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Abstract

Automated diagnosis of errors detected during software
testing can improve the efficiency of the debugging pro-
cess, and can thus help to make software more reliable.
In this paper we discuss the application of a specific au-
tomated debugging technique, namely software fault local-
ization through the analysis of program spectra, in the area
of embedded software in high-volume consumer electronics
products. We discuss why the technique is particularly well
suited for this application domain, and through experiments
on an industrial test case we demonstrate that it can lead to
highly accurate diagnoses of realistic errors.

Keywords: diagnosis, program spectra, automated debug-
ging, embedded systems, consumer electronics.

1 Introduction

Software reliability can generally be improved through
extensive testing and debugging, but this is often in con-
flict with market conditions: software cannot be tested ex-
haustively, and of the bugs that are found, only those with
the highest impact on the user-perceived reliability can be
solved before the release. In this typical scenario, testing
reveals more bugs than can be solved, and debugging is a
bottleneck for improving reliability. Automated debugging
techniques can help to reduce this bottleneck.
The subject of this paper is a particular automated debug-

ging technique, namely software fault localization through
the analysis of program spectra [11]. These can be seen as
projections of execution traces that indicate which parts of
a program were active during various runs of that program.
The diagnosis consist in analyzing the extent to which the
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activity of specific parts correlates with errors detected in
the different runs.
Locating a fault is an important step in actually solving

it, and program spectra have successfully been applied for
this purpose in several tools focusing on various application
domains, such as Pinpoint [4], which focuses on large, dy-
namic on-line transaction processing systems, AMPLE [5],
which focuses on object-oriented software, and Tarantula
[9], which focuses on C programs.
In this paper, we discuss the applicability of the tech-

nique to embedded software, and specifically to embed-
ded software in high-volume consumer electronics prod-
ucts. Software has become an important factor in the de-
velopment, marketing, and user-perception of these prod-
ucts, and the typical combination of limited computing re-
sources, complex systems, and tight development deadlines
make the technique a particularly attractive means for im-
proving product reliability.
To support our argument, we report the outcome of two

experiments, where we diagnosed two different errors oc-
curring in the control software of a particular product line
of television sets from a well-known international consumer
electronics manufacturer. In both experiments, the tech-
nique is able to locate the (known) faults that cause these
errors quite well, and in one case, this implies an accuracy
of a single statement in approximately 450K lines of code.
The remainder of this paper is organized as follows. In

Section 2 we explain the diagnosis technique in more detail,
and in Section 3 we discuss its applicability to embedded
software in consumer electronics products. In Section 4 we
describe our experiments, and in Section 5 we discuss how
our current implementation can be improved. In Section 6
we discuss related work. We conclude in Section 7.

2 Preliminaries

In this section we introduce program spectra, and de-
scribe how they are used for diagnosing software faults.



void RationalSort(int n, int *num, int *den)
{ /* block 1 */

int i,j,temp;

for ( i=n-1; i>=0; i-- ) {
/* block 2 */
for ( j=0; j<i; j++ ) {

/* block 3 */
if (RationalGT(num[j], den[j],

num[j+1], den[j+1])) {
/* block 4 */
temp = num[j];
num[j] = num[j+1];
num[j+1] = temp; } } }

}

Figure 1. A faulty C function for sorting ratio-
nal numbers

First we introduce the necessary terminology.

2.1 Failures, Errors, and Faults

As defined in [3], we use the following terminology.

• A failure is an event that occurs when delivered service
deviates from correct service.

• An error is the part of the total state of the system that
may cause a failure.

• A fault is the cause of an error in the system.

To illustrate these concepts, consider the C function in
Figure 1. It is meant to sort, using the bubble sort algo-
rithm, a sequence of n rational numbers whose numerators
and denominators are passed via parameters num and den,
respectively. There is a fault (bug) in the swapping code of
block 4: only the numerators of the rational numbers are
swapped. The denominators are left in their original order.
A failure occurs when applying RationalSort yields

anything other than a sorted version of its input. An error
occurs after the code inside the conditional statement is ex-
ecuted, while den[j] "= den[j+1]. Such errors can be
temporary: if we apply RationalSort to the sequence
〈4
1 , 2

2 , 0
1 〉, an error occurs after the first two numerators are

swapped. However, this error is “canceled” by later swap-
ping actions, and the sequence ends up being sorted cor-
rectly. Faults do not automatically lead to errors either: no
error will occur if the input is already sorted, or if all de-
nominators are equal.
The purpose of diagnosis is to locate the faults that are

the root cause of detected errors. As such, error detection is
a prerequisite for diagnosis. As a rudimentary form of er-
ror detection, failure detection can be used, but in software

more powerful mechanisms are available, such as pointer
checking, array bounds checking, deadlock detection, etc.
In a software context, faults are often called bugs, and

diagnosis is part of debugging. Computer-aided techniques
as the one we consider here are known as automated debug-
ging.

2.2 Program Spectra

A program spectrum [11] is a collection of data that pro-
vides a specific view on the dynamic behavior of software.
This data is collected at run-time, and typically consist of
a number of counters or flags for the different parts of a
program. As such, recording a program spectrum is a light-
weight analysis compared to other run-time methods, such
as, e.g., dynamic slicing [10].
As an example, a block count spectrum tells how often

each block of code is executed during a run of a program. In
this paper, a block of code is a C language statement, where
we do not distinguish between the individual statements of a
compound statement, but where we do distinguish between
the cases of a switch statement1. Suppose that the function
RationalSort of Figure 1 is used to sort the sequence
〈2
1 , 3

1 , 4
1 , 1

1 〉, which it happens to do correctly. This would
result in the following block count spectrum, where block 5
refers to the body of the RationalGT function, which has
not been shown in Figure 1.

block 1 2 3 4 5
count 1 4 6 3 6

Block 1, the body of the function RationalSort, is exe-
cuted once. Blocks 2 and 3, the bodies of the two loops, are
executed four and six times, respectively. To sort our exam-
ple array, three exchanges must be made, and block 4, the
body of the conditional statement, is executed three times.
Block 5, the RationalGT function body, is executed six
times: once for every iteration of the inner loop.
If we are only interested in whether a block is executed

or not, we can use binary flags instead of counters. In this
case, the block count spectra revert to block hit spectra. Be-
side block count/hit spectra, many other forms of program
spectra exist. See [7] for an overview. In this paper we
will work with block hit spectra, and hit spectra for logi-
cal threads used in the software of our test case (see Sec-
tion 4.1).

2.3 Fault Diagnosis

The hit spectra of M runs constitute a binary matrix,
whose columns correspond to N different parts of the pro-
gram (see Figure 2). In our case, these parts are blocks of

1This is a slightly different notion than a basic block, which is a block
of code that has no branch.
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Figure 2. The ingredients of fault diagnosis

C code. In some of the runs an error is detected. This in-
formation constitutes another column vector, the error vec-
tor. This vector corresponds to a hypothetical part of the
program that is responsible for all observed errors. Fault lo-
calization essentially consists in identifying the part whose
column vector resembles the error vector most.
In the field of data clustering, resemblances between vec-

tors of binary, nominally scaled data, such as the columns
in our matrix of program spectra, are quantified by means
of similarity coefficients (see, e.g., [8]). As an example,
the Jaccard similarity coefficient (see also [8]) expresses the
similarity sj of column j and the error vector as the num-
ber of positions in which these vectors share an entry 1 (i.e.,
block was exercised and the run has failed), divided by this
same number plus the number of positions in which the vec-
tors have different entries:

sj =
a11(j)

a11(j) + a01(j) + a10(j)
(1)

where apq(j) = |{i | xij = p∧ ei = q}|, and p, q ∈ {0, 1}.
Under the assumption that a high similarity to the error

vector indicates a high probability that the corresponding
parts of the software cause the detected errors, the calcu-
lated similarity coefficients rank the parts of the program
with respect to their likelihood of containing the faults.
To illustrate the approach, suppose that we apply the

RationalSort function to the input sequences I1 =
〈 〉, I2 = 〈1

4 〉, I3 = 〈2
1 , 1

1 〉 and I4 = 〈4
1 , 2

2 , 0
1 〉, I5 =

〈3
1 , 2

2 , 4
3 , 1

4 〉, and I6 = 〈1
4 , 1

3 , 1
2 , 1

1 〉.
I1, I2, and I6 are already sorted, and lead to passed runs.

I3 is not sorted, but the denominators in this sequence hap-
pen to be equal, in which case no error occurs. I4 is the ex-
ample from Section 2.1: it is not sorted, and an error occurs
during its execution, but this error goes undetected. Only for
I5 the program fails. The calculated result is 〈 1

1 , 2
2 , 4

3 , 3
4 〉 in-

stead of 〈 1
4 , 2

2 , 4
3 , 3

1 〉, which is a clear indication that an error
has occurred.
The block hit spectra for these runs are as follows (’1’

denotes a hit), where block 5 corresponds to the body of
the RationalGT function, which has not been shown in
Figure 1.

block
input 1 2 3 4 5 error
I1 1 0 0 0 0 0
I2 1 1 0 0 0 0
I3 1 1 1 1 1 0
I4 1 1 1 1 1 0
I5 1 1 1 1 1 1
I6 1 1 1 0 1 0

For this data, the calculated Jaccard coefficients are s1 =
1
6 , s2 = 1

5 , s3 = 1
4 , s4 = 1

3 , s5 = 1
4 , which (correctly)

identifies block 4 as the most likely location of the fault.

3 Relevance to Embedded Software

The effectiveness of the diagnosis technique described
in the previous section has already been demonstrated in
several articles (see, e.g., [1], [4], [9]). In this paper we
present the benefits and discuss the issues specifically re-
lated to debugging embedded software in consumer elec-
tronics products. Especially because of constraints imposed
by the market, the conditions under which this software is
developed are somewhat different from those for other soft-
ware products:

• To reduce unit costs, and often to ensure portability
of the devices, the software runs on non-commodity
hardware, and computing resources are limited.

• As a consequence, many facilities that developers of
non-embedded software have come to rely on are ab-
sent, or are available only in rudimentary forms. Ex-
amples are profiling tools that give insight in the dy-
namic behavior of systems.

• At the same time, the systems are highly concurrent,
and operate at a low level of abstraction from the hard-
ware. Therefore, their design and implementation are
complicated by factors that can largely be abstracted
away from in other software systems, such as dead-
lock prevention, and timing constraints involved in,
e.g., writing to the graphics display only in those frac-
tions of a second that the screen is not being refreshed.

• On top of challenges that the entire software indus-
try has to deal with, such as geographically distributed
development organizations, the strong competition be-
tween manufacturers of consumer electronics makes it
absolutely vital that release deadlines are met.

• Although important safety mechanisms, such as short-
circuit detection, are sometimes implemented in soft-
ware, for a large part of the functionality there are no
personal risks involved in transient failures.



Consequently, it is not uncommon that consumer elec-
tronics products are shipped with several known software
faults outstanding. To a certain extent, this also holds for
other software products, but the combination of the com-
plexity of the systems, the tight constraints imposed by the
market, and the relatively low impact of the majority of pos-
sible system failures creates a unique situation. Instead of
aiming for correctness, the goal is to create a product that is
of value to customers, despite its imperfections, and to bring
the reliability to a commercially acceptable level (also com-
pared to the competition) before a product must be released.
The technique of Section 2 can help to reach this goal

faster, and may thus reduce the time-to-market, and lead to
more reliable products. Specific benefits are the following.
• As a black-box diagnosis technique, it can be applied
without any additional modeling effort. This effort
would be hard to justify under the market conditions
described above. Moreover, concurrent systems are
difficult to model.

• The technique improves insight in the run-time behav-
ior. For embedded software in consumer electronics,
this is often lacking, because of the concurrency, but
also because of the decentralized development.

• We expect that the technique can easily be integrated
with existing testing procedures, such as overnight
playback of recorded usage scenarios. In addition to
the information that errors have occurred in some sce-
narios, this gives a first indication of the parts of the
software that are likely to be involved in these errors.
In the large, geographically distributed development
organizations that we are dealing with, it may also help
to identify which teams of developers to contact.

• Last but not least, the technique is light-weight, which
is relevant because of the non-commodity hardware
and limited computing resources. All that is needed is
some memory for storing program spectra, or for cal-
culating the similarity coefficients on the fly (which re-
duces the space complexity fromO(M ×N) toO(N),
see Section 5). Profiling tools such as gcov are conve-
nient for obtaining program spectra, but they are typ-
ically not available in a development environment for
embedded software. However, the same data can be
obtained through source code instrumentation.

While none of these benefits are unique, their combination
makes program spectrum analysis an attractive technique
for diagnosing embedded software in consumer electronics.

4 Experiments

In this section we describe our experience with applying
the techniques of Section 2 to an industrial test case.

4.1 Platform

The subject of our experiments is the control software
in a particular product line of analog television sets. All
audio and video processing is implemented in hardware,
but the software is responsible for tasks such as decoding
remote control input, displaying the on-screen menu, and
coordinating the hardware (e.g., optimizing parameters for
audio and video processing based on an analysis of the sig-
nals). Most teletext2 functionality is also implemented in
software.
The software itself consists of approximately 450K lines

of C code, which is configured from a much larger (several
MLOC) code base of Koala software components [12].
The control processor is a MIPS running a small multi-

tasking operating system. Essentially, the run-time environ-
ment consists of several threads with increasing priorities,
and for synchronization purposes, the work on these threads
is organized in 315 logical threads inside the various com-
ponents. Threads are preempted when work arrives for a
higher-priority thread.
The total available RAM memory in consumer sets is

two megabyte, but in the special developer version that we
used for our experiments, another two megabyte was avail-
able. In addition, the developer sets have a serial connec-
tion, and a debugger interface for manual debugging on a
PC.

4.2 Faults

We diagnosed two faults, one existing, and one that was
seeded to reproduce an error from a different product line.

Load Problem. A known problem with the specific version
of the control software that we had access to, is that after
teletext viewing, the CPU load when watching television
(TV mode) is approximately 10% higher than before tele-
text viewing. This is illustrated in Figure 3, which shows the
CPU load for the following scenario: one minute TV mode,
30 s teletext viewing, and one minute of TV mode. The
CPU load clearly increases around the 60th sample, when
the teletext viewing starts, but never returns to its initial
level after sample 90, when we switch back to TV mode.

Teletext Lock-up Problem. Another product line of televi-
sion sets provides a function for searching in teletext pages.
An existing fault in this functionality entails that searching
in a page without visible content locks up the teletext sys-
tem. A likely cause for the lock-up is an inconsistency in
the values of two state variables in different components,

2A standard for broadcasting information (e.g., news, weather, TV
guide) in text pages, very popular in Europe.
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Figure 3. CPU load measured per second

for which only specific combinations are allowed. We hard-
coded a remote control key-sequence that injects this error
on our test platform.

4.3 Implementation

We wrote a small Koala component for recording and
storing program spectra, and for transmitting them off the
television set via the serial connection. The transmission is
done on a low-priority thread while the CPU is otherwise
idle, in order to minimize the impact on the timing behav-
ior. Pending their transmission via the serial connection,
our component caches program spectra in the extra mem-
ory available in our developer version of the hardware.
For diagnosing the load problem we obtained hit spectra

for the logical threads mentioned in Section 4.1, resulting
in spectra of 315 binary flags. We approached the lock-
up problem at a much finer granularity, and obtained block
hit spectra for practically all blocks of code in the control
software, resulting in spectra of over 60,000 flags.
The hit spectra for the logical threads are obtained by

manually instrumenting a centralized scheduling mecha-
nism. For the block hit spectra we automatically instru-
mented the entire source code using the Front [2] parser
generator.
In Section 2.3 we use program spectra for different runs

of the software, but for embedded software in consumer
electronics, and indeed for most interactive systems, the
concept of a run is not very useful. Therefore we record
the spectra per transaction, instead of per run, and we use
two different notions of a transaction for the two different
faults that we diagnosed:

• for the load problem, we use a periodic notion of a
transaction, and record the spectra per second.

• for the lock-up problem, we define a transaction as the
computation in between two key-presses on the remote
control.

4.4 Diagnosis

For the load problem we used the scenario of Figure 3.
We marked the last 60 spectra, for the second period of
TV mode as ‘failed,’ and those of earlier transactions as
‘passed.’ In the ranking that follows from the analysis of
Section 2.3, the logical thread that had been identified by
the developers as the actual cause of the load problem was
in the second position out of 315. In the first position was a
logical thread related to teletext, whose activation is part of
the problem, so in this case we can conclude that although
the diagnosis is not perfect, the implied suggestion for in-
vestigating the problem is quite useful.
For the lock-up problem, we used a proper error detec-

tion mechanism. On each key-press, when caching the cur-
rent spectrum, a separate routine verifies the values of the
two state variables, and marks the current spectrum as failed
if they assume an invalid combination. Although this is a
special-purpose mechanism, including and regularly check-
ing high-level assert-like statements about correct behavior
is a valid means to increase the error-awareness of systems.
Using a very simple scenario of 23 key-presses that es-

sentially (1) verifies that the TV and teletext subsystems
function correctly, (2) triggers the error injection, and (3)
checks that the teletext subsystem is no longer responding,
we immediately got a good diagnosis of the detected error:
the first two positions in the total ranking of over 60,000
blocks pointed directly to our error injection code. Adding
another three key-presses to exonerate an uncovered branch
in this code made the diagnosis perfect: the exact statement
that introduced the state inconsistency was located out of
approximately 450K lines of source code.

5 Discussion

Especially the results for the lock-up problem have con-
vinced us that program spectra, and their application to fault
diagnosis are a viable technique and useful tool in the area
of embedded software in consumer electronics. However,
there are a number of issues with our implementation.
First, we cannot claim that we have not altered the timing

behavior of the system. Because of its rigorous design, the
TV is still functioning properly, but everything runs much
slower with the block-level instrumentation (e.g., changing
channels now takes seconds). One reason is that currently,
we collect block count spectra at byte resolution, and con-
vert to block hit spectra off-line. Updating the counters in
a multi-threaded environment requires a critical section for
every executed block, which is hugely expensive. Fortu-
nately, this information is not used, and we believe we can
implement a binary flag update without a critical section.
Second, we cache the spectra of passed transactions, and

transmit them off the system during CPU idle time. Be-



cause of the low throughput of the serial connection, this
may become a bottleneck for large spectra and larger sce-
narios. In our case we could store 25 spectra of 65,536
counters, which was already slowing down the scenarios
with more than that number of transactions, but even with a
more memory-efficient implementation, this inevitably be-
comes a problem with, for example, overnight testing.
For many purposes, however, we will not have to store

the actual spectra. In particular for fault diagnosis, ulti-
mately we are only interested in the calculated similarity
coefficients, and all similarity coefficients that we are aware
of are expressed in terms of the four counters a00, a01, a10,
and a11 introduced in Section 2.3. If an error detection
mechanism is available, like in our experiments with the
lock-up problem, then these four counters can be calculated
on the fly, and the memory requirements become linear in
the number columns in the matrix of Figure 2.

6 Related Work

Program spectra were introduced in [11], where hit spec-
tra of intra-procedural paths are analyzed to diagnose year
2000 problems. The distinction between count spectra and
hit spectra is introduced in [7], where several kinds of pro-
gram spectra are evaluated in the context of regression test-
ing. In the introduction we already mentioned three prac-
tical diagnosis/debugging tools [4, 5, 9] that are essentially
based on the same diagnosis method as ours. A recent study,
reported in [1], indicates that the choice of the similarity co-
efficient, as introduced in Section 2.3 can be of significant
influence on the quality of the diagnosis. In the experiments
reported in the present paper we used both the Jaccard co-
efficient of Eq. (1), and the best coefficient identified in [1],
but the results were essentially the same.
As we mentioned in Section 3, black box techniques like

spectrum-based diagnosis can be applied without additional
knowledge about a system. An example of a white box
technique is model-based diagnosis (see, e.g., [6]), where
a diagnosis is obtained by logical inference from a formal
model of the system, combined with a set of run-time obser-
vations. White box approaches to software diagnosis exist
(see, e.g., [13]), but software modeling is extremely com-
plex, so most software diagnosis techniques are black box.

7 Conclusion

In this paper we have demonstrated software fault diag-
nosis through the analysis of program spectra, on a large-
scale industrial test case in the area of embedded software
in consumer electronics devices. In addition to confirming
established effectiveness results, our experiments indicate
that the technique lends itself well for application in the

resource-constrained environments that are typical for the
development of embedded software.
While our current experiments focus on development-

time debugging, they open corridors to further applications,
such as run-time recovery by rebooting only those parts of
a system whose activities correlate with detected errors.
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