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Abstract

Congenital hypothyroidism (CH) may be primary, due to a defect affecting the thyroid gland itself, or central, due to 

impaired thyroid-stimulating hormone (TSH)-mediated stimulation of the thyroid gland as a result of hypothalamic 

or pituitary pathology. Primary CH is the most common neonatal endocrine disorder, traditionally subdivided into 

thyroid dysgenesis (TD), referring to a spectrum of thyroid developmental abnormalities, and dyshormonogenesis, 

where a defective molecular pathway for thyroid hormonogenesis results in failure of hormone production by a 

structurally intact gland. Delayed treatment of neonatal hypothyroidism may result in profound neurodevelopmental 

delay; therefore, CH is screened for in developed countries to facilitate prompt diagnosis. Central congenital 

hypothyroidism (CCH) is a rarer entity which may occur in isolation, or (more frequently) in association with additional 

pituitary hormone de�cits. CCH is most commonly de�ned biochemically by failure of appropriate TSH elevation 

despite subnormal thyroid hormone levels and will therefore evade diagnosis in primary, TSH-based CH-screening 

programmes. This review will discuss recent genetic aetiological advances in CH and summarize epidemiological data 

and clinical diagnostic challenges, focussing on primary CH and isolated CCH.

Introduction

Primary congenital hypothyroidism (CH) occurs due 

to defective thyroid gland development or hormone 

biosynthetic function and is traditionally sub-classified as 

thyroid dysgenesis (TD) or dyshormonogenesis. TD refers 

to a spectrum of aberrant thyroid gland development, 

most commonly involving thyroid ectopy, an abnormally 
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situated and mostly small thyroid gland. Complete 

absence of the thyroid gland (athyreosis) affects 20–30% 

of TD cases and a small minority exhibit a normally 

located but hypoplastic thyroid (1). Dyshormonogenesis 

refers to failure of thyroid hormone production by a 

normally located, sometimes goitrous thyroid gland 

in which the molecular pathway for thyroid hormone 

biosynthesis is disrupted (2). Historically, 75–85% of CH 

cases have been attributed to TD with the remainder 

occurring due to dyshormonogenesis. However, studies 

undertaken more recently using lower screening TSH 

diagnostic cut-offs have reported a doubling in the 

incidence of CH largely due to increased diagnosis of cases 

with gland in situ (GIS) (3). TD is generally considered to 

be a sporadic disease for which the underlying aetiology is 

usually not clear. Genetic causes involve genes mediating 

thyroid differentiation, migration and growth; however, 

less than 5% TD cases are attributable to a mutation in a 

known TD-associated gene. In contrast, the majority of 

individuals with dyshormonogenesis harbour mutations 

in genes encoding known components of the thyroid 

hormone biosynthesis machinery (2, 4).

Central CH (CCH) occurs when defective 

stimulation of a normal thyroid gland by thyroid-

stimulating hormone (TSH) results in inadequate 

thyroid hormone biosynthesis. Hypothalamic or 

pituitary pathology causes a qualitative or quantitative 

deficit in TSH synthesis or secretion, and in the 

majority of cases, the molecular basis has remained 

unresolved (5). Although CCH most commonly 

manifests with normal or subnormal TSH levels despite 

subnormal thyroid hormone concentrations, mildly 

elevated serum levels of immunoreactive TSH with 

impaired bioactivity may be detected if the defect is 

predominantly hypothalamic (maximum 12.9 mIU/L 

in one study), with the potential for misdiagnosis 

as subclinical or mild primary hypothyroidism (6). 

Although assumed to be rare, CCH may be more 

common than previously appreciated with an incidence 

of up to 1:16 400 to 1:21 000 in the Netherlands (7, 8). 

Most individuals with CCH exhibit additional pituitary 

hormone deficits, but isolated TSH deficiency occurs 

with an estimated incidence of around 1:65 000, often 

as a result of defects in genes controlling the TSH 

biosynthetic pathway (5, 9).

Adequate circulating thyroid hormone levels 

are a prerequisite for normal childhood growth and 

neurodevelopment, therefore, prompt detection and 

treatment of CH is an important public health concern. 

Although most industrialized countries operate neonatal 

screening programmes for CH, most employ a primary 

TSH-based methodology which will detect primary CH 

but not CCH. This review will focus on primary CH 

and isolated CCH, incorporating discussion of genetic 

aetiological advances as well as summarizing recent 

epidemiological data and clinical diagnostic challenges 

for these conditions.

Primary CH

Epidemiology

Prior to the development of CH screening, the incidence 

of primary CH was estimated at 1:7000 (10, 11); however, 

once screening was introduced, the actual incidence 

was found to be almost double these original estimates 

at 1:3000–4000 (12). Over the last two decades, the 

detected incidence of CH has doubled again, largely due 

to increased diagnosis of cases with gland-in-situ (GIS), 

with a lesser contribution from thyroid ectopy or cases 

with a structurally abnormal gland in situ. The number of 

children with athyreosis seems unchanged (3).

The contributing factors underlying this altered 

incidence are complex (3, 13, 14, 15, 16). Some argue that 

the increase in CH cases is due to a generalized lowering 

of newborn screening cutpoints that has arisen with assay 

changes and reports of missed cases of CH. However, the 

prevalence of CH has also increased in programmes where 

the cutpoints have not been altered (14, 15). Additional 

influences include changes in ethnicity and demographics 

of the populations screened (14, 16, 17) and dietary iodine 

insufficiency may also be contributing to the number of 

children with slightly higher TSH concentrations (18). The 

extent to which iodine deficiency interacts with variants 

in the genes mediating thyroidal iodine metabolism to 

provoke CH remains unclear.

In addition to the overall increased incidence of CH, 

there is also an increase in the proportion of children 

with transient hypothyroidism. These children meet the 

biochemical criteria for CH treatment in infancy but no 

longer require levothyroxine when retested around 3 years 

of age. Transient CH may reflect mild dyshormonogenesis 

with failure of adequate thyroxine (T4) production to 

meet the increased requirements in the first months of life, 

but sufficient hormone biosynthesis for later childhood 

years. The risk of subclinical or overt hypothyroidism in 

later life and potential for hypothyroidism in pregnancy 

when there is a further increased physiological demand 

for levothyroxine has not yet been fully evaluated in  

such patients.
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Genetic advances in primary CH

Monogenic causes of TD

In more than 95% cases, the aetiology for TD cannot be 

identified; however, genetic ascertainment in CH cases 

has established five key monogenic causes of TD: loss-

of-function mutations in TSHR (TSH receptor), NKX2-

1 (NK2 homeobox 1, previously known as TTF1), PAX8 

(Paired box 8), FOXE1 (Forkhead box E1, previously 

known as TTF2) and most recently, GLIS3 (GLIS family 

zinc finger 3). PAX8, NKX2-1 and FOXE1, together with 

HHEX (haematopoetically expressed homeobox) encode 

an indispensable quartet of transcription factors which 

define early thyroid development in both humans and 

mice. Although these transcription factors act in concert 

to mediate organogenesis only in epithelial thyroid 

follicular cells, they also have individual developmental 

roles in extrathyroidal tissues (19). TSHR is the thyroidal 

G-protein-coupled receptor for TSH (20), and GLIS3 plays 

a role in both transcriptional repression and activation in 

multiple organs from early on in embryogenesis (21).

Key transcription factor mutations in TD

Monogenic loss-of-function mutations in NKX2-1, PAX8 

and FOXE1 are rare but well-established causes of TD, and 

deficiencies in these genes underlie distinct syndromes 

reflecting their additional, extrathyroidal expression 

patterns (Table 1), however, expressivity and phenotypic 

penetrance may be highly variable, even within the same 

family (1, 22).

NKX2-1

Heterozygous loss-of-function NKX2-1 mutations are 

the most frequent transcription factor mutation in CH. 

NKX2-1 plays a major role in the regulation of key genes 

involved in thyroid differentiation (including TSHR, TG 

and TPO), and Nkx2-1-null mice also exhibit a visible 

embryonic thyroid bud which disappears around E10.5-11, 

suggesting that Nkx2-1 may play a role in thyroid precursor 

cell survival (23, 24). Additionally, Nkx2-1 is required for 

maintenance of the normal architecture and function of 

differentiated thyroid (25) and has extrathyroidal roles, 

being required for pulmonary surfactant production and 

contributing to development of the ventral forebrain and 

hypothalamic neurons. Consequently, NKX2-1 mutations 

result in cerebral and pulmonary phenotypes in addition Ta
b
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to thyroid dysfunction, with a complete triad constituting 

‘brain-lung-thyroid’ syndrome. Figure  1A summarizes 

the distribution of phenotypes in cases with NKX2-1 

mutations. Neurological manifestations typically include 

a benign hereditary chorea but may comprise hypotonia, 

ataxia and developmental delay. Hypothyroidism is usually 

mild or subclinical with normal thyroid morphology 

although gland hypoplasia, haemiagenesis or athyreosis 

are also described (26). Pulmonary compromise includes 

infant respiratory distress syndrome (IRDS), recurrent 

infections and airways hypersensitivity and carries an 

associated mortality of up to 16% (22, 27).

NKX2-1 mutations may exhibit autosomal dominant 

inheritance with variable expressivity and penetrance, 

but frequently occur de novo, which, if confirmed, may 

reassure parents that the risk to future offspring is minimal 

(22). Most mutations are thought to result in a phenotype 

due to haploinsufficiency, but a minority of variants with 

dominant negative effects have also been described (22, 

28). Deletions involving NKX2-1 are common and should 

be specifically excluded in brain–lung–thyroid syndrome; 

moreover, deletions proximal to NKX2-1 have also been 

implicated, suggesting the presence of an upstream 

enhancer in this region (27).

PAX8

PAX8 is also crucial for expression of the genes involved in 

thyroid differentiation and hormone biosynthesis including 

TG, TPO and SLC5A5 (19, 29, 30). Additionally, the 

disappearance of the thyroid cell precursors in Pax8-null mice 

at around E11–11.5 attests to a likely role for PAX8 in thyroid 

precursor cell survival (31). Indeed, Pax8 also controls thyroid 

cell survival in adults and is involved in the maintenance of 

adult thyroid follicular cell differentiation (32).

Twenty-nine heterozygous loss-of-function PAX8 

mutations defined as ‘disease causing’ are reported in HGMD 

(Human Gene Mutation Database (HGMD) Professional 

2018.1), the majority comprising substitutions affecting 

the DNA-binding domain. Inheritance is autosomal 

dominant with variable expressivity and penetrance and 

both dominant negative effects and haploinsufficiency 

may mediate disease phenotype (33, 34). Affected patients 

predominantly exhibit thyroid hypoplasia; however, 

GIS, ectopy and athyreosis may also occur (Fig. 1B) (35). 

Despite CH in most affected patients, thyroid dysfunction 

may also be transient or subclinical and manifest in later 

childhood or adulthood (36). PAX8 is also expressed in 

the nephrogenic mesenchyme and rarely, mutations have 

been associated with urogenital tract abnormalities (36).

Figure 1

(B) Reported thyroid morphologies in the 84 individuals with 

missense or small indel mutations in PAX8 categorized as 

‘disease-causing’ by HGMD. Numbers refer to the percentage of 

cases in each morphological category. (A) Venn diagram 

summarizing neurological, pulmonary and thyroid phenotypes in 

180 individuals harbouring missense or small indel mutations in 

NKX2-1 categorized as ‘disease-causing’ by HGMD. Individuals 

were only included if information was available regarding all 

three phenotypes (including the absence of phenotype). Numbers 

refer to percentages of the cohort.
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FOXE1

FOXE1 is a transcription factor in the forkhead domain 

family, which is expressed in the developing oropharynx, 

oesophagus, choanae and hair follicles. Foxe1-null mice 

develop a rudimentary thyroid bud, which either remains 

in an ectopic site at the base of the tongue, or disappears, 

supporting a role for FOXE1 in thyroid migration as well 

as differentiation and survival of the developing thyroid 

gland. Additionally, FOXE1 has a role in maintenance of 

the mature, differentiated thyroid, for example enabling 

expression of genes involved in thyroid hormone 

biosynthesis (37, 38).

At least seven biallelic CH-associated FOXE1 point 

mutations have now been reported and affected patients 

typically exhibit athyreosis or severe thyroid hypoplasia, 

in association with cleft palate and spiky hair (Bamforth-

Lazarus syndrome). Choanal atresia and bifid epiglottis 

may also occur, reflecting the expression of FOXE1 in 

epiglottis, palate, oesophagus, definitive choanae and 

hair follicles (39). Inheritance of FOXE1 mutations is 

autosomal recessive and all described mutations cluster in 

the forkhead DNA-binding domain. All except one impair 

both DNA binding and transcriptional activity of FOXE1 

resulting in loss of function. A single gain-of-function 

mutation in the same region results in enhanced activity 

of TG and TPO promoters, but the associated clinical 

phenotype is indistinguishable from that associated with 

loss-of-function mutations (40).

GLIS3

GLIS3 is a member of the GLI-similar 1–3 (GLIS1–3) 

subfamily of Krüppel-like zinc finger protein transcription 

factors, which play a key regulatory role in embryogenesis. 

GLIS3 may act as a transcriptional activator or repressor and 

is particularly important in the regulation of pancreatic β 

cell generation and maturation, insulin gene expression, 

thyroid hormone biosynthesis, spermatogenesis and the 

maintenance of normal kidney function. Biallelic loss-

of-function mutations in GLIS3 have now been described 

in children from 14 different families and are robustly 

associated with CH in all but one case as part of a variably 

penetrant multisystem phenotype consistently including 

permanent neonatal diabetes (Table 1) (21). Inheritance 

is autosomal recessive. Thyroid morphology ranges from 

apparently normal to hypoplasia or gland athyreosis; 

however, histology from an ultrasonographically normal 

gland demonstrated abnormal architecture with a 

paucity of colloid and extensive fibrosis. Significant TSH 

resistance frequently compounds management of children 

harbouring GLIS3 mutations, perhaps explained by its 

actions downstream of TSH and the TSHR, since GLIS3 

is indispensable for TSH/TSHR-mediated proliferation 

of thyroid follicular cells and biosynthesis of thyroid 

hormone (21, 41). Additionally, in some cases, elevated 

TSH and thyroglobulin levels appear to be resistant to 

treatment with conventional doses of levothyroxine 

therapy despite normalization of free T4 (21).

TSHR

TSHR mutations result in TSH resistance, for which 

the associated phenotype is dependent on both the 

deleteriousness of the mutation, and the number of 

mutated TSHR alleles, since inheritance may be either 

dominant or recessive (1). Complete TSH resistance 

manifests as severe biochemical CH with orthotopic gland 

hypoplasia, however, at the milder end of the spectrum, 

isolated hyperthyrotropinaemia may be associated with 

preserved thyroid hormone biosynthesis from a normal-

sized thyroid gland. Early thyroid development, and 

thyroglobulin (TG) synthesis at the onset of folliculogenesis 

is TSH independent. Therefore, even severe TSHR 

mutations cause only apparent athyreosis, i.e. marked 

thyroid hypoplasia which is undetectable on imaging but 

associated with a measurable serum thyroglobulin (TG) 

confirming the presence of some residual thyroid tissue 

(20). TSH plays a role in thyroid growth from the third 

trimester and subsequently stimulates thyroid hormone 

synthesis and release.

Around 100 likely inactivating TSHR mutations 

have been reported, the incidence of which depends 

on the clinical characteristics and ethnicity of the CH 

population screened. Heterozygous TSHR mutations 

causing partial TSH resistance, are most frequently 

described, with incidences of 11–29% in Italian studies 

of non-autoimmune hyperthyrotropinaemia (42). The 

contribution of TSHR mutations to orthotopic thyroid 

hypoplasia is more difficult to estimate, since most 

studies involving such cases include additional thyroid 

morphologies, but in a consanguineous Pakistani and 

Turkish cohort, TSHR mutations were the most common 

genetic cause of non-goitrous CH, affecting 5% families 

(43). Founder mutations also operate, e.g. TSHR p.R450H 

in individuals from East Asia (1).

TSHR mutations occur throughout the protein, with 

nonsense and frameshift mutations generally decreasing 

levels of TSHR expressed at the plasma membrane. Most 

point mutations result in decreased signal transduction 
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by the receptor, but may also affect ligand binding, 

depending on their location. A dominant-negative 

mechanism may contribute to phenotypic severity in 

some cases, e.g. in association with TSHR p.C41S, which 

entraps WT receptor intracellularly by forming oligomers 

(42).

In complete TSH resistance with subnormal FT4 levels, 

levothyroxine replacement is unequivocally required but 

the need for treatment in partial TSH resistance remains 

controversial since, in this context, elevated TSH levels 

are sufficient to maintain normal circulating thyroid 

hormone concentrations (42). Additionally, exogenous T3 

administration elicits normal fractional changes in serum 

TSH and peripheral biomarkers of thyroid hormone action, 

signifying normal sensitivity of pituitary thyrotrophs 

and peripheral tissues to thyroid hormone (44, 45). The 

mechanisms permitting continued secretion of high levels 

of TSH with T4 levels within the normal range are unclear, 

but this biochemical signature may represent a resetting 

of the threshold for TSH suppression by circulating 

thyroid hormones. Accordingly, supraphysiological FT4 

concentrations are required to achieve a TSH level in 

the normal range (44, 45). The molecular mechanisms 

supporting an altered TSH set point have not yet been 

elucidated and may include altered expression of genes 

involved in set point regulation at different points in the 

hypothalamic–pituitary–thyroid axis or genes mediating 

thyroid hormone metabolism (20).

Since peripheral sensitivity to thyroid hormone 

is preserved, the doses of levothyroxine required to 

normalize TSH in partial TSH resistance may provoke 

thyrotoxic symptoms, and anecdotal reports of normal 

growth, development and pituitary size in untreated cases 

despite chronically raised TSH support the argument that 

levothyroxine treatment may be unnecessary (44, 45). 

Two recent studies from Israel and Italy have addressed 

this question in patients with TSHR mutations; in the 

Italian cohort, the effect of thyroid hormone replacement 

on developmental parameters and biomarkers of thyroid 

hormone action was also assessed. Both studies concluded 

that biochemical features associated with heterozygous 

TSHR mutations (elevated TSH, normal circulating 

thyroid hormone concentration) were generally stable, 

representing a compensated state which may not require 

thyroid hormone replacement. However, in patients 

with either heterozygous mutations and additional risk 

factors for thyroid dysfunction, or biallelic mutations, 

compensation of thyroid hormone biosynthesis by 

elevated TSH levels may be incomplete and progress, 

resulting in deteriorating thyroid hormone levels and a 

need for levothyroxine treatment (46, 47). Larger studies, 

including monoallelic TSHR mutations associated with a 

broader spectrum of TSH levels, are still required to guide 

management definitively. Meanwhile, levothyroxine 

replacement therapy in partial TSH resistance should be 

considered on a case by case basis and is not indicated 

for the treatment of elevated TSH alone although in 

some affected individuals, signs and symptoms of 

hypothyroidism or declining thyroid hormone levels may 

justify intervention.

Additional genes associated with TD

NKX2–5

NKX2–5 belongs to the NK-2 family of homeodomain-

containing transcription factors and was initially an 

attractive candidate gene for TD, having been shown to 

play a role in murine thyroid development. Nkx2–5 is 

expressed during early murine thyroid morphogenesis 

and murine Nkx2–5-null embryos exhibit thyroid bud 

hypoplasia. However, despite an initial report of four 

patients with heterozygous loss-of-function NKX2–5 

mutations and thyroid ectopy or athyreosis, the role 

of NKX2–5 in TD remains ambiguous. Inheritance in 

these families was autosomal dominant but mutation 

penetrance was highly variable (carrier parents frequently 

had normal thyroid morphology and biochemistry) and 

pathogenic mutations may also occur either in healthy 

populations (p.R25C, MAF >1%) or in association with 

isolated congenital heart disease (48, 49). Although 

NKX2–5 variants may contribute to TD risk, other factors/

genes are likely to play a significant role modulating 

penetrance and expressivity.

JAG1

Jagged1 (JAG1) is a Notch receptor ligand expressed in 

thyroid, which may play a role in thyroid specification in 

zebrafish, as well as in differentiation and maintenance 

of thyroid precursor cells (50). JAG1 plays a role in 

zebrafish thyroid development and variably penetrant, 

human heterozygous loss-of-function JAG1 mutations are 

associated with Alagille syndrome in which congenital 

heart disease (CHD) associates with variable hepatic, 

eye and skeletal defects together with dysmorphic 

facies. Evaluation of thyroid function in 21 cases with 

Alagille syndrome revealed mild, non-autoimmune 

hypothyroidism in six individuals. Additionally, 4% cases 
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in a CH cohort without associated Alagille syndrome 

harboured heterozygous JAG1 mutations (with associated 

CHD in two patients). Rare JAG1 variants have also been 

detected in an unrelated CH cohort substantiating the 

notion that JAG1 may contribute to the pathogenesis of 

CH (51, 52).

CDCA8 (BOREALIN)

CDCA8 is a member of the chromosomal passenger 

complex with roles in the processes of chromosome 

segregation and cytokinesis. It is expressed in human 

thyroid tissue during embryonic development and is the 

most recently identified genetic cause of TD with mono- 

and biallelic loss-of-function mutations reported in three 

unrelated families. A homozygous CDCA8 mutation 

(p.S148F) in two siblings was associated either with 

CH and thyroid ectopy or euthyroidism with thyroid 

hemiagenesis. In two more families, heterozygous CDCA8 

mutations were associated with CH and either thyroid 

ectopy or athyreosis. Euthyroid heterozygous parents 

exhibited variable thyroid structural abnormalities 

(asymmetry, nodules) and one developed papillary thyroid 

cancer. Expression of mutant CDCA8 in a thyroid cell 

line resulted in altered cellular migration and adhesion 

by decreasing the expression of genes implicated in focal 

adhesion (53).

Netrin 1 (NTN1)

The close proximity of the developing thyroid to 

cardiac mesenchyme and vasculature, and the increased 

frequency of cardiovascular malformations in patients 

with TD, has led to the suggestion that non-cell 

autonomous mesenchyme-derived factors may play a role 

in thyroid development. Zebrafish have proved a useful 

tool in investigating the mechanisms involved and Netrin 

1-deficient zebrafish embryos demonstrate defective 

aortic arch artery formation in addition to abnormal 

thyroid morphogenesis. Since ntn1a, the zebrafish 

paralog of human NTN1, is expressed in pharyngeal arch 

mesenchyme but not in thyroid tissue, it is likely that 

the thyroid fails to develop due to lack of guidance cues 

from dysplastic vasculature. A single patient with VSD 

and thyroid ectopy was reported in whom a heterozygous 

deletion involving part of NTN1 was detected in addition 

to a 47, XYY karyotype and an atypical 22q11 deletion. 

However, the extent to which NTN1 mutations contribute 

to shared thyroid and cardiac congenital defects in the 

population remains unclear (54).

Syndromes which may be associated 

with CH

Risk of CH may be increased in the context of several 

syndromes with an underlying genetic basis and 

predominantly extrathyroidal-associated abnormalities. 

Candidate genes involved include SALL1 (Townes-Brocks 

syndrome), TBX1 (di George syndrome), URB1 (Johanson-

Blizzard syndrome), DYRK1A (Trisomy 21), ELN (Williams-

Beuren syndrome), KMT2D/MLL2, KDM6A (Kabuki 

syndrome) and KAT6B (Ohdo syndrome, Genitopatelar 

syndrome) (4). The underlying mechanism for CH in these 

conditions is generally unclear, and the genes involved 

usually demonstrate ubiquitous expression, including 

expression in thyroid. TBX1 is a non-cell autonomous 

factor likely derived from cardiac mesenchyme, required 

for thyroid development (38).

Genetic causes of dyshormonogenesis

Unlike TD, the majority of dyshormonogenesis has an 

identifiable genetic basis. Thyroid hormone biosynthesis 

at the apical surface of polarized thyroid follicular 

cells requires an intact synthesis pathway comprising 

transporter molecules, enzymes, thyroglobulin (TG) 

and adequate iodide substrate (Fig. 2). Genetic causes of 

dyshormonogenesis comprise loss-of-function mutations 

in genes encoding components of the thyroid hormone 

biosynthetic machinery resulting in inadequate thyroid 

hormone synthesis with or without compensatory goitre. 

Mutations may involve TG, TPO, SLC26A4 (Pendrin), 

SLC5A5 (NIS), DUOX2, DUOXA2 or IYD. Inheritance 

patterns and associated features are dependent on the site 

of the synthesis defect and summarized in Table 2 (1, 2).

The frequencies of dyshormonogenesis-associated 

mutations are heavily influenced by ethnicity, including 

the presence of founder mutations, and selection criteria 

for the study population. TG mutations are a common 

cause of dyshormonogenesis with an estimated frequency 

of at least 1:100 000 births (55). TPO defects represent the 

commonest cause of total iodide organification defect 

(TIOD, 56), and frequently underlie dyshormonogenesis 

in European and Pakistani cases (57) but may occur less 

frequently in East Asian individuals (58, 59). DUOX2 

mutations are now frequently reported, especially in 

East Asian individuals, with a monoallelic frequency of 

up to 1:13 501 in Korean cases (58, 59) and also account 

for 37% CH due to partial iodide organification defect 

(PIOD) in an Italian series (60). Some pathogenic DUOX2 
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mutations have a minor allele frequency of ≥1% in certain 

populations (e.g. p.Q570L in South Asians) suggesting that 

they may be an even more frequent contributor to CH 

than previously recognized (60). Mutations in SLC5A5, 

and IYD seem rare, with IYD mutations only identified 

in five families (55) and DUOXA2 mutations are also 

uncommon although probably occur most frequently in 

East Asian cases (59). Although Pendred syndrome occurs 

more frequently in the general population (estimated 

incidence 7.5–10 per 100  000), CH is a rare association 

such that Pendrin mutations account for less than 5% of 

CH (2, 61, 62).

Clinical phenotypes in dyshormonogenesis

Biochemical and radiological hallmarks of specific, 

genetically ascertained dyshormonogeneses are 

summarized in Table  2; however, evidence increasingly 

supports a broader phenotypic range in most 

dyshormonogenesis subtypes than initially appreciated. 

This is particularly well documented for CH associated 

with mutations in DUOX2, which were first reported 

only in 2002. DUOX2 is a thyroidal NADPH oxidase, 

which generates the thyroidal H2O2 required by TPO as 

the final electron acceptor during both iodination of 

thyroglobulin and coupling of mono and diiodotyrosine. 

It is contiguous with DUOX1, (an additional NADPH 

oxidase) on the long arm of chromosome 15, with the 

DUOXA maturation factor genes occupying the DUOX 

intergenic region. DUOX2 is thought to be the dominant 

isoenzyme in thyroid hormonogenesis, being expressed at 

higher levels in thyroid than DUOX1 and consistent with 

this, DUOX2 but not DUOX1 mutations are a recognized 

monogenic cause of CH. Additionally, DUOX1-null mice 

do not exhibit hypothyroidism (63).

To date, approximately 100 different DUOX2 

mutations have been reported, including missense, stop 

codon, splice-site and in-frame deletion mutations. 

However, only around 50% missense mutations have been 

functionally characterized, leading to some ambiguity 

about the number of these which are truly pathogenic. 

Indeed, functional evaluation has confirmed that some 

likely benign polymorphisms have been misclassified 

as disease causing (60). Functional characterization of 

DUOX2 mutations was initially hampered by failure 

Figure 2

Schematic illustrating thyroid hormone biosynthesis in the thyroid follicular cell, highlighting the position and function of the 

molecules involved. Mutations in any of these proteins may result in dyshormonogenesis.
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to achieve plasma membrane expression of DUOX2 in 

heterologous cell systems, however, identification and 

coexpression of the DUOXA2 maturation factor for 

DUOX2 enables correct translocation of DUOX2 from 

the ER and has permitted such evaluation (64). The 

mechanisms and degree to which pathogenic mutations 

exhibit impaired H2O2 generation are variable, including 

both complete and partial deficits in H2O2 generation. 

Truncating mutations are usually predicted to result 

in impaired enzyme activity due to disruption of the 

C-terminal NADPH oxidase domain. Cell membrane 

expression was evaluated for six missense mutations, 

which significantly impair DUOX2 function. All 

exhibited complete or partial trafficking defects from the 

endoplasmic reticulum to the cell surface and decreased 

plasma membrane expression (65, 66), with preserved or 

absent intrinsic H2O2-generating activity (66, 67).

Both monoallelic and biallelic DUOX2 mutations 

have been described, and heterozygous mutations are 

thought to confer a phenotype due to haploinsufficiency 

since evidence for dominant negative activity is currently 

lacking (66). Initially, biallelic DUOX2 mutations were 

thought to result in permanent CH, and monoallelic 

mutations to cause transient CH (68). However, 

subsequent studies have shown almost 40% discordancy 

with this observation; additionally, penetrance is highly 

variable and biallelic truncating mutations may be 

associated with both mild transient and severe permanent 

CH (69). Although sometimes associated with goitrous 

dyshormonogenesis, DUOX2 mutations may also cause 

a resistance to thyrotropin phenotype (70). Additionally, 

next-generation sequencing recently identified frequent 

DUOX2 NH2-terminal mutations in cases with thyroid 

ectopy, raising the possibility of a role for DUOX2 in 

thyroid development, for which the mechanism and 

putative H2O2 dependency remain unclear (71).

It has been suggested that variants in other H2O2-

synthesizing enzymes capable of compensating for 

DUOX2 deficiency, e.g. DUOX1, may modulate CH 

severity (2) and the first cases with likely complete DUOX 

isoenzyme deficiency were recently reported; although 

detailed genotype–phenotype segregation studies were 

not performed, these cases exhibited unusually severe CH 

consistent with a compensatory role for DUOX1 (72). In 

contrast, mice homozygous for a DUOX2 point mutation 

alone, exhibit severe hypothyroidism, suggesting that 

Table 2 A summary of the genetic defects implicated in CH with dyshormonogenesis and typical clinical features.

Gene Function M/B Additional clinical features CH Radiological features

TG Glycoprotein upon 
which thyroid 
hormones are 
synthesized and stored

B Fetal goiter (rare)
Inappropriately low TG when TSH 
is elevated.

Spectrum from 
euthyroidism to severe 
CH

GIS/Goitre
Normal or impaired 
organi�cation of 
iodide

TPO Organi�cation of 
iodide, catalysis of 
coupling reactions 
(�nal step in TH 
synthesis)

B* Fetal goitre (rare) Severe CH
Sometimes mild CH with 
monoallelic variants

GIS/Goitre
TIOD, rarely PIOD

DUOX2 H2O2 production, 
required for iodide 
organi�cation

M/B Borderline blood spot TSH but 
subnormal venous T4 and 
signi�cantly elevated TSH at 
con�rmatory testing

Usually mild-moderate or 
transient CH

GIS/Goitre
PIOD

DUOXA2 Membrane expression 
and function of 
DUOX2

M/B Transient or permanent Mild/transient CH GIS/Goitre
PIOD

Pendrin Apical iodide ef�ux M Sensorineural hearing loss with 
EVA

Euthyroid/mild 
hypothyroidism

GIS/Goitre
PIOD

NIS Basolateral iodide 
uptake

M May present later in childhood 
resulting in neurodevelopmental 
delay

Spectrum from 
euthyroidism to severe 
CH

GIS/Goitre
Severely impaired 
thyroid 123I/Tc 
uptake

IYD Recycling of unused 
iodide moieties (MIT 
and DIT)

M/B Raised urinary MIT and DIT
May present later in childhood 
resulting in neurodevelopmental 
delay

Spectrum from 
euthyroidism to severe 
CH; later onset 
hypothyroidism 
reported

Goitre
Normal 
organi�cation of 
iodide

*Occasional monoallelic cases reported.

B, bilallelic; EVA, enlarged vestibular aqueduct; GIS, thyroid gland in situ; M, monoallelic; PIOD, partial iodide organi�cation defect; TIOD, total iodide 

organi�cation defect.
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DUOX1 expression is unable to compensate for the 

DUOX2 defect in the murine model (73). Evaluation of 

Italian cases harbouring DUOX2 mutations demonstrated 

characteristics associated biochemistry including 

significantly elevated confirmatory TSH and subnormal 

venous FT4 measurements despite borderline neonatal 

screening TSH, raising the possibility that cases with 

DUOX2 mutations could be missed on neonatal screening 

(60). Clinical and functional data for cases with mutations 

in DUOXA2, the accessory protein for DUOX2, is sparse, 

but most cases appear to have mild or transient CH and 

loss of function may be associated with either normal 

protein expression or decreased expression levels of 

unstable DUOXA2 (74, 75).

Thyroid dysfunction associated with NIS or TG 

mutations can range from severe CH to euthyroid 

goitre, especially if dietary iodine content is high. TPO 

mutations usually cause severe CH although milder 

cases with PIOD have been described, sometimes due to 

monoallelic defects (55) and both TG and TPO mutations 

are rarely associated with foetal goitre. Homozygous IYD 

mutation carriers generally exhibit goitrous congenital or 

childhood-onset hypothyroidism, and one heterozygote 

has also been described with hypothyroidism and goitre 

(55, 76). IYD, NIS and DUOX2 mutations may all present 

late, following normal neonatal screening TSH results, 

resulting in neurodevelopmental delay if diagnosis of 

infantile hypothyroidism is delayed (2, 60, 76, 77).

Evidence for an undiagnosed genetic 

component in TD

Causative mutations are identified in less than 5% of TD 

cases, leading to the assumption that TD is a sporadic 

disease. This notion is supported by a higher than 90% 

discordance between monozygotic twins with CH (78) and 

a strong female preponderance of TD, especially thyroid 

ectopy (79). Since these features are incompatible with 

simple Mendelian inheritance, it has been hypothesized 

that somatic mutations restricted to the thyroid or 

epigenetic events may be implicated.

However, other lines of investigation support a more 

significant aetiological role for germline mutations in TD 

than currently diagnosed. Two percent of TD cases in a 

French National Survey of CH have an affected relative, 

which is 15-fold greater than predicted by chance alone. 

Moreover, thyroid developmental abnormalities occur 

more commonly in euthyroid first-degree relatives of 

CH cases than in controls (80, 81) and the incidence 

of extrathyroidal developmental malformations is also 

increased in patients with CH. Additionally, CH occurs 

more frequently in consanguineous or less genetically 

diverse populations (82, 83).

Alternative genetic aetiologies in TD and 

dyshormonogenetic CH

Recent studies have sought alternative genetic aetiologies 

for CH, some of which have attempted to reconcile 

the apparent sporadic occurrence of TD with the data 

supporting an aetiological role for genetic factors. Potential 

mechanisms consistent with these observations include 

two hits, where a germline predisposing mutation occurs 

in association with an additional genetic or epigenetic 

alteration within the thyroid tissue or surrounding 

structures (84). However, in the only study to investigate 

this, the gene expression pattern was different in ectopic 

thyroid, but this was not attributable to significant 

somatic methylation gene expression profile differences 

(85). Additionally, frequent somatic mutations were not 

identified in lymphocyte DNA from monozygotic twins 

discordant for TD (86) although somatic mosaicism for 

a PAX8 mutation has been reported (87). Autosomal 

monoallelic expression has been reported for some 

genes in both ectopic and eutopic thyroid (88); however, 

monoallelic expression of a mutant allele has only been 

reported for TPO in association with dyshormonogeneic 

CH (89). Recurrent copy number variants have also not 

been identified in CH (90).

Next-generation sequencing (NGS) technologies 

have enabled interrogation of the role of oligogenicity 

in CH, which may also contribute to its apparently 

sporadic occurrence. An aetiological role for oligogenicity 

was initially supported by observations that mice with 

heterozygous TTF1 or PAX8 mutations are euthyroid, but 

strain-specific TD occurs in mice with combined partial 

deficiencies of TTF1 and PAX8 (91). Human studies have 

now confirmed a role for oligogenic inheritance in both CH 

with eutopic GIS and TD. In a particularly comprehensive 

study, 11 CH-associated genes were screened in more 

than 150 Italian patients with different CH subtypes, with 

subsequent analysis demonstrating that 23% harboured a 

likely pathogenic variant in more than one gene (52, 92).

NGS approaches have also enabled the screening of 

genes classically associated with TD or dyshormonogenesis 

in mixed CH populations, demonstrating overlap of 

genetic aetiologies in the two morphological subgroups. 

Mutations in genes characteristically associated with TD 
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(e.g. biallelic FOXE1 mutations), have been reported in 

association with isolated CH and a normal thyroid gland 

(52). Conversely, Pendrin mutations have been reported 

in TD, where secondary atrophy of the thyroid was 

postulated to occur due to increased oxidative stress (93).

Novel candidate genes for CH have also been 

identified by exploring mouse and zebrafish models 

for thyroid development (94). Recently, in murine 

and human pluripotent stem cell-derived endodermal 

precursors, expression of NKX2-1 and PAX8 alone, in 

response to exogenous FGF2 and BMP4 in vitro was found 

to be sufficient for differentiation into thyroid follicular 

structures capable of producing thyroid hormones when 

exposed to thyrotropin (95, 96). This stem cell technology 

presents an exciting system in which to validate the roles of 

novel candidate genes for TD in the future as well as raising 

the future possibility of regenerative therapy for CH.

Isolated central congenital 

hypothyroidism (CCH)

The hypothalamic–pituitary–thyroid axis: positive 

regulation of thyroid hormone synthesis

Thyroid hormone biosynthesis is positively regulated 

by the actions of hypothalamic thyrotropin-releasing 

hormone (TRH), which stimulates TSH production 

from the anterior pituitary. TRH is synthesized in the 

paraventricular nucleus (PVN) of the hypothalamus and 

following maturation, reaches the thyrotrophs of the 

Figure 3

Diagrammatic representation of the hypothalamic-pituitary-thyroid axis with positive regulation (black) predominantly 

mediated by thyrotropin-releasing hormone (TRH) and negative (grey) feedback in�uences, predominantly mediated by thyroid 

hormone receptor isoforms 2 and 1. The inset represents a pituitary thyrotroph, in which the putative sites of action of genes 

implicated in isolated TSH de�ciency are shown. Consequences of mutations in these genes are depicted in the same colour text 

as the mutant protein.
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anterior pituitary gland via the hypothalamic portal vein. 

It then binds the TRH receptor (TRHR), a G-protein-coupled 

receptor, which activates a Gq/11-dependent pathway 

subsequently mobilizing intracellular calcium and 

activating protein kinase C. TRH upregulates transcription 

of the TSH alpha (αGSU) and beta subunit genes (CGA and 

TSHB) but also exerts important post-translational effects, 

facilitating conjugation of TSH alpha and beta subunits 

and promoting both secretion of heterodimeric TSH and 

its post-translational glycosylation, which is required to 

confer normal bioactivity (5, Fig. 3).

Genetic ascertainment in CCH due to isolated TSH 

deficiency has advanced over the last three decades, and a 

total of four genes, all with a role in TSH biosynthesis, are 

now implicated in its pathogenesis; thyrotropin-releasing 

hormone receptor (TRHR), TSH beta subunit (TSHB), 

immunoglobulin superfamily member 1 gene (IGSF1)  

and the transducin beta-like 1X-linked gene, TBL1X  

(5, 97, Table 3).

Genetic causes of isolated central 

congenital hypothyroidism

TSHB mutations

Biallelic loss-of-function, TSHB mutations result in severe 

CCH. Therefore, if diagnosis is delayed until children 

present clinically, the severity of hypothyroidism 

frequently results in neurodevelopmental impairment, 

the extent of which correlates with the degree of 

treatment delay. In contrast, developmental outcome is 

often improved in cases who are ascertained, diagnosed 

and treated from birth following genetic diagnosis in a 

sibling (98).

Mature TSH comprises a heterodimer of the alpha 

subunit (αGSU) common to other glycoprotein hormone 

(LH, FSH, CG) family members and a beta subunit which 

is TSH specific (TSHB). Key structural features are required 

to maintain the integrity of the heterodimer including 

a ‘seat belt’ formed from the TSH beta subunit, which 

wraps around the long loop of the alpha subunit and 

forms an intra-molecular disulfide ‘buckle’ to stabilize the 

heterodimer. Additional alpha–beta subunit interactions 

occur around a conserved CAGYC sequence motif.

All reported missense or indel mutations either 

disrupt key disulphide bridges required for heterodimeric 

integrity, truncate the protein or disrupt the CAGYC 

region (Fig. 4A). The most common mutation is a single 

nucleotide deletion (c373delT) leading to a cysteine 125 to 

valine change (p.C125V) and subsequent frameshift and 

premature stop codon at position 134 (p.C125Vfs*10) (99), 

which exhibits a founder effect in some communities (98). 

More recently, two TSHB splice-site mutations (c162G>A, 

c.162+5 G>A) (100, 101) and two TSHB deletions have 

been reported (98, 102).

CCH due to TSHB mutations is characterized by 

profound CH with elevated pituitary glycoprotein alpha 

subunit, and severely impaired TSH response to TRH 

administration, despite a preserved serum prolactin 

rise (103, Fig.  5A and B). Serum TSH levels may be 

undetectable with mutations (p.G49R, p.Q32*), which 

disrupt heterodimer formation between TSH-alpha and 

beta polypeptides, whereas in cases with mutations 

resulting in synthesis of non-bioactive heterodimeric 

TSH (eg p.Q69*, c.373delT), immunoreactive TSH will 

be detected in an immunoassay-dependent manner 

if epitopes recognized by the anti-TSH monoclonal 

antibody are preserved (103, 104).

TRHR mutations

Cases harbouring biallelic loss-of-function mutations in 

TRHR have only been reported in four kindreds (Fig. 4B). 

In the first two kindreds, truncating mutations completely 

abolished TRHR activity (compound heterozygosity for 

TRHR p.R17*, and an in-frame deletion of three amino 

Table 3 Endocrine, neuroradiological and extrapituitary manifestations of mutations in genes implicated in CCH in humans.

Gene Inheritance Hormone de�cits TRH test responses MRI Additional features

TSHB AR TSH Absent TSH response, preserved PRL response E, N –

TRHR AR TSH TSH and PRL peak absent/preserved N –

TBL1X XL* TSH TSH response normal N Sensorineural hearing loss

Isolated TSH de�ciency or combined pituitary hormone de�ciency

 IGSF1 
 

XL* 
 

TSH ± PRL, GH (transient)
Delayed pubertal 
testosterone rise

Low normal/normal TSH response 
 

N 
 

Macroorchidism (males)
Ovarian cysts (females) 

*Females may also be affected.

AR, autosomal recessive; E, enlarged; GH, growth hormone; N, normal; PRL, prolactin; TSH, thyroid-stimulating hormone; XL, X-linked.
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acids (S115, I116 and T117) with one substitution 

(p.A118T) or homozygosity for p.R17*). More recently, an 

equally deleterious biallelic p.P81R missense variant was 

reported (105, 106, 107). Homozygous individuals in these 

families exhibited T4 concentrations of 40–88% of the 

lower limit of the normal range and heterozygous carriers 

were euthyroid (Figs 5A). Where present, the main clinical 

manifestations comprised growth retardation and delayed 

bone age. Some affected patients were first diagnosed with 

CCH in late childhood or adulthood, but did not exhibit 

significant neurological deficits suggesting sufficient 

thyroid hormone production in infancy to prevent overt 

mental retardation. However, even asymptomatic cases 

exhibited improved quality of life with levothyroxine 

therapy (105).

Last year, the first kindred, harbouring a TRHR 

mutation (p.I131T) which resulted in impaired rather than 

absent signal transduction was reported. Two homozygotes 

exhibited either moderate CCH on the basis of FT4 levels 

or isolated hyperthyrotropinaemia and heterozygotes 

exhibited isolated hyperthyrotropinaemia, for which the 

mechanism is unclear (108) (Figs  5A). However, since 

TRH plays a key role post-translational glycosylation 

of TSH, which is required to confer normal bioactivity, 

it is possible that the high TSH in the homozygotes 

represents a compensatory enhanced production of non-

bioactive TSH in response to decreased negative feedback 

by thyroid hormones. This has previously been noted in 

central hypothyroidism due to TRH deficiency, where 

increased amounts of bioinactive TSH may be secreted 

with immature carbohydrate chains and decreased  

half-life (109).

TRHR is expressed in both thyrotrophs and lactotrophs; 

therefore, intravenous TRH usually stimulates both TSH 

and prolactin peaks. Both these responses were absent in 

patients with absent TRHR function but preserved with 

the milder p.I131T mutation (Fig. 5B). One female with 

the homozygous, p.R17* mutation achieved two normal 

pregnancies with subsequent lactation prior to her 

diagnosis, suggesting that TRH action is not obligatory for 

pregnancy and lactation in humans (105, 106, 107, 108).

IGSF1 mutations

Loss-of-function mutations in the X-chromosomal 

immunoglobulin superfamily member 1 (IGSF1) gene 

are now thought to be the most common genetic 

abnormality underlying CCH (110, 111). Since the initial 

description of IGSF1 deficiency in eleven European 

kindreds, more than 30 pathogenic IGSF1 mutations have 

been described (Fig. 5C). IGSF1 encodes a transmembrane 

immunoglobulin superfamily glycoprotein and following 

co-translational proteolysis, its seven carboxyterminal 

immunoglobulin loops are expressed extracellularly at the 

plasma membrane. Disease-associated IGSF1 mutations 

usually impair trafficking and membrane localization of 

this carboxyterminal domain (110, 111, 112).

Hemizygous males harbouring IGSF1 mutations 

exhibit a more severe phenotype than heterozygous 

females, who may have no overt endocrinopathy. 

Affected males invariably exhibit CCH, which is usually 

mild to moderate and associated with a blunted neonatal 

TSH response to TRH but a low normal response from 

childhood onward (Figs  5A and B) (112). Additional 

endocrine abnormalities include disharmonious pubertal 

development in the majority of cases with delayed pubertal 

growth spurt and testosterone rise, but normal onset of 

testicular growth and subsequent macroorchidism in 

adulthood. Basal prolactin levels are subnormal in more 

than 60% males and infrequently, individuals may exhibit 

transient growth hormone (GH) deficiency in childhood, 

necessitating GH replacement. In adulthood, IGF-1 

levels are paradoxically in the upper half of the reference 

range or mildly elevated and acromegaloid features 

may develop. Heterozygous females harbouring IGSF1 

mutations generally exhibit thyroid hormone levels in 

the lower tertile of the normal range with approximately 

20% fulfilling the criteria for central hypothyroidism. 

Up to 20% demonstrate hypoprolactinaemia and four 

females reported to have required surgery for benign 

ovarian cysts (110, 111, 112). A typical feature of kindreds 

harbouring IGSF1 mutations is the new diagnosis of central 

hypothyroidism in individuals across three generations, 

following identification of a young affected proband. It 

is clear that some children and adults diagnosed during 

family screening exhibit clinical features of untreated 

endocrinopathy and benefit from hormone replacement. 

However, some individuals are apparently healthy, with 

normal growth and development despite CCH, and in 

this context, the benefits of levothyroxine treatment 

remain to be determined (110, 111, 112).

The precise molecular role of IGSF1 and mechanisms 

underlying the manifestations of the IGSF1 deficiency 

syndrome remain unclear. IGSF1 mRNA is expressed in 

Rathke’s pouch and in adult pituitary gland (111); however, 

a paucity of reliable antibodies has hampered protein 

expression studies in humans. In rodents, studies using 

two different antibodies have yielded divergent results, 

localizing IGSF1 protein either to all cells of the Pou1f1 

(Pit1) lineage in murine and rat pituitary (110, 111) or (using 
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a different, commercially available anti-IGSF1 antibody) to 

thyrotropes and gonadotropes in rats, but not somatotropes 

or lactotropes (113). Murine studies in two different IGSF1-

deficient mouse lines have demonstrated impaired TRH 

signalling associated with IGSF1 deficiency and decreased 

pituitary expression of Trhr1 mRNA despite normal TRH 

synthesis (110, 111). This suggests that impaired TRH 

signalling may underlie the central hypothyroidism seen in 

IGSF1 deficiency, which would be consistent with the mild-

moderate CCH observed in most humans with hemizygous 

IGSF1 mutations and blunted neonatal TRH test response. 

However, the basis for the hypoprolactinaemia and 

macroorchidism remain unresolved.

TBL1X (transducin β-like protein 1)

Loss-of-function missense mutations in TBL1X are the 

most recently reported genetic cause of isolated CCH.  

Like IGSF1, TBL1X is also located on the X chromosome and 

eight males harbouring hemizygous mutations, in addition 

to eleven females harbouring heterozygous mutations 

were identified in six unrelated kindreds (97). Penetrance 

was more variable than that in other genetically mediated 

forms of CCH, with only six males and three females 

exhibiting FT4 concentrations below the lower limit of 

the reference range although FT4 levels in affected adults  

were significantly lower than in controls. Where present, 

CCH was isolated, and mild-to-moderate, with normal 

TRH test responses (Figs  5A and B). Mild sensorineural 

hearing loss also occurred frequently in affected cases (97). 

Since TBL1X is an essential component of the main nuclear 

receptor–corepressor complex (NCoR/SMRT) involved 

in T3-regulated gene expression, it is hypothesized that,  

for negatively regulated genes such as TRH and 

TSHB, TBL1X may play a role in basal activation, as 

well as ligand-induced transcriptional repression.  

Figure 4

(A) Model for heterodimeric thyroid-stimulating hormone (TSH) bound to the TSH receptor (TSHR) illustrating the position of 

reported TSHB mutations associated with CCH. The model was generated using PHYRE for predicting TSHbeta subunit (TSHβ) 

structure and was modelled onto FSH-FSHR (1xwd) and the TSHR-K1-70FAB (2xwt) structure using PYMOL. Green: TSHR, Red: TSH 

alpha subunit (TSHα, αGSU), Blue: TSHβ. Cyan ‘seatbelt’ region, Yellow: conserved cysteines involved in disulphide bridge 

formation. Spheres: reported TSHB mutations: C105R; C108Y; C125Vfs*10 (yellow) disrupt disulphide bridges, G49R (purple) is 

located in the conserved CAGYC region; Q69*; F77Sfs*6 (orange) truncate the protein prematurely and E32* and E32K (light 

blue) are truncating and missense mutations at the same position. The nomenclature of these mutations follows the most recent 

HGNC guidelines to include the 20 amino acid signal peptide of TSHB, thus may differ from that cited in the original articles. 

Nomenclature can be converted to that previously published for missense mutations by subtracting 20 e.g. Q69* new 

nomenclature = Q49* old nomenclature. (B) TRHR structural model generated by homology modelling using the PHYRE server 

and PYMOL showing the positions of the four previously described mutations associated with central hypothyroidism. The 

truncating mutation (p.R17* truncating the protein in the extracaellular domain) and the in-frame deletion of 3 amino acids 

(Ser115-Thr117) are shown in red; missense changes (p.A118T, p.P81R, p.I131T) are shown in blue.
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Therefore, TBL1X loss-of-function mutations may result 

in impaired basal activation of these genes.

Screening for primary and central CH

Screening programmes were first introduced with the aim 

of eliminating the neurodevelopmental sequelae of late 

treated CH and in this respect have been a huge public 

health success with the majority of primary CH cases now 

diagnosed following neonatal screening. Most countries 

worldwide operate a TSH-based screening strategy where 

TSH is measured first, usually on a filter paper blood spot 

sample, and subsequent FT4 or T4 measurement is only 

performed in infants with a raised TSH. A minority of 

countries (some state programmes in the United States 

and Italy, Japan, the Netherlands and Israel) employ 

a method in which total or FT4 and TSH are either 

measured simultaneously or in a stepwise manner with 

T4 measured first. Additional differences in TSH-based 

screening programme methodology include the timing of 

the samples (from cord blood to heel prick samples in the 

second postnatal week), the biochemical assays used and 

the determined cut points, all of which may confound 

direct comparison of screening programmes (114, 115).

Each CH screening programme has its own advantages 

and disadvantages. TSH-based programmes are the most 

sensitive for primary CH, and, by definition, detect both 

subclinical and overt primary CH. However, CCH will 

only be detected by programmes measuring T4 or FT4 

Figure 5

 Comparison of endocrinology in individuals with biallelic TSHB or TRHR mutations (TSHB, TRHR), and hetero- or hemizygous IGSF1 

or TBL1X mutations (IGSF1, TBL1X), including all reported mutation carriers for whom numerical biochemical data was available. 

(A) Total or FT4 measurements expressed as percentage lower limit of the normal range. (B) Peak TSH response to a standard TRH 

test excluding 1 IGSF1 de�cient case for whom results were discrepant at two different ages (125). IGSF1 data excludes neonates 

<1 month old. Reference ranges are demarcated according to (87). TRHR mutations abolish (black) or partially impair (red) TRHR 

function. (C) Schematic illustrating the protein domain structure of IGSF1 with the internal signal peptide directing cleavage of the 

carboxy-terminal domain denoted by a blue line. Positions of naturally-occurring mutations associated with congenital central 

hypothyroidism are denoted; all are located within the carboxyterminal domain. Mutations in black (missense) and red (truncating 

mutations) are known or likely to affect membrane traf�cking or expression, whereas mutations in grey are associated with a 

characteristic phenotype but do not affect IGSF1 traf�cking in vitro. Four whole gene deletions have also been reported.
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initially or simultaneously with TSH. A disadvantage of 

this approach is the high false-positive rate, which data 

from the Netherlands attributes primarily to subnormal 

total T4 in cases with thyroxine-binding globulin (TBG) 

deficiency (36% of false positive cases over a 1-year 

period) (8). Accordingly, the Netherlands screening 

strategy includes measurement of TBG as well as TSH, 

which enables diagnosis of TBG deficiency. However, TBG 

is only measured in cases with T4−1.6 S.D. or less due to 

financial and workload constraints (7, 8).

Premature birth poses problems for both types of 

screening programme, especially in infants with very 

low birth weight. Thyroid dysfunction in preterm infants 

includes transient hypothyroxinemia of prematurity (low 

T4 with normal TSH), which may result in many false 

positive diagnoses on T4-based programmes (accounting 

for 8% false positives in the Dutch screening programme) 

(8). In order to overcome this problem, the Japanese 

simultaneous TSH/FT4 system defines positive results 

from newborns with birth weight <2 kg as preliminary 

and repeats the measurements at age 1  month before 

attributing a definitive diagnosis (116). In the Netherlands, 

TSH levels are used to recall premature infants, rather 

than T4 measurements (8). Delayed maturation of the 

hypothalamic–pituitary–thyroid axis in premature infants 

may also result in a delayed TSH rise, in which the TSH is 

initially normal despite primary hypothyroidism but later 

becomes elevated (117). Since primary CH with delayed 

TSH rise may therefore evade detection on TSH-based 

newborn screening programmes, a strategy of second 

screening is recommended, when the infant is around 

1 month old, in order to diagnose CH in cases with false-

negative screening results at birth. Accordingly, in the UK, 

infants born at less than 32 weeks undergo a repeat TSH 

screen aged 4 weeks if the first TSH screen is negative.

In TSH-based screening systems, newborn blood 

spot TSH screening cutpoints remain a continued 

subject of discussion, exhibiting widespread disparity 

even within the United Kingdom where they remain 

region specific (118). The importance of thyroxine in the 

myelination of the infant brain is undisputed and more 

recent functional MRI studies have provided further 

insight into this (119). However, although the rationale 

for detecting severe CH is unequivocal, the benefit to 

neurodevelopmental outcomes when treating infants 

with mild to moderately raised TSH and borderline free 

T4 (FT4) concentrations is more ambiguous. A recent 

Belgian study found no relationship between cognitive 

and psychomotor outcomes of preschool children and 

screening TSH concentrations (120). However, conversely, 

a large epidemiological study in Australia did suggest 

a relationship between educational attainment and 

neonatal TSH. There was a decrease in attainment as the 

TSH increased from the 75th centile of screening TSH 

(121). Although absolute TSH concentrations were not 

given, the distribution of TSH concentrations in screened 

newborn infants would suggest that the 75th centile is 

likely to be below the screening cutpoints of most, if not 

all, screening laboratories. Both studies have limitations 

in terms of the chosen developmental assessment tool, 

the age of child assessment and study design, but the need 

for future, long-term neurodevelopmental studies is clear.

Primary TSH-based screening strategies do not 

detect CCH at birth. Therefore, although moderate-to-

severe CCH may be diagnosed clinically, due to signs 

suggesting hypothyroidism or due to manifestations of 

additional pituitary hormone deficits, e.g. micropenis 

(hypogonadotropic hypogonadism), hypoglycaemia or 

prolonged neonatal jaundice (central adrenal insufficiency) 

or postnatal growth failure (GH deficiency), diagnosis and 

treatment are often significantly delayed (9, 122).

There are strong arguments for including T4 

measurement in the CH screening strategy and the 

most frequently cited counterarguments (the relative 

rarity of CCH and the perception that it is usually 

mild) are becoming questionable. Combined T4/TSH/

TBG evaluation has yielded an incidence of permanent 

CCH of 1:16  400 to 1:21  000 in Dutch neonates (8, 9) 

whereas Japanese studies have reported a lower incidence 

(1:31 000 to 1:160 000), likely reflecting a less sensitive 

screening approach although differences in ethnicity may 

also be implicated (116, 123). Therefore, although less 

common than primary CH, the incidence of CCH in some 

regions is comparable to that of other conditions included 

in newborn screening progammes, e.g. phenylketonuria. 

Moreover, previous perceptions that CCH is usually 

mild have been refuted by data from the Netherlands 

demonstrating that more than 50% of children with CCH 

exhibit moderate or severe hypothyroidism (124). Since 

it is unequivocal that missed diagnosis of severe CCH, 

such as in the context of TSHB mutations, or CCH with 

additional pituitary hormone deficiencies results in adverse 

neurodevelopmental outcomes, the potential for delayed 

diagnosis of moderate-severe CCH is concerning (98, 

124). However, in some contexts (e.g. IGSF1 deficiency), 

newly diagnosed moderate CCH in elderly IGSF1 

mutation carriers, does not seem to have been associated 

with obvious developmental sequelae (111). A further 

benefit of screening for CCH is its potential to trigger  

early investigation and detection of concomitant  
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pituitary-adrenal and GH deficiencies, for which 

treatment may prevent life-threatening consequences. 

Since 75% of CCH cases exhibit combined pituitary 

hormone deficiencies, the significance of this should not 

be underestimated (5). However, changing from a primary 

TSH-based screening strategy, to one which identifies 

CCH whilst maintaining a high sensitivity for detecting 

primary CH, is not an insignificant undertaking, especially 

given the need for early detection of false positive results. 

Increased complexity of the clinical workload and 

biochemical methodology as well as cost are all potential 

barriers to implementation.

Conclusions

Over the last 40  years, neonatal screening for CH 

represents a major public health success, achieving near 

elimination of associated severe neurodevelopmental 

delay. In the future, further studies are needed to address 

the benefits of early detection and treatment of mild 

CH and to provide an evidence base for determining 

optimal TSH screening cutpoints. Additionally, countries 

operating primary TSH-based screening systems should 

be encouraged to revisit the cost-benefits of an additional 

screening step for central CH in light of current evidence. 

Although our understanding of the genetic basis for 

primary and central CH has improved, the basis for 

TD in particular remains largely uncharacterized and 

in genetically ascertained CH, phenotypic variability 

is poorly accounted for. Further investigation of the 

contributions of genetic and epigenetic variation, in 

addition to environmental modifiers, may help elucidate 

the mechanisms underlying CH as well as providing 

novel insights into thyroid development.
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