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Diagnosis of Induction Motor Faults in the
Fractional Fourier Domain

Manuel Pineda-Sanchez, Member, IEEE, M. Riera-Guasp, Member, IEEE, Jose A. Antonino-Daviu, Member, IEEE,
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Abstract—Motor current signature analysis (MCSA) is a
well-established method for the diagnosis of induction motor
faults. It is based on the analysis of the spectral content of a motor
current, which is sampled while a motor runs in steady state, to
detect the harmonic components that characterize each type of
fault. The Fourier transform (FT) plays a prominent role as a
tool for identifying these spectral components. Recently, MCSA
has also been applied during the transient regime (TMCSA) using
the whole transient speed range to create a unique stamp of each
harmonic as it evolves in the time–frequency plane. This method
greatly enhances the reliability of the diagnostic process compared
with the traditional method, which relies on spectral analysis
at a single speed. However, the FT cannot be used in this case
because the fault harmonics are not stationary signals. This paper
proposes the use of the fractional FT (FrFT) instead of the FT
to perform TMCSA. This paper also proposes the optimization
of the FrFT to generate a spectrum where the frequency-varying
fault harmonics appear as single spectral lines and, therefore,
facilitate the diagnostic process. A discrete wavelet transform
(DWT) is used as a conditioning tool to filter the motor current
prior to its processing by the FrFT. Experimental results that
are obtained with a 1.1-kW three-phase squirrel-cage induction
motor with broken bars are presented to validate the proposed
method.

Index Terms—Failure analysis, Fourier transforms (FTs),
induction motors, wavelet transforms (WTs), time–frequency
analysis.

I. INTRODUCTION

MOTOR current signature analysis (MCSA) is a well-

established [1]–[3] and reliable methodology for detect-

ing motor failures. It is noninvasive; various stator and rotor

faults can be detected simultaneously; and it is simple to apply

because only a current transformer is needed to capture the

motor current. Each type of fault produces oscillations in the

motor current whose characteristic frequencies have been estab-
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Fig. 1. MCSA diagnostic system.

lished theoretically. For example, rotor bar breakages generate

oscillations of frequency fb, which is given by

fb(s) = (k/p(1 − s) ± s) f1, with k/p = 1, 3, 5 . . . (1)

where f1 is the 50/60-Hz power supply frequency, s is the rotor

slip, and p is the number of pole pairs in the machine.

Mixed eccentricity generates harmonics with frequencies

fecc(s) = |f1 ± k · fr|

= |f1 ± k · (1 − s)f1/p| , with k = 1, 2, . . . (2)

where fr is the frequency corresponding to the mechanical

speed of the rotor. Other faults such as stator short circuits,

bearing failures, etc., also generate current harmonics with

characteristic frequencies that are analogous to (1) and (2).

This way, a spectral analysis of a single-phase stator current,

which is sampled while the motor is operating in steady state at

a given slip s, can reveal the presence of these faults. Fig. 1

shows a schematic diagram of an MCSA diagnostic system

setup.

In MCSA, the signal conditioning stage may include win-

dowing [4], filtering, frequency displacement [5], elimination

of negative frequencies [6], etc. Spectral analysis may be

performed with a variety of mathematical tools, such as the

Fourier transform (FT) [7]–[10], multiple signal classification

[8], maximum covariance methods [11], [12], and others [13].

Finally, a threshold level is established that is based on either

the amplitude [7], [14] or the phase of the characteristic fault

harmonics, as given in (1) and (2), to diagnose the presence or

the absence of a fault.

Transient MCSA (TMCSA) relies on the same fault-related

frequencies that are given by (1) and (2); however, instead

of trying to detect the frequencies at a single slip, the goal

0018-9456/$26.00 © 2009 IEEE
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Fig. 2. TMCSA diagnostic system proposed in this paper.

is to identify their variation as a function of the slip during

the speed transient. This function is only linear, as stated in

(1) and (2).

In TMCSA, the same steps depicted in Fig. 1 are followed

but using tools that are specifically designed for the analysis

of nonstationary signals. Signal conditioning can be performed

with wavelet transforms (WTs) [15]–[18], empirical mode de-

composition [19]–[21], time-varying filters [22], etc. Spectral

analysis is carried out in the time–frequency plane with linear

transforms, such as the short-time FT [23] and the WT [24]–

[34], or quadratic transforms, such as the Wigner–Ville dis-

tribution (WVD) [35]–[37]. In [38], an approach based on a

combined wavelet and Fourier transformation is proposed, and

[39] presents a novel time-domain method for the extraction of

sinusoidal signals that are polluted by noise. Despite offering

some advantages, TMCSA presents difficulties for its industrial

implementation. This is because the specification of threshold

values is more complicated in TMCSA than in traditional

MCSA due to the added dimension of time. Numerical in-

dicators that are computed from the wavelet coefficients or

the energy bands have been proposed; however, the definition

of adequate threshold indicators in TMCSA remains an open

research field. New tools for processing transient current signals

are needed because traditional Fourier-based techniques are

not valid for nonstationary signals. This paper addresses both

difficulties and proposes a new schema to perform TMCSA,

which is analogous to the schema depicted in Fig. 1 (see also

Fig. 2).

The new schema (Fig. 2) is composed of a filtering stage of

the transient current via discrete WT (DWT), the generation of

a spectrum of the filtered current using the fractional FT (FrFT),

and a simple threshold stage based on the magnitude of the

obtained spectral lines as in standard MCSA. We believe that

this is the first time that the FrFT, which is used in the fields

of radar, optics, and acoustics for target identification, has been

applied in the field of machine diagnosis. Being the transient

counterpart of the FT, the use of the FrFT also facilitates

the dissemination of TMCSA techniques among the electrical

machines community.

The structure of this paper is as follows. In Section II,

the left-side harmonic during a startup transient (LSHst) is

characterized in the time–frequency domain. In Section III, the

theoretical basis of the FrFT is presented, and it is applied and

optimized for the detection of the LSHst. Section IV applies the

proposed method to the analysis of two experimental 1.1-kW

three-phase motors: one with a broken bar and the other one in

healthy condition. Section V presents the conclusions.

Fig. 3. Evolution of the frequency of the LSHst as a function of the rotor slip.

II. TIME–FREQUENCY CHARACTERIZATION OF FAULT

HARMONICS DURING A SPEED TRANSIENT

In classical MCSA, fault harmonics are characterized by

their spectral lines in the frequency Fourier domain, obtained

from (1) or (2) for a given slip. In transient MCSA, this

approach is no longer valid: The frequency–time domain is

needed to represent the harmonic evolution because of the

dependence of the harmonic frequency on the slip during the

transient.

A. Time Evolution of the Left-Side Harmonic in a Motor With

Broken Bars During the Startup Transient

As an example, an analysis is made of the evolution during

the startup transient of the left-side harmonic, which is gen-

erated by a broken bar fault. The frequency of this harmonic

corresponds to the lowest order in (1), i.e.,

fLSH(s) = |f1(1 − 2s)| (3)

which is simply a straight line (Fig. 3) of the absolute slope

∣

∣

∣

∣

d (fLSH(s))

ds

∣

∣

∣

∣

= 2f1. (4)

In the case of a supply frequency f1 = 50 Hz, this slope has

a constant value of

∣

∣

∣

∣

d (fLSH(s))

ds

∣

∣

∣

∣

= 2f1 = 2 · 50 = 100 Hz/slip unit. (5)

The evolution of the LSHst has been analyzed by

Riera-Guasp et al. [40]. Fig. 4 shows this evolution during

a startup transient of a simulated machine, only considering

the fundamental space harmonic of its windings, and sampled

during 2 s at 500 Hz. Both the speed and the slip of the motor

during the transient are shown in Fig. 4. The slip has been

computed as

s(t) = (1500 − nr(t)) /1500 (6)

where nr is the motor speed in revolutions per minute.

For not too fast startups, once the electromagnetic transient

finishes, it can be assumed that the machine accelerates follow-

ing a succession of stationary regimes with increasing speeds.

Under such conditions, the left-sideband harmonic basically
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Fig. 4. Amplitude of the (top) LSHst, (middle) motor speed, and (bottom)
motor slip during the startup transient of a simulated motor. The vertical line
corresponds to the time when the slip s = 0.5 is reached.

Fig. 5. Fourier spectrum of the LSHst.

evolves as a sinusoidal wave whose frequency and amplitude

continuously vary and follow characteristic patterns. Two types

of patterns can be identified in Fig. 4: 1) a frequency–time

pattern and 2) an amplitude–time pattern.

The frequency of the LSHst continuously decreases from the

supply frequency (50/60 Hz) when the machine is connected

(t = 0), becoming null when the rotor speed is equal to half

of the synchronous speed Ωs/2 (t ≈ 0.92 s; see Fig. 4, vertical

line). From this point, the frequency of the sideband component

again increases, keeping a constant value when the stationary

regime is reached.

The amplitude of the LSHst also shows a characteristic evo-

lution. Initially, from t = 0, the amplitude decreases, becoming

null when the rotor speed is equal to half of the synchronous

speed Ωs/2 (slip s = 0.5). During the second half of the startup

(t > 0.92 s), the LSHst amplitude initially grows, reaching a

maximum that exceeds the amplitudes that are reached during

the first half of the startup.

The Fourier spectrum of the LSHst, as shown in Fig. 5,

is unable to capture these patterns. Due to the nonstationary

character of the signal, its energy spreads over the full range

of 0- to 50-Hz frequencies, and there is no distinct peak in the

spectrum that marks the presence of the fault harmonic.

B. Representation of the LSHst in the Time–Frequency Plane

The WVD is a quadratic transform that is able to generate a

time–frequency representation of the energy of a signal x(t). It

is given by [35]

WVx(t, f) =

+∞
∫

−∞

x∗
(

t −
τ

2

)

x
(

t +
τ

2

)

e−j2πfτdτ. (7)

One of the properties of the WVD is that it satisfies the

marginals; that is, the energy spectral density (ESD) and the in-

stantaneous power of the signal can be obtained as the marginal

distributions of WVx, i.e.,

|X(f)|2 =

∫

WVx(t, f)dt frequency marginal (8)

|x(t)|2 =

∫

WVx(t, f)df time marginal (9)

where X(f) is the FT of x(t). The projection of the WVD of

a signal on the frequency axis (8) gives the ESD of the signal,

and its projection on the time axis (9) gives the instantaneous

power of the signal. In addition, we have
∫∫

WVx(t, f)dtdf = Energy of x(t). (10)

The WVD of the LSHst, along with its marginals, is rep-

resented in Fig. 6. The time marginal in this figure has been

replaced with the representation of the signal in the time domain

for clarity purposes.

The time–frequency representation given in Fig. 6 is visu-

ally insightful and reproduces the aforementioned frequency

and amplitude evolution patterns of the LSHst. There are two

branches of linearly varying frequency, as shown in Fig. 3.

However, the frequency marginal (8) does not reveal any dis-

tinct peak upon which a threshold value can be established

to diagnose the fault. Nevertheless, an inspection of Fig. 6

suggests a method to generate a spectrum exhibiting such a

peak, namely, if the whole transform is rotated, so that any of

the two branches of the representation becomes horizontally

aligned, then the marginal (8) will show a sharp peak at the

vertical position of this branch. Fig. 7 shows the result of

such a rotation. This way, the most energetic branch becomes

horizontally aligned.

The described method, although effective, is cumber-

some. First, the WVD of the LSHst, which is a full 2-D

time–frequency distribution, must be computed. Second, the

whole transform must be rotated in the time–frequency plane.

Finally, the spectrum must be obtained via the frequency mar-

ginal of the rotated transform. However, there is a shortcut for

generating this final spectrum by applying a single transform

to the time signal—the FrFT. In Section III, its theoretical

principles are briefly discussed, and it is used to detect the

presence of the LSHst in a motor with broken bars.

III. FrFT

The FrFT, which was first introduced in [41] and [42], is a

generalization of the FT [43]. It has extensively been applied in
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Fig. 6. WVD of the LSHst, with the (left) frequency marginal and (top) signal in the time domain.

Fig. 7. Rotated WVD of the LSHst, with the frequency marginal showing a peak that reveals the presence of the fault harmonic.

the fields of communications [44], optical systems [45], radar

identification [46], and signal filtering [47]. Its properties and

connections with time–frequency signal representations have

been analyzed in [48].

The FrFT with an angle α of a signal x(t), which is denoted

Fα
x (u), is defined by [49]

Fα
x (u) =

∞
∫

−∞

x(t)Kα(t, u)dt. (11)

For α = 0, the variable u corresponds to time, and for

α = π/2, it corresponds to frequency. The transform kernel

Kα(t, u) is given in (12), shown at the bottom of the next page.

Efficient algorithms for computing the FrFT of discrete sig-

nals have been proposed in [50] and [51].

The FrFT Fα depends on the parameter α and can be inter-

preted as a rotation by an angle α in the time–frequency plane.

Fπ/2 corresponds to the classical FT. The angles of succes-

sively performed FrFTs simply add up, as do the angles of suc-

cessive rotations. The FrFT of a signal can also be interpreted

as a decomposition of the signal in terms of chirps (signals

with linearly varying frequency). This physical interpretation

of the FrFT can be exploited for detecting chirplike signals,

such as those that are generated by fault harmonics during a

speed transient [see (2) and (3)]. In the following, this property

will be exploited to characterize, first, a test chirp signal and,

second, the LSHst of a faulty machine with broken bars.

A. FrFT of a Linear Chirp

A synthetic linear chirp, with an initial frequency of 50 Hz

and a sweep rate of −50 Hz/s, i.e.,

x(t) = cos
(

2π50(t − t2/2)
)

. (13)
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Fig. 8. WVD of a linear chirp.

Fig. 9. |F α| of a linear chirp as a function of the angle α (3-D view).

has been sampled during 1 s at 1 kHz. It is shown in Fig. 8,

along with its WVD.

The FrFT of x(t) as a function of the angle α, i.e., Fα
x (u), is

the projection of WVD(x) onto the rotated axis v of Fig. 8. Its

module is represented in Fig. 9 as a 3-D view and, in Fig. 10, as

a 2-D view, with the amplitudes represented using a color map.

For simplicity, the notation that is used to denote the module of

Fα
x (u) in the following figures is Fα.

Pure harmonic signals become a Dirac’s delta function in

the classical Fourier domain. On the contrary, Figs. 9 and 10

show how the energy of a linear chirp signal is focused on

a different domain α. Fig. 11 shows the maximum value of

|Fα
x (u)| as a function of the parameter α. The angle at which

the energy of the signal is maximally concentrated is, in this

case, α = 87.14◦, and this differs from the classical Fourier

angle (α = 90◦).
Three different slices of Fig. 9, corresponding to angle

values of 0◦ (the time domain), 90◦ (the classical Fourier

Fig. 10. |F α| of the linear chirp as a function of the angle α (2-D view).

Fig. 11. Maximum value of |F α| of the linear chirp as a function of the
angle α.

Fig. 12. |F α| of the linear chirp at α = 0
◦ (bottom, time domain), α =

87.14
◦ (middle, highest concentration of the signal’s energy around a single

value), and α = 90
◦ (top, classical Fourier domain).

domain), and 87.14◦ (the domain where the signal energy

is most concentrated around a single value), are represented

in Fig. 12.

Kα(t, u) =

⎧

⎨

⎩

δ(t − u), if α is a multiple of 2π
δ(t + u), if α + π is a multiple of 2π
√

(1 − j cot α)/2π · exp
(

j cot(α)(t2 + u2)/2 − jtu csc(α)
)

, otherwise
(12)
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Fig. 13. Comparative plot of |F 90
◦

| (thin, blue line, equal to the FT of the
signal) and |F α| with α = 87.14

◦ (thick, red line).

For an angle α = 87.14◦, Fα
x (u) has the highest concen-

tration of the signal energy around a single value, and it

corresponds to an orientation of the v-axis in Fig. 8 perpen-

dicular to the linear chirp signal. In Fig. 13, the spectra in

the fractional Fourier domain F 87.14◦

and the classical do-

main F 90◦

are plotted together, and their maximum values are

compared.

From Fig. 13, the following conclusion can be established:

In the same way that a pure harmonic signal in the time domain

becomes a delta function in the Fourier domain, a linear chirp

signal becomes a delta function in a fractional Fαopt domain.

A generic linear chirp signal has the expression

u(t) = exp

(

j2π

(

a t +
b t2

2

))

(14)

where a represents the initial frequency, and b is the variation

rate of frequency (the chirp rate). If (14) is sampled at a

frequency fs, and N samples are obtained, then the angle

αopt of the FrFT domain that transforms the chirp into a delta

function is given by [52]

αopt = tan−1

(

−
f2

s /N

b

)

. (15)

The value of this angle, which corresponds to the vertical

plane of Fig. 9 on which the signal energy is most concentrated,

depends on the signal frequency, as follows:

αopt

{< 90, linear chirp with decreasing frequency

= 90, signal with constant frequency

> 90, linear chirp with increasing frequency.
(16)

In the case of signal (13), with fs = 1000 Hz and N = 1000

αopt = tan−1

(

−
10002/1000

−50

)

= 87.14◦ (17)

which is the angle corresponding to the maximum value ob-

tained in Fig. 11.

B. FrFT of the LSHst

The FrFT of the synthetic LSHst, as shown in Fig. 4, has

been computed as a function of the angle parameter α, and its

absolute values are shown in Fig. 14.

Fig. 14. |F α| of the LSHst as a function of the angle α.

Fig. 15. Maximum value of |F α| of the LSHst as a function of the angle α.

In Fig. 14, two linear chirps are clearly identified through

their peaks in the 3-D representation. They correspond to the

two branches of the LSHst that are visible in Fig. 6. A simplified

plot of the maximum value of |Fα| versus the angle α is shown

in Fig. 15.

Two peaks appear in Fig. 15: one with linearly decreasing

frequency at α1 = 77.31◦, and the other peak with an increas-

ing frequency at α2 = 104◦. This specific pattern, i.e., two chirp

components with opposite rates (the FrFT of the first with its

maximum value at an angle α1 < 90◦ and the second at an

angle α2 > 90◦), and with the amplitude of the first maximum

lower than the amplitude of the second, can be considered as a

clear indicator of a broken bar fault.

After a positive identification of this characteristic pattern,

the diagnosis can be confirmed by computing the variation rate

of the frequency versus the slip, which, for the LSHst [see (3)],

must have a constant value of 100 Hz/slip unit [see (5)].

By using the first chirp in the LSHst and applying (15), the

chirp rate b is found to be equal to

b = −
f2

s

N tan(α1)
=

5002

1000 · tan(77.31)
= −56.29 Hz/s.

(18)

The chirp rate is measured in hertz per second. To assess

the presence of a broken bar fault using (5), this value must

be converted from hertz per second to hertz per slip unit. To

perform this conversion, it is necessary to know the seconds/slip

unit ratio. Using the first chirp component, which varies from

a slip value of 1 to 0.5 during the startup transient, the average

value of this ratio can approximately be obtained using the time

at which a slip value s = 0.5 is reached (the time at which

the motor reaches half of its synchronous speed). From Fig. 4

(vertical line), it can be seen that the first chirp component of
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Fig. 16. (Left) Experimental setup and (right) motor with a broken bar used
for the validation of the proposed methodology.

Fig. 17. (Top) Current and (bottom) speed of the experimental motor with a
broken bar during the startup transient. The vertical line corresponds to the time
when the slip s = 0.5 is reached.

the LSHst changes from a slip value of 1 to 0.5 in 0.92 s, and

thus, the ratio
∣

∣

∣

∣

∆fLSH

∆s

∣

∣

∣

∣

=

∣

∣

∣

∣

b
0.92

0.5

∣

∣

∣

∣

= 56.29
0.92

0.5
= 103.58 Hz/slip unit

(19)

gives the average variation rate of the LSHst frequency versus

the slip in the appropriate units. This value is very close to the

theoretical value, i.e., 2f1 = 100 [see (5)], which confirms that

this pattern corresponds to a broken bar fault.

IV. EXPERIMENTAL VALIDATION

The proposed method has been applied to the analysis of a

1.1-kW 50-Hz induction motor, whose data are given in the

Appendix. The test equipment, which is displayed in Fig. 16,

consists of a current transformer, a Yokogawa DL750 oscil-

loscope, and a personal computer connected via an Intranet

network.

Tests have been carried out under two different conditions:

healthy state and faulty conditions—in which a single bar was

broken by drilling a hole. In both cases, the startup current has

been recorded for 2 s using a sampling frequency of 1 kHz.

A. Analysis via the FrFT of a Motor With One Broken Bar

Fig. 17 shows the current of the motor with a broken bar

during a startup transient. The motor is unloaded and has been

fed with a reduced voltage of 160 V to achieve a longer startup

transient.

Fig. 18. DWT decomposition of the (top) motor current using a dmeyer
mother wavelet. The LSHst is contained in level a4.

Fig. 19. LSHst of the motor with a broken bar extracted using the approx-
imation signal of the DWT of the motor current. The vertical line marks the
estimated time when the motor reaches a slip s = 0.5.

The proposed method cannot directly be applied to the line

current, and the LSHst must first be extracted before performing

its analysis via the FrFT. The DWT, whose use as a tool for

extracting the harmonics of the current in the transient state

has been proposed in [26] and [40], is used in the proposed

method to extract the LSHst. The DWT of the experimental

motor current has been performed using a dmeyer wavelet

with four decomposition levels (see Fig. 18). The number of

decomposition levels nf depends on the sampling frequency

fs (1000 Hz). It is calculated as explained in [40], with the

condition that the upper limit of the frequency interval of

the approximation signal anf must be lower than the supply

frequency f1 (50 Hz). Therefore

nf = Integer

[

log(fs/f1)

log(2)

]

= Integer

[

log(1000/50)

log(2)

]

= 4.

(20)

Fig. 19 shows the approximation signal with level 4 of the

previous wavelet decomposition; this signal will be used as

the experimental LSHst of the faulty machine to validate the

proposed approach.
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Fig. 20. |F α| of the experimental LSHst of the motor with a broken bar as a
function of the angle α.

Fig. 21. Maximum value of |F α| of the experimental LSHst of the faulty
motor as a function of the angle α.

The FrFT of the experimental LSHst, as shown in Fig. 19,

has been computed as a function of the angle parameter α, and

its absolute values are shown in Fig. 20.

In Fig. 20, the two linear chirp components of the LSHst

are clearly identified by their respective peaks in the 3-D

representation. A simplified plot of the maximum value of |Fα|
versus the angle α is shown in Fig. 21.

In this motor, the characteristic pattern of a bar breakage ap-

pears: two chirps with opposite chirp rates. This diagnosis can

be confirmed by computing the variation rate of the frequency

versus the slip, i.e., 2f1 = 100 [see (5)]. Using the first of the

two chirps, with an angle α1 = 81.09◦, and applying (15) with

fs = 1000 and N = 2000, the chirp rate results to

b = −
f2

s

N tan(α1)
=

10002

2000 · tan(81.09)
= −78.38 Hz/s.

(21)

This component presents a change in slip from 1 to 0.5 in

0.63 s (see Fig. 17), and thus, the ratio

∣

∣

∣

∣

∆fLSH

∆s

∣

∣

∣

∣

=

∣

∣

∣

∣

b
0.63

0.5

∣

∣

∣

∣

=78.38
0.63

0.5
=98.76 Hz/slip unit (22)

gives the average variation rate of the experimental LSHst

frequency in hertz per slip unit. This value is very close to

the theoretical value [see (5)], which confirms that this pattern

corresponds to a broken bar fault.

In some industrial facilities, the speed of the motor during

the startup transient may be unavailable. To measure the motor

current, it suffices a single current transformer, which can easily

Fig. 22. (Top) Current and (bottom) speed of the experimental healthy motor
during the startup transient. The vertical line corresponds to the time when the
slip s = 0.5 is reached.

be inserted in the line; however, to measure the motor speed, it

is necessary to connect an encoder to the motor shaft, which is

more difficult to implement. Therefore, in some facilities, the

motor speed is not measured. In these cases, it is still possible

to confirm the diagnosis of a broken bar fault: It suffices to

estimate, from the graphical representation of the LSHst, the

duration of its first chirp component (which finishes at a slip

s = 0.5, as stated in Section II). In Fig. 19, this time has been

estimated as t = 0.65 s (vertical line), which is slightly different

from the measured value. This gives an average variation rate

of the LSHst frequency versus the slip of

∣

∣

∣

∣

∆fLSH

∆s

∣

∣

∣

∣

=

∣

∣

∣

∣

b
0.65

0.5

∣

∣

∣

∣

= 78.38
0.65

0.5
= 101.89 Hz/slip unit.

(23)

This value is again very close to the theoretical value [see

(5)], which confirms that the detected pattern corresponds to a

broken bar fault.

B. Analysis via the FrFT of a Healthy Motor

Another motor, in this case a healthy motor, operating under

the same conditions as the faulty motor has also been analyzed

using the FrFT. Fig. 22 shows the current of the healthy motor

during the startup transient, which is sampled for 2 s at 1 kHz.

The LSHst harmonic has been extracted using the approxi-

mation signal of the DWT of the current signal, with a dmeyer

mother wavelet and four levels of decomposition, as shown in

Fig. 23. The approximation signal with level 4 of the previous

wavelet decomposition, which should contain the expected

LSHst, is shown in Fig. 24.

This signal is now analyzed with the FrFT to detect the

characteristic chirp components of the LSHst in a motor with

broken bars. Fig. 25 shows the magnitude of the signal’s FrFT

as a function of the angle parameter. A simplified plot of

the maximum value of |Fα| versus the angle α is shown in

Fig. 26.

In Figs. 25 and 26, a single peak appears at an angle α1 =
92.79◦. This pattern does not correspond to the characteristic

two-chirp pattern of the broken bar fault. In fact, it is the energy

of the electromagnetic transient at the beginning of the startup
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Fig. 23. DWT decomposition of the (top) healthy motor current using a
dmeyer mother wavelet.

Fig. 24. LSHst of the healthy motor extracted using the approximation signal
of the DWT of the motor current.

Fig. 25. |F α| of the experimental LSHst of the healthy motor as a func-
tion of α.

that is being detected in both figures. Moreover, the detected

transient has a chirp rate of

b = −
f2

s

N tan(α1)
=

10002

2000 · tan(92.79)
= −24.37 Hz/s.

(24)

This component presents a change in slip from 1 to 0.5 in

0.61 s (see Fig. 22), and thus, the ratio
∣

∣

∣

∣

∆fLSH

∆s

∣

∣

∣

∣

=

∣

∣

∣

∣

b
0.61

0.5

∣

∣

∣

∣

= 24.37
0.61

0.5
= 29.72 Hz/slip unit (25)

gives the average variation rate of the experimental LSHst

frequency in hertz per slip unit. This value is very different to

Fig. 26. Maximum value of |F α| of the experimental LSHst of the healthy
motor as a function of the angle α.

the theoretical value [see (5)], which confirms that the detected

signal does not correspond to a broken bar fault.

V. CONCLUSION

In this paper, the FrFT Fα has been presented as the exten-

sion of the traditional FT for performing transient MCSA. One

of the main difficulties that arise in the diagnosis of induction

motor faults in TMCSA is the difficulty of generating fault

indexes from the time–frequency representation of the motor

current. In the permanent regime, these indexes are mainly

based on the presence of characteristic peaks in the modulus of

the Fourier spectrum of the current. The height of these peaks

can even be used to evaluate the severity of the fault. This

technique cannot be extended to the transient regime because

the signals are not stationary. For example, during a startup

transient, the frequency of the LSHst exhibits a linear variation

with the slip. In the proposed method, it is precisely the slope

of the curve frequency–slip that is measured with the FrFT,

and the result is presented in a way that is very similar to

the classical Fourier spectrum: The measured slope appears

as a single peak in the fractional Fourier spectrum, and each

type of fault generates a specific unique peak in this spectrum.

Therefore, this method can complement the classical MCSA

method in cases when the diagnostic is not clear (due to the

presence of load oscillations, etc.).

The classical FT can be considered a particular case of

Fα for a parameter α = π/2. Two physical properties of this

transform have been presented. The first corresponds to the

rotation of the signal in the frequency–time domain. It has the

ability to represent a linear chirp signal as a Dirac’s delta in

the frequency domain. The second is represented by the fault-

induced oscillations of the stator current, which evolve as linear

chirps during speed transients. This property makes the FrFT

a suitable tool for transient MCSA. The conditioning of the

signal before applying the FrFT has been made with a DWT

filtering stage. As an application of the proposed technique,

the detection of rotor bar breakages has been validated via

experimental diagnosis of faulty and healthy 1.1-kW motors.

On the other hand, one of the main limitations of the pro-

posed method is the lack of correlation between the severity of

the fault and the height of the peaks in the fractional Fourier

spectrum. This is currently a work in progress, and extensive

experiments are being done with motors with several broken

bars. In addition, this method can be applied to detect other
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faults such as eccentricity, defective bearings, etc. In this case,

the performance of the method under combined faults has to be

evaluated.

Another limitation of the method is the need of a minimum

length for the startup. This is necessary to avoid both the influ-

ence of the initial electromagnetic transient, taking place after

the connection of every machine, and the border effects, which,

in the earlier stage of the startup transient, can completely mask

the sideband component. As a guideline, with starting times

above 0.5 s, the method is suitable.

APPENDIX

Machine Parameters: A three-phase induction motor

of 1.1 kW, 50 Hz, 230/400 V, 2.7/4.6 A, 1410 r/min, and

cos ϕ = 0.8.
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