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Abstract

Decentralized diagnosis of discrete event systems has received a lot of attention to deal with
distributed systems or with systems that may be too large to be diagnosed by one centralized site.
This paper casts the problem of decentralized diagnosis in a new hierarchical framework. A key
feature is the exploitation of different local decisions together with appropriate rules for their fusion.
This includes local diagnosis decisions that can be interpreted as “conditional decisions”. Under this
new framework, a series of new decentralized architectures are defined and studied. The properties
of their corresponding notions of decentralized diagnosability are characterized and their relationship
with existing work described. Corresponding verification algorithms are also presented and on-line
diagnosis strategies discussed.

1 Introduction

Model-based diagnosis of Discrete Event Systems (DES) consists of detecting unobservable significant
events (such as faults) that occur in a dynamic system modeled as a DES by performing inferencing
driven by sequences of observable events. A number of approaches have been proposed by both the
Artificial Intelligence (AI) and the control engineering research communities; see [10, 11, 15, 17, 18] and
the references therein.

Decentralized and distributed diagnostic protocols become necessary to deal with diagnosis in dis-
tributed systems where the information is decentralized. Approaches using decentralized models, called
communicating automata, can be found in the AI literature [1, 12]. While decentralized models could
potentially reduce the state space exponentially, the actual complexity of the diagnosis algorithms rely on
the partition of the system model and the selection of communicating events between local models. These
are intricate problems without effective algorithms. On the other hand, works on decentralized diagnosis
in the control engineering literature such as [5, 19] employ a global system model. The global model
is built from component models automatically via synchronous or asynchronous composition. Diagnos-
ability verification in this approach suffers from the state explosion problem. After off-line verification
however, online diagnosis decisions can be computed on-the-fly and a global model is not necessary. Our
approach belongs to the latter category.

∗This research is supported in part by NSF Grant CCR-0325571, by ONR grant N00014-03-1-0232, and by a grant from the
Xerox University Affairs Committee.
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In most works on decentralized diagnosis of DES, there are several local “sites” where sensors report
their data. Diagnosers run at each site, processing the local observations and performing model-based
inferencing on the basis of the projection of the system model on the locally observable events; see, e.g.,
[5]. Local diagnosers then report their decisions about the events to be diagnosed. These decisions may or
may not be fused at a coordinating site, according to the properties of the architecture. Generally speak-
ing, distributed architectures for diagnosis differ from decentralized ones in terms of the local models
used at the different sites for model-based inferencing and in terms of the ability for local diagnosers to
communicate among each other in real-time. Recently, distributed and decentralized diagnosis problems
have received a lot of attention: see, e.g., [6, 3, 2, 7, 8, 20, 22, 21, 13].

Debouket al. [5] developed several communication protocols for decentralized diagnosis. The one
termed Protocol 3 is particularly relevant to the work in this paper. Under Protocol 3, diagnosers at local
sites operate independently (namely, without communicating among each other) and local decisions about
the occurrence of significant events in the system are merged by simple memoryless Boolean operations
(disjunction). Qiu and Kumar [13] revisited this idea and developed a polynomial-time verification algo-
rithm for checking whether a system can be diagnosed under Protocol 3. Following the assumption of
no communication among sites, Sengupta and Tripakis [20] examined the extreme case where the global
decision-maker could be any arbitrary memoryless function and local decisions may not belong to a finite
set. They called this situationjoint diagnosabilityand they proved that joint diagnosability is undecidable.

In this paper, we are interested in decentralized architectures that lie in the range between Protocol 3
of [5] and joint diagnosability of [20]. One of the contributions of this work is the development of a gen-
eral hierarchical framework for decentralized diagnosis that incorporates Protocol 3 at the very bottom
and joint diagnosability at the very top. It will be shown that this novel framework leads to a hierar-
chy of architectures and encompasses many existing decentralized architectures for diagnosis. Another
contribution of this work is the precise characterization of a set of new architectures that all generalize
Protocol 3. After presenting our general framework in Section 3, we consider in Section 4 a conjunctive
fusion rule as the global decision-maker, a dual to the disjunctive function used in Protocol 3. In Section
5, we consider more general architectures where local sites can issue an additional decision, which can
be interpreted as a “conditional decision”, about the event to be diagnosed. One such decision is: “Posi-
tive if no other site says Negative.” The diagnosability properties of architectures with two decisions are
carefully analyzed in Section 5 and revisited in Section 7. Architectures with multiple (more than two)
decisions are studied in Section 6. We emphasize that all the architectures discussed in this paper do not
require a coordinating site, i.e., they can be implemented in a fully distributed environment such as sensor
networks. This will become clear as the architectures are presented. Furthermore, polynomial verification
algorithms of diagnosability under these architectures are developed.

Our approach builds on the results in [5] regarding Protocol 3 and is inspired by recent work in
[25, 27] on decentralized control of DES, where conditional decisions are used to obtain more powerful
control architectures and relax the condition of coobservability that arises in the necessary and sufficient
conditions for supervisor existence. The use of conditional diagnosis decisions differentiates our approach
from that used in [5] to improve upon Protocol 3, namely our results are different in nature from Protocols
1 and 2 in [5] which employ fusion rules based ondiagnoser state intersections(with memory in the case
of Protocol 1).

The paper begins with a brief review of the concept of diagnosability in Section 2. The general
decentralized diagnosis framework is presented in Section 3. The main results are then presented in the
following sections. Preliminary and partial versions of this work were presented in [23, 24]. We note that
results related to some of those in this paper have been developed independently in [9].

2



2 Diagnosing Unobservable Events

The system is modeled as a finite state automatonG = (Q,Σ, δ, q0), whereQ is the state space,Σ is the
set of events,δ is the partial transition function, andq0 is the initial state. The modelG accounts for all
possible behaviors of the system. The behavior of the system is described by the prefix-closed language
L(G) generated byG, often denoted byL hereafter for the sake of simplicity. The event set is partitioned
asΣ = Σo ∪ Σuo for observable and unobservable events, respectively. Let us first assume there is
only one significant unobservable evented ∈ Σuo whose occurrences must be diagnosed, i.e., detected
by model-based inferencing using observed events only. We will see later that extension to inferencing
multiple events is straightforward. A string or a traces ∈ L is calledpositiveif it containsed, i.e., if there
existu, v ∈ Σ∗ such thats = uedv. Otherwise the string is callednegative. The set of all prefixes of trace
s is denoted bys. We denote byL/s the post language ofL afters, i.e.,L/s = {t|st ∈ L}. We refer the
reader to [4] for further explanations of the above notations.

GivenP the standard projection operation fromΣ∗ to Σ∗o that erases unobservable events1, we have
thatP−1(s) := {t ∈ Σ∗ : P(t) = s}. We introduce the notationE(s) = P−1P(s) ∩ L to denote the set
of “estimate traces”, assumings is executed by the system andP(s) is observed. Thust ∈ E(s) iff t ∈ L
andP(t) = P(s). Therefore,E(s) is the estimate of the behavior of the system consistent with the model
L afterP(s) has been observed.

We further introduce the notationEpre,k(u) := {s | ∃t, |t| ≥ k, st ∈ E(u)} for the prefixes ofE(u).
In words,Epre,k(u) is the estimate of the system behavior at leastk events ago whenP(u) has been
observed. We drop thek in the superscript hereafter since we always use symbolk and it is always a
fixed constant throughout the paper.

For the sake of simplicity, we make the following standard assumption:

A1 L(G) is live, i.e., there is at least one transition defined at each state ofG.

AssumptionA1 can be relaxed easily at the expense of extra statements regarding the diagnosability of
terminating traces.

The following definition of diagnosability is the starting point of our development.

Definition 1 LanguageL is said to be diagnosable w.r.t.ed andP if there exists a functionh : Σ∗o →
{positive, negative}, s.t.
1. (∃k ∈ N)(∀st ∈ L s.t. s is positive and|t| ≥ k), h(P(st)) = positive;
2. ∀u ∈ L s.t.u is negative,h(P(u)) = negative.

In above definition, the first condition says that all positive traces can be diagnosed within bounded
delay. The second condition guarantees that there is no false positive. Whened has occurred without a
sufficiently long extension, either decision is allowed, i.e., we allow temporary false negatives.

Given the above definition of diagnosability, we are interested in finding out when there exists a
function h that makes a given system diagnosable. This task seems to be prohibitive as functionh is
arbitrary in Definition 1. However, the following equivalent language-based definition provides insight
into the problem and leads to polynomial verification algorithms.

Definition 2 [17, 18] LanguageL is said to be positive-diagnosable w.r.t.ed andP if the following is
true:

(∃k ∈ N)(∀st ∈ L s.t. s is positive and|t| ≥ k)(∀u ∈ E(st)) u is positive.

1We useP for projection since the letter P will be used later to denote “Positive” in the constructions of verifiers.
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The above definition means the following. Lets be a positive trace containinged andt be a sufficiently
long continuation ofs in L. Then any trace inL indistinguishable fromst is also positive. Positive-
diagnosability implies that all possible estimate traces of a sufficiently long positive trace are positive.
Therefore, it is possible to diagnose the evented in s after observingP(st). Polynomial verification and
on-line diagnosis algorithms for positive-diagnosability can be found in [26, 17].

Theorem 1 Diagnosability⇔ Positive-diagnosability.

Proof: Violation of positive-diagnosability implies that there exists an arbitrarily long positive tracest
with an indistinguishable negative traceu ∈ E(st). Thenh(P(st)) = h(P(u)) would always give a
wrong diagnosis result for eitherst or u.

If a system is positive-diagnosable, we constructh ash(P(s)) = positiveif and only if E(s) con-
tains positive traces only. Thus, all sufficiently long positive traces will be diagnosed according to the
definition. On the other hand, for a negative traceu, asu ∈ E(u), h(P(u)) = negative.

To facilitate the reasoning in decentralized settings, we present the following dual and equivalent
definition to positive-diagnosability.

Definition 3 LanguageL is said to be negative-diagnosable w.r.t.ed andP if the following is true:
(∃k ∈ N)(∀u ∈ L s.t.u is negative)(∀s ∈ Epre(u)) s is negative.

The above definition means the following. Letu be a negative trace inL. Then any trace that is
indistinguishable fromu must have a negative prefix before its lastk events. Negative-diagnosability
implies that ifed has not occurred, we are always able to infer thatsome events ago, the systemwas
negative.

Theorem 2 Diagnosability⇔ Negative-diagnosability.

Proof: Violation of negative-diagnosability implies that there exists a negative traceu with an arbitrarily
long indistinguishable tracest ∈ E(u), wheres is positive. Thenh(P(st)) = h(P(u)) would always
give a wrong diagnosis result for eitherst or u.

If a system is negative-diagnosable, we constructh ash(P(u)) = negativeif and only if Epre(u)
contains negative traces only. Thus all negative traces would be diagnosed correctly according to the
definition. On the other hand, if a positive traces with a sufficiently long extensiont happens,Epre(st)
contains a positive trace ass ∈ Epre(st); thush(P(st)) = positive.

3 Decentralized Architecture for Diagnosis

Assume a system is jointly observed by many sites, where each site can only observe a subset of the
observable events executed by the system. The problem of decentralized diagnosis can be paraphrased as
follows: How can these sites jointly discover the occurrence of evented?

Formally, the decentralized architecture we consider is depicted in Fig. 1. In that figure, there are
n local sites jointly diagnosing the systemG by observing subsets of the set of observable eventsΣo,
denoted byΣo,1, . . . , Σo,n, respectively. Each blockPi in the figure denotes the projection operations
from Σ∗ to Σ∗o,i. The notions of projection and estimate set are extended to the above decentralized

setting in a natural way.P−1
i (s) := {t ∈ Σ∗ : Pi(t) = s}, Ei(s) = P−1

i Pi(s) ∩ L andEpre
i (u) := {s |

∃t, |t| ≥ k, st ∈ Ei(u)}. The blocksD1, . . . , Dn in the figure denote the local decision makers.Di is a
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functionhi : Σ∗i,o → LD, whereLD is the set of local decisions. For example,Di might be a Moore
automaton whereΣo,i is the event set or input alphabet andLD is the output alphabet. Local decisions
are fused to obtain the global decision. They may be fused in a distributed way so the global decision
block, denoted by the dashed box, is optional. To facilitate reasoning, we think of the dashed block as a
centralized functionH : LDn → {positive, negative}, but all global functions considered in this paper
allow distributed implementations.

Figure 1: Decentralized Architecture

Within the context of the above architecture, we would like to design local diagnosis algorithms and
communication protocols such that local sites can jointly diagnose occurrences of evented. Obviously, if
each site reports every event observed under zero communication delay or with a globally synchronized
timestamp, then the problem can be solved by a centralized diagnoser. The time constraint can be relaxed
as long as the messages are globally ordered. In Protocol 1 of [5], each site encapsulates its observations
and inferences in the structure called “extended diagnoser state” such that the global coordinator can re-
cover the centralized diagnoser state. In Protocol 2 of [5], sites communicate less information—diagnoser
state—to the coordinator and the coordinator cannot exactly recover the centralized diagnoser state. As a
result, only a subset of systems diagnosable by Protocol 1 can be diagnosed. In this paper, for the sake of
scalability, we would like to diagnose the system in a “distributed” fashion using much simpler rules. For
this reason, we introduce the following assumption.

A2 The global fusion rule is memoryless.

AssumptionA2 means that the global decision is completely based on one snapshot of all local decisions.
Note that we do not require global ordering of local decisions, but when a global decision is requested,
we need to know the latest decision of every local site.

We can extend Definition 1 to our decentralized setting.

Definition 4 Consider local projectionsPi and the global decision functionH, as described in the archi-
tecture of Fig. 1. LanguageL is H-codiagnosable if there exist local decision functionshi, i = 1, . . . , n,
s.t. the two following conditions hold:
1. (∃k ∈ N)(∀st ∈ L s.t. s is positive and|t| ≥ k), H(h1(P1(st)), . . . , hn(Pn(st))) = positive;
2. ∀u ∈ L s.t.u is negative,H(h1(P1(u)), . . . , hn(Pn(u))) = negative.
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The above general definition of codiagnosability means that every sufficiently long positive trace is cor-
rectly diagnosed globally, and there is no false positive. The terminology “codiagnosable” is used to
emphasize that the sites operate as a team and is consistent with the terminology used in decentralized
control of discrete event systems (coobservability).

With Definition 4, the notion of joint diagnosability of [20] can be stated within our framework by
setting thehi functions to be identity functions andH to be arbitrary.

Definition 5 [20] LanguageL is said to be jointly diagnosable w.r.t.ed and local projectionsP1, . . . ,Pn

if the following is true:
(∃k ∈ N)(∀st ∈ L s.t.s is positive and|t| ≥ k)(∀u ∈ L s.t.u is negative)(∃i ∈ {1, . . . , n})(Pi(st) 6=

Pi(u)).

Definition 5 means that a sufficiently long positive trace and a negative trace must be distinguishable
at at least one local site. Obviously this is a necessary condition for local sites to jointly diagnose the
system under a memoryless global function. On the other hand, if every pair of sufficiently long positive
and negative traces looks different at some site, let every site output the whole string it has observed so
far. One can always design a memoryless global functionH that makes the systemH-codiagnosable.
Therefore, joint diagnosability represents exactly the set of systems that can be diagnosed under our
decentralized framework. Unfortunately, the verification of joint diagnosability has been shown to be
undecidable in [20]. Hence, our objective is to identify stronger notions of diagnosability that are decid-
able, while keeping AssumptionA2. Relaxing AssumptionA2 to allow (limited) memory in the global
decision block leads to an entirely different framework worthy of research but beyond the scope of this
paper.

We further assume that the number of local decisions, i.e.,|LD|, is finite, and restrict the global
functionH by the following assumption.

A3 The global decision block does not know the source of a local decision, nor can it count the number
of sites issuing the same local decision.

AssumptionA3 implies that local decisions are symmetric, i.e., it does not matter if a given local decision
is issued by one site or another site, or by both. Furthermore, the absence of counting rules out functions
such as majority (voting) and parity. We enforce this assumption because we believe it is one of the
most restrictive and simplest assumptions. It allows the architecture to work in extreme environments,
especially fully distributed and symmetric environments with limited computation power, such as sensor
networks.

If |LD| = k and there aren local sites, underA2, the size of the input domain of the global function
H is reduced from infinite (historical input) tokn (memoryless) possibilities. Under bothA2 andA3, it
is further reduced to2k, because each local decision can only be either “present” or “not present”. In the
next two sections, we will analyze the possible inputs for the cases ofk = 1 andk = 2.

4 Decentralized Diagnosis with One Local Decision

4.1 Definitions

If |LD| = 1, i.e., there is only one local decision, denoted as “A”, at the global fusion block, then there
are only two different inputs. One is that all sites are silent, the other is that some site reports “A”; note
that due to AssumptionA3, when two or more sites report “A”, we are still in the second case. The fusion
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block can assign either “Positive” or “Negative” to the two inputs, resulting in22 = 4 different fusion
rules, as described in Table 1. In that table, “Nothing” means that all sites are silent and “A” means that
at least one site reports “A”.

(input cases represented by
local decision received)

Nothing A Global function
(output for the two input cases)
Negative Negative H1

1 (not viable)
Negative Positive H1

2 (DISJ-CODIAG)
Positive Negative H1

3 (CONJ-CODIAG)
Positive Positive H1

4 (not viable)

Table 1: Fusion Rules with One Local Decision

FunctionsH1
1 andH1

4 are not viable because the output is always positive or negative. However,
functionsH1

2 andH1
3 are viable and will correspond to some classes of languages that can be diagnosed

in the context of the general Definition 4, if the global functionH there is instantiated byH1
2 or H1

3 ,
respectively, leading to the notions of “H1

2 -codiagnosable” and “H1
3 -codiagnosable”. Specifically,H1

2

means that the global decision is positive if and only if some site reports “A”. If we interpret “A” as
“positive” in this case, thenH1

2 means that the overall decision is positive if and only if at least one site
reports positive. On the other hand,H1

3 in Table 1 means that the global decision is positive if and only
if no site says “A”. If we interpret “A” as “negative” in this case,H1

3 means that the overall decision is
positive if and only if no site says negative.

It is convenient for the discussion to follow to introduce the following terminology:

disjunctive-codiagnosable orDISJ-CODIAG ⇔ H1
2 -codiagnosable (1)

conjunctive-codiagnosable orCONJ-CODIAG ⇔ H1
3 -codiagnosable (2)

We adopt here the names “disjunctive-codiagnosability” and “conjunctive-codiagnosability” in order to
facilitate comparisons between our work and that in [25, 27] forcoobservabilityin decentralized control.
It is important to note that inCONJ-CODIAG, the only local decision made by diagnosers can be inter-
preted as “negative,” and the system is diagnosed to be positive if and only if there is no diagnoser that
reports negative. Thus, this architecture is closely analogous to the conjunctive architecture considered
in [16, 25] for decentralized control, where “disable” is the only local decision employed and an event is
enabled if no site disables it. Similarly, inDISJ-CODIAG, the system is diagnosed to be positive if and
only if at least one diagnoser reports “positive,” which is closely analogous to the disjunctive architecture
[25] for decentralized control, where an event is enabled if at least one site enables it.

4.2 Properties

The notions of decentralized diagnosability termedDISJ-CODIAG andCONJ-CODIAG introduced in the
preceding section characterize classes of diagnosable systems (languages) in terms of decision rules.
Our objective is to precisely characterize these classes of diagnosable languages. Interestingly, there
are language-based definitions of decentralized diagnosability that are equivalent to the rule-basedDISJ-
CODIAG andCONJ-CODIAG. These can be obtained by building on the centralized Definitions 2 and
3.
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Definition 6 LanguageL is said to be positive-codiagnosable w.r.t.ed, P1, . . . ,Pn if the following is
true:

(∃k ∈ N)(∀st ∈ L s.t. s is positive and|t| ≥ k)(∃i ∈ {1, . . . , n})(∀u ∈ Ei(st)) u is positive.

The above definition means the following. Lets be a positive trace and lett be a sufficient long continua-
tion of s in L. Then there must exist at least one local sitei such that any trace inL indistinguishable from
st at sitei is also positive. This definition is exactly the same as the definition in [5] of “diagnosability
under Protocol 3,” which is revisited in [13] under the name “co-diagnosability” and in [24] under the
name “F-codiagnosability”.

Definition 7 LanguageL is said to be negative-codiagnosable w.r.t.ed, P1, . . . ,Pn, if the following is
true:

(∃k ∈ N)(∀u ∈ L s.t.u is negative)(∃i ∈ {1, . . . , n})(∀s ∈ Epre
i (u)) s is negative.

The above definition means the following. If traceu is negative, then there must exist one local sitei such
that any trace inL indistinguishable fromu at sitei has a negative prefix before its lastk events, i.e., site
i is sure that the systemwas negativek events ago.

Next we establish relationships between the above rule-based and language-based definitions.

Theorem 3 DISJ-CODIAG ⇔ Positive-codiagnosability.

Proof: Violation of positive-codiagnosable implies that there exists an arbitrarily long positive trace
st s.t.∀i, ∃ui ∈ Ei(st)), ui is negative. Suppose that the system can be diagnosed byH1

2 . Then if st
happens, some site, sayi, would reportA. SincePi(st) = Pi(ui), site i would still reportA if ui had
occurred, thus resulting in a wrong diagnosis decision. Therefore, the system is notDISJ-CODIAG.

If the system is positive-codiagnosable, we construct the local decision functions as follows:

hi(s) =
{

A if Ei(s) contains positive traces only
nothing otherwise.

(3)

Then, if an arbitrarily long positive tracest occurs, according to positive-codiagnosability, some site
i satisfies the condition thatEi(st) contains positive traces only. If a negative traceu occurs, since
u ∈ Ei(u), no site reportsA and the system is diagnosed as negative.

Theorem 4 CONJ-CODIAG ⇔ negative-codiagnosable.

Proof: Violation of negative-codiagnosability implies that there exists a negative traceu s.t.∀i, ∃siti ∈
Ei(u)), si is positive. Suppose that the system can be diagnosed byH1

3 . Then if u happens, some site,
sayi, would reportA. SincePi(u) = Pi(siti), sitei would still reportA if siti occurs, thus resulting in
a wrong diagnosis decision. Therefore, the system is notCONJ-CODIAG.

If a system is negative-codiagnosable, we constructhi as follows:

hi(s) =
{

A if Epre
i (s) contains negative traces only

nothing otherwise.
(4)

Then, all negative traces would be diagnosed correctly according to the definition of negative-codiagnosability.
On the other hand, if a positive traces with a sufficiently long extensiont happens, sinces ∈ Epre

i (st)
for all i, no site reportsA and the system is diagnosed as positive.
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Note thatEi(s) andEpre
i (s) are both computable [4], thus Formulae (3-4) can be used to diagnose

positive traces of aDISJ(CONJ)-CODIAG system online. The detailed local diagnoser synthesis algorithm
for DISJ-CODIAG can be found in [5]. ForCONJ-CODIAG, the synthesis algorithm is technical and
beyond the scope of this paper.

Theorem 5 DISJ-CODIAG andCONJ-CODIAG are incomparable w.r.t. the same evented and projections
P1, . . . ,Pn.

Proof: The theorem is proved by Examples 1 and 2.

Example 1 Consider the systemG shown in Fig. 2, whereΣo = {a, b, c} and unobservable evented is
to be diagnosed. There are two local sites,n = 2, Σo,1 = {a, c} andΣo,2 = {b, c}. The system isDISJ-
CODIAG with the following local decision functions. Site 1(2) reportsA if and only if it has observed
a(b). There is no local function such that the system isCONJ-CODIAG. This is because to diagnose
negative tracecn, at least one site, say 1, should reportA; asP1(cn) = P1(edbc

n), site 1 reportsA with
positive traceedbc

n as well, resulting in a wrong global decision.

Figure 2:DISJ-CODIAG but notCONJ-CODIAG

Example 2 Consider the systemG shown in Fig. 3, where the event to be diagnosed and the local obser-
vations are the same as in Example 1. The system isCONJ-CODIAG if each site keeps silent as long as it
observes eventc only. It is notDISJ-CODIAG though because at least one site, say 1, has to sayA if pos-
itive traceedc

n happens; but then negative tracebcn will be diagnosed wrong sinceP1(edc
n) = P1(bcn).

Figure 3:CONJ-CODIAG but notDISJ-CODIAG
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Theorem 6 DISJ-CODIAG or CONJ-CODIAG w.r.t. evented, local observationsΣo,1, . . . , Σo,n implies
centralized diagnosability w.r.t. evented and centralized observationΣo = Σo,1∪ · · ·∪Σo,n. The reverse
implication is not true in general.

Proof: If a system is not (centrally) diagnosable, then there exist two arbitrarily long indistinguishable
traces, where one is positive and the other is negative. These two traces are indistinguishable to each local
site as well, thus there are no local functions that can diagnose both traces correctly.

The other part is proved by Example 3.

Example 3 Consider the systemG shown in Fig. 4, whereΣo = {a, b, c} andΣuo = {ed}. There are two
local sites,n = 2, Σo,1 = {a, c} andΣo,2 = {b, c}. The system is notDISJ-CODIAG or CONJ-CODIAG

because site 1 always observesac∗ and site 2 always observesbc∗, no matter whethered has occurred or
not.

Figure 4: Diagnosable but not codiagnosable

Figure 5 summarizes the relationship among the various notions of codiagnosability discussed in this
section.

Figure 5: Relationship among notions of diagnosability

4.3 Verification

Verification refers to the problem of deciding whether a system is diagnosable w.r.t. some definition
of diagnosability. In the case ofDISJ(CONJ)-CODIAG, verification means that there exist functions
h1, . . . , hn s.t. the system can be diagnosed by the disjunctive (conjunctive) global rule. This can be
solved by extending verifiers [26] to the decentralized setting and building on the results in [13] for the
case ofDISJ-CODIAG.

Assume systemG = (Q,Σ, δ, q0) is to be diagnosed by two local sites (for the sake of simplicity) with
observable event setsΣo,1 andΣo,2, respectively. We construct theone-level verifierV1 = (QV1 , (Σ ∪
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{ε})3, δV1 , qV1
0 ) as follows.

QV1 = Q× {N, P}︸ ︷︷ ︸
s1

×Q× {N,P}︸ ︷︷ ︸
s2

×Q× {N, P}︸ ︷︷ ︸
s

qV1
0 = (q0, N, q0, N, q0, N) .

wheres1, s2 ands are traces inL andN (respectively,P ) indicates that the corresponding trace is negative
(respectively, positive). For the sake of readability, letq′i = δ(qi, σ). The transition functionδV1 is defined
as described below, for all cases where the corresponding transitions are defined:

Forσ ∈ Σo,1, σ ∈ Σo,2,
δV1((q1, l1, q2, l2, q3, l3), σσσ) = (q′1, l1, q

′
2, l2, q

′
3, l3)

Forσ ∈ Σo,1, σ /∈ Σo,2,
δV1((q1, l1, q2, l2, q3, l3), σεσ) = (q′1, l1, q2, l2, q

′
3, l3)

δV1((q1, l1, q2, l2, q3, l3), εσε) = (q1, l1, q
′
2, l2, q3, l3)

Forσ /∈ Σo,1, σ ∈ Σo,2,
δV1((q1, l1, q2, l2, q3, l3), εσσ) = (q1, l1, q

′
2, l2, q

′
3, l3)

δV1((q1, l1, q2, l2, q3, l3), σεε) = (q′1, l1, q2, l2, q3, l3)
Forσ ∈ Σuo andσ 6= ed,
δV1((q1, l1, q2, l2, q3, l3), σεε) = (q′1, l1, q2, l2, q3, l3)
δV1((q1, l1, q2, l2, q3, l3), εσε) = (q1, l1, q

′
2, l2, q3, l3)

δV1((q1, l1, q2, l2, q3, l3), εεσ) = (q1, l1, q2, l2, q
′
3, l3)

Forσ = ed,
δV1((q1, l1, q2, l2, q3, l3), edεε) = (q′1, P, q2, l2, q3, l3)
δV1((q1, l1, q2, l2, q3, l3), εedε) = (q1, l1, q

′
2, P, q3, l3)

δV1((q1, l1, q2, l2, q3, l3), εεed) = (q1, l1, q2, l2, q
′
3, P ) .

The intention of the construction of one-level verifier is summarized by the following proposition.

Proposition 7 [13] The transition rule ofV1 guarantees that when there is a path fromqV1
0 to state

(q1, l1, q2, l2, q3, l3), if we let s1, s2 and s be the traces formed by the 1st, 2nd and 3rd components,
respectively, of the transitions along the path, then we have:
1. s1, s2 ands reach statesq1, q2 andq3 in G, respectively;
2. s1 (s2 or s) is positive if and only ifl1 (l2 or l3) = P ;
3. P1(s1) = P1(s) andP2(s2) = P2(s).
On the other hand, if the above three conditions are satisfied, there must be a path inV1 from qV1

o to
(q1, l1, q2, l2, q3, l3) (not necessarily unique).

The proof can be found in [13] and thus it is omitted here. The proposition says that ifs is the trace
the system actually executes, thensi, i = 1, 2, represents the trace that sitei conjectures might have
been executed. The construction ofV1 guarantees that all possible trace triples(s1, s2, s) that satisfy
P1(s1) = P1(s) andP2(s2) = P2(s) are captured.

A one-level verifier state(q1, l1, q2, l2, q3, l3) is called an(l1, l2, l3)-state. For example, the initial
stateqV1

0 is an (N,N,N)-state. A strongly connected component (SCC) is called an(l1, l2, l3)-SCC if
every state in the SCC is an(l1, l2, l3)-state. Figures 6(a) and 6(b) show parts of the one-level verifiers of
Examples 2 and 1, respectively. There is an (N,N,P)-SCC in Fig. 6(a) and an (P,P,N)-SCC in Fig. 6(b).

The above construction can be extended ton local sites in a natural manner. Basically, we need to
simulaten+1 traces and thus the state hasn+1 components; there are2n+1×|Q|n+1 states at most. At
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(a) One-level Verifier of Example 2 (b) One-level Verifier of Example 1

Figure 6: One-level Verifier Examples.

each state, eventσ has at mostn+1 transitions by the transition rules, resulting in2n+1×|Q|n+1×|Σ|×
(n + 1) transitions at most. So the size of the one-level verifier is polynomial in the number of system
states and exponential in the number of local sites. For the case of diagnosing multiple events, we build
a separate verifier for each event. Although the construction requires exponential time in the number of
states in the worst case, the number of local sites is usually small in many application areas of interest. As
the analogous problem in control (coobservability) is known to be PSPACE-complete [14], we probably
need more restrictions on the system in order to handle a large number of local sites.

Testing ofDISJ-CODIAG (positive-codiagnosability) orCONJ-CODIAG (negative-codiagnosability)
using the one-level verifier is based on the following two theorems which provide verification algorithms.

Theorem 8 [13] The language generated by systemG is not positive-codiagnosable if and only if the
one-level verifierV1 of G has an (N,N,P)-SCC, where there exists an edgeσ1σ2σ such thatσ 6= ε.

The proof of the above theorem can be found in [13]2, where it is proved that a system isDISJ-CODIAG

(termed co-diagnosable there) iff there is an (N,N,P)-cycle. We use strongly connected components here
instead of cycles for the sake of consistency with the following new result.

Theorem 9 The language generated by systemG is not negative-codiagnosable if and only if the one-
level verifierV1 of G has an (P,P,N)-SCC, where for each sitei, there exists an edgeσ1σ2σ such that
σi 6= ε.

Proof: (i) (P,P,N)-SCC with corresponding non-ε edges⇒ not negative-codiagnosable. Based on Propo-
sition 7, we can induce an arbitrarily long trace triples1t

n
1 , s2t

n
2 , stn from the (P,P,N)-SCC, where trace

triple (s1, s2, s) corresponds to the prefix of the path that reaches the SCC from the initial state and
(t1, t2, t) corresponds to the edges within the SCC. We knowstn must be negative, whiles1 ands2 are
positive. Furthermore, we can selectt1 and t2 such thatt1, t2 6= ε. Thens1t

n
1 , s2t

n
2 , stn violates the

definition of negative-codiagnosability.

2There is a technical difference in that sub-languages instead of events of the system are to be diagnosed in [13].
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(ii) Not negative-codiagnosable⇒ (P,P,N)-SCC with corresponding non-ε edges. Not negative-
codiagnosable implies there are negative traceu and positive tracess1 ands2 with arbitrarily long exten-
sionst1 andt2 such thatP1(u) = P1(s1t1) andP2(u) = P2(s2t2). By Proposition 7, these three traces
should form a path inV1. Sincet1 andt2 could be arbitrarily long andV1 has only a finite number of
states, there must be a SCC. It is an (P,P,N)-SCC ass1 ands2 are positive andu is negative. Furthermore,
t1 (t2) not equal to non-ε means there is an edgeσ1σ2σ in the SCC such thatσ1 (σ2) 6= ε.

Figure 6(a) has an (N,N,P)-SCC where there is a non-ε edge for the “P” part so the system is not
DISJ-CODIAG. Figure 6(b) has a (P,P,N)-SCC where the edgeccc is non-ε for the two “P” parts, thus the
system is notCONJ-CODIAG.

5 Decentralized Diagnosis with Two Local Decisions

5.1 Definitions

With only one local decision, the class of systems that can be diagnosed is characterized by theDISJ-
CODIAG andCONJ-CODIAG architectures considered in the preceding section. To enhance the diagnosis
capabilities in the context of the the general architecture in Fig.1, we can enlarge the set of local decisions.
In this section, we discuss architectures with two local decisions, i.e.,|LD| = 2. We denote these two
decisions byA andB. In this case, because of earlier AssumptionsA2 and A3, there are only four
different inputs at the global decision block to consider: (i) nothing, i.e., no site reports to the fusion
block; (ii) some site saysA and no site saysB; (iii) some site saysB and no site saysA; and (iv) some
site saysA and another site saysB. We assign either global decision “positive” or “negative” to the four
inputs, resulting in24 = 16 global fusion rules as described in Table 2.

(input cases represented by local decisions received)
Nothing A B A and B Global function

(output for the four input cases)
Negative Negative Negative Negative H2

1 (not viable)
Negative Negative Negative Positive H2

2

Negative Negative Positive Negative H2
3 (COND-DISJ-CODIAG)

Negative Negative Positive Positive H2
4 (=DISJ-CODIAG)

Negative Positive Negative Negative H2
5 (=H2

3 )
Negative Positive Negative Positive H2

6 (=H2
4 )

Negative Positive Positive Negative H2
7

Negative Positive Positive Positive H2
8 (=DISJ-CODIAG)

Positive Negative Negative Negative H2
9 (=CONJ-CODIAG)

Positive Negative Negative Positive H2
10

Positive Negative Positive Negative H2
11 (=H2

13)
Positive Negative Positive Positive H2

12 (=H2
14)

Positive Positive Negative Negative H2
13 (=CONJ-CODIAG)

Positive Positive Negative Positive H2
14 (COND-CONJ-CODIAG)

Positive Positive Positive Negative H2
15

Positive Positive Positive Positive H2
16 (not viable)

Table 2: Fusion Rules with Two Local Decisions
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Clearly,H2
1 andH2

16 are not viable. However, the remaining functions in Table 2 are potentially viable
and will correspond to some classes of languages that can be diagnosed in the context of the general De-
finition 4, if the global functionH there is instantiated by some viableH2

i , leading to the notion of “H2
i -

codiagnosable”. Let us examine the potentially viable rules in more detail. RulesH2
4 ,H2

6 ,H2
8 ,H2

9 ,H2
11

andH2
13 are not new.H2

4 means that the system is positive if and only if some site saysB, while de-
cisionA has the same effect as keeping silent. This is equivalent toH1

2 in Table 1, i.e.,DISJ-CODIAG.
H2

6 is symmetric withH2
4 by exchangingA andB. H2

8 means that the system is positive if and only
if somebody saysA or B, which is again equivalent toDISJ-CODIAG. Similarly, H2

9 ,H2
11 andH2

13 are
equivalent withCONJ-CODIAG. However, the remaining global functions define some new language
classes.H2

2 ,H2
7 ,H2

10 andH2
15 will be discussed in Section 7. Here, we focus onH2

3 (symmetric with
H2

5 ) andH2
14 (symmetric withH2

12).
Specifically,H2

3 means that the global decision is positive if and only if somebody saysB and nobody
saysA. To understand this rule, let us interpretB as the conditional decision “Positive if nobody says
Negative” andA as the unconditional decision “Negative”. NowH2

3 can be summarized as Cases 1-4 in
Table 3. The other rule of interest,H2

14, means that the global decision is positive if and only if nobody
saysB or somebody saysA. In this case, we interpretB as the conditional decision “Negative if nobody
says Positive” andA as the unconditional decision “Positive”.H2

14 is summarized as Cases 5-8 in Table
3.

Case Local Site 1 Local Site 2 Global Decision
1 Nothing Nothing Negative

H2
3 2 A (Negative) Nothing Negative

(COND-DISJ 3 B (Positive if nobody says Negative) Nothing Positive
CODIAG) 4 B (Positive if nobody says Negative) A (Negative) Negative

5 Nothing Nothing Positive
H2

14 6 A (Positive) Nothing Positive
(COND-CONJ 7 B (Negative if nobody says Positive) Nothing Negative

CODIAG) 8 B (Negative if nobody says Positive) A (Positive) Positive

Table 3: Local decisions and their fusion in the conditional architecture

As can be seen from Table 3, the conditional decisions “Positive if nobody says Negative” and “Neg-
ative if nobody says Positive” can be explained as “Positive” and “Negative” decisions, respectively,
but with lower priority. The unconditional decisions “Positive” and “Negative” override conditional de-
cisions. Namely, these conditional decisions take effect if unconditional decisions are not present. In
analogy with [27], we say that these rules result inconditional architectures. H2

3 corresponds to the
conditional disjunctive architecture, forconditional disjunctive codiagnosability; H2

14 corresponds to the
conditional conjunctive architecture, forconditional conjunctive codiagnosability

Before studying the properties ofH2
3 andH2

14, we introduce intuitive terminology as was done in
Section 4:

COND-DISJ-CODIAG ⇔ H2
3 -codiagnosable (5)

COND-CONJ-CODIAG ⇔ H2
14-codiagnosable. (6)
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5.2 Properties

For better understanding ofCOND-DISJ(CONJ)-CODIAG and easier development of verification algo-
rithms, we introduce the following equivalent language-based definitions related to those introduced in
[24].

Definition 8 LanguageL is said to be conditionally positive-codiagnosable w.r.t.ed andP1, . . . ,Pn if
the following is true:

(∃k ∈ N)(∀st ∈ L s.t. s is positive and|t| ≥ k)(∃i ∈ {1, ...n})(∀u ∈ Ei(st) s.t.u is negative)(∃j ∈
{1, ...n})(∀v ∈ Epre

j (u)) v is negative.

In words, this definition means the following. For each sufficiently long positive tracest, there is a sitei
for which st might have the same projection as negative traceu, but for every such negative traceu that
belongs to sitei’s estimate, there is a sitej that can ensure that the systemwas negativek events ago.
That is, sitei can infer that if a negative traceu, instead ofst, has happened, there is another site,j, that
can recognize the negative prefix ofu with certainty. Therefore, sitei can use the “Positive if nobody
says Negative” decision; sitej will issue the “Negative” decision overriding sitei if u is the trace that the
system actually executes.

Definition 9 LanguageL is said to be conditionally negative-codiagnosable w.r.t.ed andP1, . . . ,Pn if
the following is true:

(∃k ∈ N)(∀u ∈ L s.t. u is negative)(∃i ∈ {1, ...n})(∀st ∈ Ei(u) s.t. |t| ≥ k ands is positive)(∃j ∈
{1, ...n})(∀v ∈ Ej(st)) v is positive.

The interpretation of this definition is as follows. For each negative traceu, there is a sitei for which u
might have the same projection as tracest, wheres is positive andt is sufficiently long. But for every
such positive tracest that belongs to sitei’s estimate, there is a sitej that can ensure thatst is positive.
That is, sitei can infer that if positive tracest, instead ofu, has happened, there is another site,j, that can
recognize positive tracest with certainty. Therefore, sitei can use the “Negative if nobody says Positive”
decision; sitej will issue the “Positive” decision overriding sitei if actuallyst has happened.

Before proving the equivalence of the function-based definitions of diagnosability with the language-
based definitions, we introduce the following notations. The subset of sufficiently long positive traces in
languageL is denoted as

LP,k = {st|st ∈ L s. t. s is positive and|t| ≥ k} .

Again, we will drop superscriptk for better readability. The subset of negative traces in languageL is
denoted as

LN = {u|u ∈ L, s. t.u is negative} .

Similarly, EPi (s) is the subset of sufficiently long positive traces inEi(s), andEN
i (s) is the subset of

negative traces.

Theorem 10 COND-DISJ-CODIAG ⇔ Conditionally positive-codiagnosable.

Proof: If the system is not conditionally positive-codiagnosable, then∃st, s.t. s is positive andt is
arbitrarily long,∀i,∃ui ∈ Ei(st), ui is negative, and∀j,∃vjwj ∈ Ej(ui), vj is positive, wherei, j ∈
{1, . . . , n} refer to local sites. Supposingst happens, to diagnose it byH2

3 , some site, sayi, has to report
B. Now if ui happens, sitei would still reportB and another site, sayj, has to reportA to overridei. If
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finally vjwj happens, sitej would still sayA and the system would be incorrectly diagnosed as negative.
Thus the system is notH2

3 -codiagnosable.
If the system is conditionally positive-codiagnosable, assuming there aren local sites, we define the

local decision functions as follows3.

hi(s) =





A if Epre
i (s) contains negative traces only

B else ifEN
i (s) ∩

(⋂
j=1,...,n Ej(LP )

)
is empty

nothing otherwise.

(7)

If a sufficiently long positive tracest has occurred, as positive traces ∈ Epre
i (st), no site would report

A (negative). Furthermore, according to the definition of conditional positive-codiagnosability,∃i, ∀u ∈
EN

i (st), ∃j, such that every trace inEj(u) contains a negative prefix, i.e.,u /∈ Ej(LP ). Thusu /∈
EN

i (st) ∩ Ej(LP ). As u is an arbitrary negative trace inEN
i (st), we haveEN

i (st) ∩ (⋂ Ej(LP )
)

= ∅.
Site i would indeed reportB (positive if nobody says negative) and the system would be diagnosed as
positive.

If a negative traceu is executed and some site reportsA, then the system is diagnosed as negative.
If otherwise nobody reportsA, we have thatEpre

i (u) contains some positive traces,∀i. As a result,
u ∈ EN

i (u) ∩ (⋂ Ej(LP )
)
. Thus no site would reportB and the system would still be diagnosed as

negative.

Theorem 11 COND-CONJ-CODIAG ⇔ Conditionally negative-codiagnosable.

Proof: If the system is not conditionally negative-codiagnosable, then∃u, s.t.u is negative,∀i, ∃siti ∈
Ei(u), s.t.si is positive and|ti| ≥ k, and∀j,∃vj ∈ Ej(siti), vj is negative, wherei, j ∈ {1, . . . , n} refer
to local sites. Supposingu happens, to make the correct decision underH2

12, some sitei has to reportB.
Now if siti happens, sitei still reportsB and another site, sayj, has to sayA to overridei. If finally
vj happens, sitej would still sayA and there is no way to diagnosevj correctly. Thus the system is not
COND-CONJ-CODIAG.

If the system is conditionally negative-codiagnosable, define the local decision functions as follows.

hi(s) =





A if Ei(s) contains positive traces only

B else ifEPi (s) ∩
(⋂

j=1,...n Ej(LN )
)

is empty

nothing otherwise.

(8)

If a sufficiently long positive tracest has occurred and some sitei saysA, i.e.,Ei(st) contains positive
traces only, then the system is diagnosed as positive underH2

14. If otherwise nobody saysA, we know
that ∀j, Ej(st) contains some negative traces. Thusst ∈ Ej(LN ), st ∈ EPi (st) ∩ (⋂ Ej(LN )

)
. As a

result, no site reportsB and the diagnosis result is still positive.
If a negative traceu happens, since∀i, u ∈ Ei(u), no site reportsA. Furthermore, according to the

definition of conditional negative-codiagnosability,∃i, for every positive tracest ∈ EPi (u), ∃j, s.t.Ej(st)
contains positive traces only. Thusst /∈ Ej(LN ). Therefore, the intersection ofEPi (s)∩(⋂ Ej(LN )

)
= ∅,

sitei would sayB and the system would be diagnosed as negative.

Note that both local diagnosis functions (7-8) are computable. Thus for systems that have been
verified to beCOND-DISJ(CONJ)-CODIAG, it is possible to diagnose positive traces online. The specific
details regarding the realizations of the local diagnosis functions are beyond the scope of this paper.

3The notation used in Equation 7 was partially inspired by the notation used in [9].
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Theorem 12 Either DISJ-CODIAG or CONJ-CODIAG implies bothCOND-DISJ-CODIAG and COND-
CONJ-CODIAG. COND-DISJ-CODIAG or COND-CONJ-CODIAG does not implyDISJ-CODIAG or CONJ-
CODIAG in general.

Proof: If the system can be diagnosed byH1
2 (DISJ-CODIAG), clearlyH2

3 subsumesH1
2 and the system

is COND-DISJ-CODIAG. Let us remap local decisions “nothing” andA to A andB, respectively, i.e.,
whenever the local decision function outputs “nothing”, the site reportsA instead, and whenever the
function outputsA, it reportsB instead. Now, the global diagnosis result is the same underH2

14, i.e.,
COND-CONJ-CODIAG.

If the system can be diagnosed byH1
3 (CONJ-CODIAG), it is COND-CONJ-CODIAG asH2

14 subsumes
H1

3 . In this case we remap local decisions “nothing” andA to A andB, respectively.H2
3 produces the

same global diagnosis results, i.e.,COND-DISJ-CODIAG.
The reverse direction thatCOND-DISJ-CODIAG or COND-CONJ-CODIAG does not implyDISJ-

CODIAG or CONJ-CODIAG is proved by Examples 4 and 5 below.

Example 4 Consider the systemG shown in Fig. 7, with two local sites,Σo,1 = {a1, a2, c}, Σo,2 =
{b1, b2, c} andΣuo = {ed}. The system is notDISJ-CODIAG because positive traceb1edc

n is indistin-
guishable fromcn at site 1 and indistinguishable fromb1a2c

n at site 2. It is notCONJ-CODIAG because
negative tracecn is indistinguishable fromb1edc

n at site 1 and indistinguishable froma1edc
n at site 2.

The system isCOND-DISJ-CODIAG however, because positive tracec∗a1edc
∗ can be diagnosed this way:

site 1 says “positive if nobody says negative” once it seesa1, and site 2 says “negative” to override site 1
if it seesb2. Similarly, positive tracec∗b1edc

∗ can be diagnosed.

Figure 7: The system of Example 4

Example 5 In Fig. 8, there are two local sites.Σo,1 = {a1, a2, c}, Σo,2 = {b1, b2, c} andΣuo = {ed}.
Similarly with Example 4, the system can be shown to beCOND-CONJ-CODIAG but notDISJ-CODIAG

or CONJ-CODIAG.

Theorem 13 COND-DISJ-CODIAG and COND-CONJ-CODIAG are incomparable w.r.t. the same event
to be diagnosed and the same local projections.
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Figure 8: The system of Example 5

Proof: The system in Example 4 isCOND-DISJ-CODIAG but notCOND-CONJ-CODIAG. The negative
trace of concern iscn; it is indistinguishable fromb1edc

n at site 1 but unfortunately site 2 cannot help on
this positive trace since it is indistinguishable fromb1a2c

n at site 2. Similarlycn cannot be diagnosed by
site 2 conditionally.

The other part is proved by Example 5 in a similar manner.

Theorem 14 Either COND-DISJ-CODIAG or COND-CONJ-CODIAG implies centralized diagnosability
w.r.t. the projection corresponding toΣo = Σo,1 ∪ · · · ∪ Σo,n. The reverse implication is not true in
general.

The proof and the counter-example are similar with those for Theorem 6 and hence omitted.
In conclusion, the relationship among the different notions of codiagnosability introduced above is

shown in Fig. 9, where a directed arc indicates “implies”.

Figure 9: Relationship among notions of codiagnosability

5.3 Verification

The verification ofCOND-DISJ-CODIAG andCOND-CONJ-CODIAG can be done by extending one-level
verifiers to “two-level” verifiers.

Assume systemG = (Q,Σ, δ, q0) is to be diagnosed by two local sites with observable event setsΣo,1
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andΣo,2, respectively. We construct thetwo-level verifierV2 = (QV2 , (Σ ∪ {ε})5, δV2 , qV2
0 ) as follows.

QV2 = Q× {N,P}︸ ︷︷ ︸
s1

×Q× {N, P}︸ ︷︷ ︸
s1,2

×Q× {N,P}︸ ︷︷ ︸
s2

×Q× {N, P}︸ ︷︷ ︸
s2,1

×Q× {N,P}︸ ︷︷ ︸
s

qV2
0 = (q0, N, q0, N, q0, N, q0, N, q0, N) .

wheres1, s1,2, s2, s2,1 ands are traces inL(G), andN, P indicates that the corresponding trace is neg-
ative, positive, respectively. For the sake of readability, letq′i = δ(qi, σ). The transition functionδV2 is
defined as described below, for all cases where the corresponding transitions are defined:

Forσ ∈ Σo,1, σ ∈ Σo,2,
δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), σσσσσ) = (q′1, l1, q

′
2, l2, q

′
3, l3, q

′
4, l4, q

′
5, l5)

Forσ ∈ Σo,1, σ /∈ Σo,2,
δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), σεεεσ) = (q′1, l1, q2, l2, q3, l3, q4, l4, q

′
5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εσεεε) = (q1, l1, q
′
2, l2, q3, l3, q4, l4, q5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εεσσε) = (q1, l1, q2, l2, q
′
3, l3, q

′
4, l4, q5, l5)

Forσ /∈ Σo,1, σ ∈ Σo,2,
δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εεσεσ) = (q1, l1, q2, l2, q

′
3, l3, q4, l4, q

′
5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εεεσε) = (q1, l1, q2, l2, q3, l3, q
′
4, l4, q5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), σσεεε) = (q′1, l1, q
′
2, l2, q3, l3, q4, l4, q5, l5)

Forσ ∈ Σuo andσ 6= ed,
δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), σεεεε) = (q′1, l1, q2, l2, q3, l3, q4, l4, q5, l5)
δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εσεεε) = (q1, l1, q

′
2, l2, q3, l3, q4, l4, q5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εεσεε) = (q1, l1, q2, l2, q
′
3, l3, q4, l4, q5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εεεσε) = (q1, l1, q2, l2, q3, l3, q
′
4, l4, q5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εεεεσ) = (q1, l1, q2, l2, q3, l3, q4, l4, q
′
5, l5)

Forσ = ed,
δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), edεεεε) = (q′1, P, q2, l2, q3, l3, q4, l4, q5, l5)
δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εedεεε) = (q1, l1, q

′
2, P, q3, l3, q4, l4, q5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εεedεε) = (q1, l1, q2, l2, q
′
3, P, q4, l4, q5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εεεedε) = (q1, l1, q2, l2, q3, l3, q
′
4, P, q5, l5)

δV2((q1, l1, q2, l2, q3, l3, q4, l4, q5, l5), εεεεed) = (q1, l1, q2, l2, q3, l3, q4, l4, q
′
5, P ) .

The relationships of tracess1, s1,2, s2, s2,1 ands are explained by the following proposition.

Proposition 15 Similarly with Proposition 7, there is a path fromqV2
0 to state(q1, l1, q2, l2, q3, l3, q4, l4, q5, l5)

if and only if:
1. s1, s1,2, s2, s2,1 ands reach statesq1, q2, q3, q4 andq5 in G, respectively;
2. s1 (s1,2, s2, s2,1 or s) is positive iffl1 (l2, l3, l4 or l5) = P ;
3. P1(s1) = P1(s), P2(s1) = P2(s1,2), P2(s2) = P2(s) andP1(s2) = P1(s2,1);
where tracess1, s1,2, s2, s2,1 ands correspond to each component in the transitions along the path.

The proof is similar to the proof of Proposition 7 and thus omitted. According to the proposition,s1,
s2 ands play the same role as in the one-level verifier, namely, they correspond to estimate traces by each
site and to the trace the system executes, respectively. Tracesi,j is a trace that sitej may estimate ifsi

happens, namely,si,j is sitei’s estimate of sitej’s estimate. The construction ofV2 guarantees that all
possible trace 5-tuples satisfying the above properties are captured.
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A two-level verifier state(q1, l1, q2, l2, q3, l3, q4, l4, q5, l5) is called an(l1, l2, l3, l4, l5)-state. For
example, the initial stateqV2

0 is an (N,N,N,N,N)-state. A strongly connected component is called an
(l1, l2, l3, l4, l5)-SCC if all states in the SCC are(l1, l2, l3, l4, l5)-states.

The above construction can be extended ton local sites in a natural (but tedious) manner. We need to
simulaten2 + 1 traces and there are2n2+1 × |Q|n2+1 states at most. At each state, eventσ has at most
n2 + 1 transitions by the transition rules, resulting in2n2+1 × |Q|n2+1 × |Σ| × (n2 + 1) transitions at
most. So the size of a two-level verifier is polynomial in the number of system states and exponential in
the number of local sites.

Testing of COND-DISJ-CODIAG (conditional positive-codiagnosability) orCOND-CONJ-CODIAG

(conditional negative-codiagnosability) using the two-level verifier is based on the two following the-
orems which provide verification algorithms.

Theorem 16 The language generated by systemG is not COND-DISJ-CODIAG if and only if the two-
level verifierV2 of G has an (N,P,N,P,P)-SCC, where for each “P” in the 5-tuple, there is at least one
transition whose corresponding event is notε.

Proof: (i) (N,P,N,P,P)-SCC with corresponding non-ε edges⇒ not conditionally positive-codiagnosable.
Based on Proposition 15, we can induce an arbitrarily long 5-tuple traces1t

n
1 , s1,2t

n
1,2, s2t

n
2 , s2,1t

n
2,1, st

n

from the (N,P,N,P,P)-SCC, wheret1,2, t2,1 and t are non-ε. Now, arbitrarily long positive tracestn is
indistinguishable from negative traces1t

n
1 at site 1 and indistinguishable from negative traces2t

n
2 at site

2, while site 2’s estimate ofs1t
n
1 always contains positive prefixs1,2 and site 1’s estimate ofs2t

n
2 always

containss2,1. Thus it is not conditionally positive-codiagnosable.
(ii) Not conditionally positive-codiagnosable⇒ (N,P,N,P,P)-SCC with corresponding non-ε edges. If

the system is not conditionally negative-codiagnosable then there is an arbitrarily long positive tracest,
negative tracesu1 andu2 that have the same projection at site 1 and 2, respectively, and arbitrarily long
positive tracesv1w1 andv2w2 such thatP2(u1) = P2(v1w1) andP1(u2) = P1(v2w2). By Proposition
15, these five traces should form an arbitrarily long path inV2, i.e., an (N,P,N,P,P)-SCC. The non-ε edges
in the SCC follow directly from thatt, w1, andw2 are arbitrarily long (non-ε).

Theorem 17 The language generated by systemG is not COND-CONJ-CODIAG if and only if the two-
level verifierV2 of G has an (P,N,P,N,N)-SCC, where for each “P” in the 5-tuple, there is at least one
transition whose corresponding event is notε.

The proof is similar with the proof of Theorem 16 and thus omitted.
Figures 10(a) and 10(b) show parts of the two-level verifiers of Examples 4 and 5, respectively. There

is an (P,N,P,N,N)-SCC in Fig. 10(a) and thus the system is notCOND-CONJ-CODIAG. There is an
(N,P,N,P,P)-SCC in Fig. 10(b) and thus the system is notCOND-DISJ-CODIAG.

6 Disjunctive and Conjunctive Architectures with m Decisions

6.1 Definitions

If there arem local decisions,A1, . . . , Am, at the global decision block, each local decision can be either
present or not present, accounting for2m different combinations. Each combination can be mapped
to either “positive” or “negative” by the global function, thus totally22m

global decision functions are
available. Similarly with the case of two local decisions, there are redundancies in the22m

functions, as
well as functions defining new decentralized architectures.
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(a) Two-level Verifier of Example 4 (b) Two-level Verifier of Example 5

Figure 10: Two-level Verifiers.

Inspired by the notions of (conditional) disjunctive and conjunctive codiagnosability, we definem-
disjunctive-codiagnosability andm-conjunctive-codiagnosability, orm-DISJ-CODIAG andm-CONJ-CODIAG

for short, by stating their global decision functions. Let us first order local decisions asAm Â Am−1 Â
· · · Â A1 Ânothing; the global decision is determined solely by the local decision withhighest order,
as described by Table 4 (note that Table 2 lists the output for the different cases of decisions received
while Table 4 lists the output for the highest decision received). For example, if some site saysA2 and
no site saysA3 or any other higher-order decision, the system is diagnosed as negative under architecture
m-DISJ-CODIAG (or positive underm-CONJ-CODIAG).

(input cases represented by thehighest-orderlocal decision received)
Nothing A1 A2 A3 ... Am Definition

(output for the different input cases)
Negative Positive Negative Positive ... ... m-DISJ-CODIAG

Positive Negative Positive Negative ... ... m-CONJ-CODIAG

Table 4: Global decision rules ofm-DISJ(CONJ)-CODIAG. It is generalized fromDISJ(CONJ)-CODIAG

andCOND-DISJ(CONJ)-CODIAG. Global decisions are alternating following the local decision order.

From Table 4, we can see thatDISJ(CONJ)-CODIAG=1-DISJ(CONJ)-CODIAG andCOND-DISJ(CONJ)-
CODIAG=2-DISJ(CONJ)-CODIAG.

6.2 Properties

Similarly with COND-DISJ(CONJ)-CODIAG, the notions ofm-DISJ(CONJ)-CODIAG, m ≥ 3, define
new classes of language that are incomparable. The theorems and examples below are generalized from
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the corresponding ones in Section 5.2.

Theorem 18 Either (m-1)-DISJ-CODIAG or (m-1)-CONJ-CODIAG implies bothm-DISJ-CODIAG and
m-CONJ-CODIAG. m-DISJ-CODIAG or m-CONJ-CODIAG does not imply(m-1)-DISJ-CODIAG or (m-
1)-CONJ-CODIAG in general.

Proof: The proof is similar to the proof of Theorem 12.
The global function ofm-DISJ-CODIAG subsumes the global function of(m-1)-DISJ-CODIAG, and

(m-1)-CONJ-CODIAG impliesm-DISJ-CODIAG by remapping the local decisions “nothing”,A1, . . . , Am−1

toA1, A2, . . . , Am, respectively. By symmetry,(m-1)-DISJ(CONJ)-CODIAG impliesm-CONJ-CODIAG.
The fact thatm-DISJ-CODIAG does not imply(m-1)-DISJ-CODIAG or m-CONJ-CODIAG is proved

by considering the system in Example 6 below. Let us start with the diagnosis of traceε ∈ L. We need
H(h1(ε), h2(ε)) = Negative. Under them-DISJ(CONJ)-CODIAG architecture in Table 4, the highest-
order decision determines the global decision. As the system is symmetric, w.l.o.g., assumeh1(ε) º
h2(ε) andh1(ε) implies negative. Now, to diagnoseedb1, sinceh1(P1(edb1)) = h1(ε) implies negative,
we needh2(P2(edb1)) = h2(b1) Â h1(ε) to override site 1’s decision. Similarly we haveh1(ε) ≺
h2(b1) ≺ h1(a2) ≺ h2(b3)..., a chain ofm + 1 strict inequalities. Thus, there is no way to diagnose the
language with less thanm local decisions, i.e., it is not(m-1)-DISJ(CONJ)-CODIAG.

The fact thatm-CONJ-CODIAG does not imply(m-1)-DISJ-CODIAG or m-CONJ-CODIAG can be
proved in a similar manner by considering the system in Example 7.

Example 6 Define the system as follows:4

L = {...eda5b4, a3b4, eda3b2, a1b2, eda1︸ ︷︷ ︸
m traces

, ε, edb1, b1a2, edb3a2, b3a4, edb5a4...︸ ︷︷ ︸
m traces

.}

There are two local sites withΣo,1 = {a1, a2, ...}, Σo,2 = {b1, b2, ...} andΣuo = {ed}.
The system ism-DISJ-CODIAG by local functionsh1(ε) = h2(ε) = nothing,h1(ai) = Ai and

h2(bi) = Ai, i = 1, . . . , m.

Example 7

L = {...a5b4, eda3b4, a3b2, eda1b2, a1︸ ︷︷ ︸
m traces

, ed, b1, edb1a2, b3a2, edb3a4, b5a4...︸ ︷︷ ︸
m traces

.}

There are two local sites withΣo,1 = {a1, a2, ...}, Σo,2 = {b1, b2, ...} andΣuo = {ed}. The system
is m-CONJ-CODIAG by local functionsh1(ε) = h2(ε) = nothing,h1(ai) = Ai andh2(bi) = Ai, i =
1, . . . , m.

Theorem 19 m-DISJ-CODIAG andm-CONJ-CODIAG are incomparable w.r.t. the same event to be di-
agnosed and the same local projections.

Proof: The system in Example 6 ism-DISJ-CODIAG. In the analysis of Theorem 18, we haveh1(ε) ≺
h2(b1) ≺ h1(a2) ≺ h2(b3) · · · , resulting inm + 1 strict inequalities. Ifm-CONJ-CODIAG holds, ac-
cording to Table 4, thesem + 1 inequalities have to be mapped ash1(ε) = nothing,h2(b1) = A1,
h1(a2) = A2, and so on. However, with the assumption thath2(ε) ¹ h1(ε), the global decision on trace
ε is determined byh1(ε) = nothing, which results in global decision “Positive” underm-CONJ-CODIAG.
Thus, the system is notm-CONJ-CODIAG.

The other part is proved by Example 7 in a similar manner.
4In Examples 6, 7 and 9,L is not live. One can add cyclesc∗ to each trace inL, i.e.,L′ = Lc∗. We omitc∗ here for better

readability. The analysis onL applies toL′ in the same way.
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Recall the notion of joint diagnosability in Definition 5.

Theorem 20 m-DISJ(CONJ)-CODIAG implies joint diagnosability and joint diagnosability implies cen-
tralized diagnosability, whereΣo = Σo,1 ∪ · · · ∪ Σo,n. The reverse implications are not true in general.

Proof: If the system is not jointly diagnosable, there is a sufficiently long positive trace indistinguishable
from a negative trace at every site. It is therefore not possible to diagnose the system with any global
function. On the other hand, Example 8 tells us that joint diagnosability does not implym-DISJ(CONJ)-
CODIAG.

The fact that joint diagnosability implies centralized diagnosability follows from their definitions.
The reverse direction is proved by Example 3.

In conclusion, we obtain the complete relationship chart presented in Fig. 11.

Figure 11: Relationship among notions of codiagnosability

7 Other Global Functions with Two Local Decisions

The notions ofCOND-DISJ-CODIAG andCOND-CONJ-CODIAG studied previously correspond to global
functionsH2

3 andH2
14 in Table 2. There are four other functions in the table that have not been discussed,

namely,H2
2 ,H2

7 ,H2
10 andH2

15. Interestingly, new classes of diagnosable languages are defined by these
functions. We only discussH2

2 in this paper, as its rule appears to be the simplest.
Global decision ruleH2

2 says that the diagnosis result is “positive” if both decisionsA andB are
present. There is no priority among these two decisions. A system is calledH2

2 -codiagnosableif it can
be diagnosed byH2

2 . The system in Example 8 is anH2
2 -codiagnosable system.

Example 8 SystemG is shown in Fig. 12; takeΣo,1 = {a1, a2, c} andΣo,2 = {b1, b2, c}. This system is
H2

2 -codiagnosable by local functionsh1(a1) = h2(b1) = A andh1(a2) = h2(b2) = B.

It is unknown at this point whether there is a language-based definition that is equivalent to the notion
of H2

2 -codiagnosability. The relationship betweenH2
2 -codiagnosability and other notions of codiagnos-

ability introduced elsewhere in this paper is captured in the following theorem. The verification ofH2
2 -

codiagnosability is an open problem at this point. Our conjecture is that this new notion of diagnosability
is undecidable.
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Figure 12: AnH2
2 -codiagnosable system

Theorem 21 H2
2 -codiagnosability is incomparable withm-DISJ-CODIAG andm-CONJ-CODIAG, m ≥

2, w.r.t. the same event to be diagnosed and the same local projections.

Proof: If the system in Example 8 is diagnosed under the global rules form-DISJ(CONJ)-CODIAG, an
analysis similar to the proof of Theorem 18 gives us the order relationh2(b1) ≺ h1(a2) ≺ h2(b2) ≺
h1(a1) ≺ h2(b1), which is impossible. Thus the system is notm-DISJ(CONJ)-CODIAG.

The other direction is proved by Example 9. If the system is diagnosable underH2
2 , for positive

traceedab, decisionsA andB must both be reported by local sites. As the two decisions are symmetric,
w.l.o.g., leth1(edab) = h1(a) = A andh2(P2(edab)) = h2(b) = B. To diagnose traceeda correctly, as
site 1 still saysA, site 2 has to sayB, i.e.,h2(P2(eda)) = h2(ε) = B. Similarly h1(ε) = A. Then trace
ε cannot be diagnosed correctly.

Example 9 SystemL = {ε, eda, edb, edab}, whereΣo,1 = {a, c} andΣo,2 = {b, c}. This system is
DISJ-CODIAG by h1(ε) = h2(ε) = “nothing” andh1(a) = h2(b) = A. Therefore it ism-DISJ(CONJ)-
CODIAG, m ≥ 2, by Theorem 18.

8 Conclusion

This paper has introduced and analyzed a general hierarchical framework for decentralized diagnosis of
DES. The framework is parameterized by the number of different decisions a local site can issue and by
the global fusion rule for these local decisions, leading to the sets of functions listed in Tables 1 and 2
and their generalized form in Table 4. Several equivalence results between many notions of decentral-
ized diagnosability and their corresponding architectures in the general framework were established. The
cases where local sites issue one or two local diagnosis decisions were studied in detail. It was discov-
ered that in several cases these local decisions could be interpreted as conditional decisions of the type
“Positive if nobody says Negative” and “Negative if nobody says Positive”. These conditional interpre-
tations were key to identifying equivalent language-based notions of decentralized diagnosability, which
in turn enabled the construction of polynomial tests for their verification. Moreover, these conditional
interpretations extend to the case of more than two local decisions, albeit the details become more intri-
cate. Although not discussed in this paper, the conditional interpretations are also key to the synthesis of
diagnosers for online diagnosis under the conditional architectures.
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Another contribution of this work is the discovery of a new decentralized architecture with two local
decisions that is not comparable to any other existing notion of decentralized diagnosability. This notion
was calledH2

2 -codiagnosability in Section 7. The verification of this new property is an open problem.
Overall, the use of decentralized diagnosis architectures of the type studied in this paper allows for

diagnosing larger classes of systems that can be diagnosed under prior work, such as the decentralized
architecture corresponding to Protocol 3 in [5]. The hierarchical framework that was introduced connects
Protocol 3 in [5], whose verification is polynomial, and joint diagnosability in [20], whose verification is
undecidable. Moreover, it identifies several decidable classes of diagnosable languages in between these
two extreme points. Identifying the boundary between decidability and undecidability in this space would
be interesting future work.
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