. It is 
done by the following four steps: 
 Step 1: We perform backward trace on the scan 
enable tree from the scan cells in each range. For scan 
cell i, we find a set of signals, denoted as SEi, on the 
scan enable tree, which drives the scan enable pin of cell 
i. Obviously, if a node drives a scan cell, all its parent 
and ancestor nodes on the scan enable tree are the 
drivers of this scan cell as well.       
 Step 2: Find the union of the suspect nodes on scan 
enable tree of all cells in the same range. For a range r, 
we denote this union as Ur and Ur = ∪(all cell i in range r) SEi. 
 Step 3: Find the intersection among all the unions 
identified in the previous step. We denote this 
intersection as I and  I = ∩  (all range r on all  faulty chains) Ur. 
 Step 4: We order the nodes in set I based on its 
depth on the scan enable tree, in decreasing order. Then 
we perform forward trace from each node in set I to scan 
cells. The forward trace is performed one node at a time 
according to its order in I. If a node also drives at least 
one scan cell on a good chain, it is not a suspect. So we 
drop this node from I. Meanwhile, we drop all its parent 
and ancestor nodes on the scan enable tree if any of them 
are in I as well. The searching order of I avoids any 
unnecessary forward tracing from higher level nodes. 
After we apply this procedure to all nodes remained in 
set I, we will find all suspect scan enable nodes that 
satisfy the conditions (a) drive at least one scan cell per 
range for all the ranges we identified on faulty chains 
and (b) don’t drive any cell on good chains. These 
remained nodes in I will be reported as suspect defect 
locations in the scan enable tree.     
 The proposed algorithm is implemented in a 
commercial EDA tool. It has been applied to two 
industrial VLSI circuits. Each test case has one signal on 
scan enable tree shorted to ground, which is introduced 
via a Focused Ion Beam (FIB) machine. The defective 
chips are tested with both chain integrity patterns and 
scan patterns. The failing data is collected from ATE 
and read by the diagnosis tool. The tool reported 
suspects, which include the injected defects. The 
diagnosis resolutions are good: in one case the tool 
reported two suspect signals and in the other case, the 
tool reported 4 suspect signals. The proposed diagnosis 
algorithm is proved to be an effective and efficient way 
for diagnosing this special type of defects.  
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