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ABSTRACT

It is shown that electron cyclotron emission can be used for detailed

diagnosis of mildly relativistic electron distribution functions, pro-

vided the plasma can be viewed along a line of constant magnetic field.

Calculations of the emissivity are performed, both for tenuous and

finite-density plasmas, whose results allow observations of emission to

be deconvolved in terms of the density and anisotropy of the distri-

bution as a function of total electron energy. Prolate distributions

require different harmonics, while oblate distributions require differ-

ent polarizations to be measured. Absorption can also be treated using

these results. Some of the issues concerning experimental application

are discussed.
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1. INTRODUCTION

Mildly relativistic electrons in a magnetic field radiate copiously

due to their gyromotion. Expressions for the intensity and polarization

of this 'cyclotron' (sometimes called 'synchrotron') emission are read-

ily available [1, 2], in the form of integrals, when the electron ve-

locity distribution function is given. Therefore, in principle at

least, it is possible to use observations of the emission characteris-

tics to deduce information about the distribution function, and possi-

bly also the magnetic field when it is unknown.

The way in which this has been done in the past has been to assume

some form for the distribution function and then to calculate the emis-

sion from it, compare with experiment and then obtain some type of fit.

Naturally, the distribution function assumed has a few free parameters

which can be adjusted to obtain the fit. It is then these parameters

which are said to be 'measured'. For example, one may assume the dis-

tribution to be Maxwellian and hence described by two parameters ne and

Te. This is the basis of the highly successful measurements of electron

temperature, Te, in 'thermal' plasmas via the emission intensity of an

optically thick harmonic [3] and of the proposed measurement of electron

density, ne, via an optically thin harmonic [4], the latter not yet

fully successful.

When, as is often the case, the electron distribution is not well

represented by a Maxwellian, i.e. it is non-thermal, the emission from

high energy components can easily dominate over any (presumably) thermal

bulk plasma emission. Cyclotron emission thus gives early evidence of

deviations from Maxwellian due to high energy 'tails' on the distribution.
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Numerous theoretical studies have been made of ways to interpret observa-

tions in terms of information about the electron distribution. These

studies essentially all adopt a more or less ad hoc model of the distri-

bution with a few free parameters, thus generalizing the Maxwellian

approach. Examples of the types of distributions studied include:

1. sums of (shifted) Maxwellians of different energy [5-71;

2. Bimaxwellian distributions [8-10];

3. Maxwellian or Bimaxwellian with 'loss cones' or 'anti loss

cones' [11-131.

Naturally, these distributions have been adopted because of a combina-

tion of computational ease and a priori ideas of the approximate form

of the distribution to be expected. In essence the result of interpre-

tation of an observed spectrum using such a model is a set of 'best-fit'

values of the few free parameters, usually a 'density' (or two) a

'temperature' (or two) and an 'anisotropy'. One recognizes that the

exact form of the distribution will differ substantially from the model

in most cases but nevertheless one has obtained important additional

information about the distribution.

The purpose of the present work is to show that, in cases of prac-

tical interest, there is the potential for obtaining much more detailed

information about the distribution function than is possible via pre-

viously adopted approaches. Or, in other words, that one can reasonably

expect to be able to fit much more general distribution function models to

emission (and possibly absorption) data, thus measuring 'many' parameters

of the distribution. To do this type of deconvolution with reasonable

accuracy generally requires one to adopt a distribution function model
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in which there is a direct, preferably one to one, relationship between

the model parameters and the observed spectra.

We show that this can be achieved for reasonably tenuous plasmas

(plasma frequency, op, < cyclotron frequency, Q) provided one can make

quantitative measurements along chords through the plasma on which

(A) the magnetic field is approximately constant in magnitude and

at constant angle to the propagation direction;

(B) the emission from very relativistic electrons (y j 2) is small.

These criteria are required in order to maintain lhe one to one corre-

spondence between radiation frequency and a resonant locus in velocity

space. If the magnetic field varies strongly, then the emission becomes

a volume integral over velocity space and (eventually) the deconvolu-

tion becomes impossible. If highly relativistic electrons dominate the

emission, then strong cyclotron harmonic overlap will likewise render

the deconvolution impossible. (Mild overlap can probably be managed.)

Provided conditions (A) and (B) are satisfied, measurements of the

emission intensity (or absorption) spectrum around the first few cyclo-

tron harmonics can provide a continuous (in velocity) parametrization

of the distribution function, which can best be expressed as two func-

tions of resonant locus: the number density of particles on the reson-

ant locus, and the anisotropy of the distribution of these electrons

(to be defined explicitly later). Such a parametrization can represent

rather general distributions with a minimum of ad hoc assumptions about

their shape.
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Although generalization to other angles is possible, we shall

restrict our detailed calculations to perpendicular wave propagation,

in which case the resonant locus is a circle, total momentum (p) -

constant, and thus the two functions deducible are functions of total

electron energy (or momentum).

We develop in Section 2 the formulae for the emissivity and intro-

duce our general model for the electron distribution. In Section 3 we

present the results of emissivity calculations for a tenuous plasma.

Analytic solutions valid for extreme anisotropy are given in Section

4. In Section 5 we show how the results change when plasma refraction

is taken into account, and Section 6 outlines an extension to cyclotron

absorption. Some of the conditions necessary for practical application

of the technique are mentioned in Section 7.

2. CYCLOTRON EMISSIVITY

Cyclotron emission occurs by interaction of the electromagnetic

fields with electrons satisfying the relativistic cyclotron (harmonic)

resonance condition:

= --- + kjvjg + - Njp0g (1)

y (l+p 2 )1/2

where w is the wave frequency, k its k-vector, TN'the refractive index

vector (kc/w), Q the cyclotron frequency (eB/me), X the harmonic number,

y the relativistic mass increase factor andTp~the relativistic electron

momentum in units of mec (so that Y2 . 1 + p2). We shall refer to com-

ponents parallel and perpendicular to B by I and i . For given fre-

quency and Nj this resonance defines an ellipse in momentum space
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which may be written

(p -d)2  2
+--- = 1 (2)

a2  b2

where

a2 . 22/w2(1-N2)-1]/(1-N2)

b2 [. 2 Q2/w 2 (1-N2)-11 (3)

d - XM N/w(1-N )

The cyclotron emissivity of a plasma is then given by an integral of the

distribution function, weighted by the single particle emissivity, over

this ellipse. Therefore emissivity at a given iLVR, i and NII is related

only to particles on this ellipse. As we shall see, it will be conven-

ient to represent the distribution in terms which recognize this rela-

tionship.

We shall in fact choose to analyze here only the perpendicular

propagation case, Ng = 0. As justification for this specialization we

cite, in addition to its simplification of the analysis, that this choice

minimizes harmonic overlap and also corresponds to the case most likely

to be of experimental interest. A notable drawback to this choice is

that its symmetry makes it impossible to distinguish positive and nega-

tive pg. Thus reflectional symmetry or asymmetry in the plane p1l = 0 is

left undetermined.

For perpendicular propagation the (spontaneous) cyclotron emission

coefficient can be written [2)

e22 ( p11 Jk 2 1 /

j = Nf ---- +pj - -- ) f(p)d-O (4)
8 71E: c ±f N_KJZY + pW J 2
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where upper and lower signs and terms correspond to ordinary and extra-

ordinary modes respectively; the argument of the Bessel functions, J,

is 1N p1 /y; f is the unnormalizedp-bdistribution function and

(w2- 2)2-112W2

In this formula the delta function restricts the integral to the circular

resonance and the implicit assumption is that the wave properties (N and

polarization) are determined by some 'bulk' cold plasma through which the

resonant locus in momentum space does not pass. In other words, it is

valid at frequencies other than the thermal cyclotron resonances, w =X.

In the tenuous plasma case, N± + 1, K + 0, jt becomes the well known Schott-

Trubnikov formula [1] (more often written in terms of r=~vc rather than-pl.

The total emissivity is a sum over all X but if there is no harmonic

overlap we can treat harmonics separately.

Taking the distribution function to be gyrotropic (f = f(pi,pl))

the integral becomes:

e2w 3f( cosJ6 2

jt(w) - N 2np 3  f sine de (6)

8 -2 Coc NK(y/p)J + sin8 J'
0

over the sphere p = [y 2 - 111/2 = [(Zq/w)2 - 1]1/ 2 . Here 6 is the pitch

angle, p j/p - cose. With the emissivity in this form it is plain that

the natural way to express the distribution function is in the form of

a product:

f(p) = fp(p) fe(p,e) ,7 (7)
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where fp(p) contains the variation with p of the total number of particles

on the sphere and fe(p,O) gives the anisotropy of f at a given p. That

is

71

4np2 fp(p) = f f(p5 2up2 sine dB (8)
0

7r

f0 (p,6) - fp/fp(p); f fe(p,6) sine d = 2 (9)
0

In this case

e 2N+ Tr Cos6 Ja
2p3f (p) f sine d6 (10)

8 w2 ec V 1  INK(y/p)J + sin6 J'
0

If the distribution function is isotropic, f0 - 1, a measure-

ment of jt from a single harmonic is sufficient to give fp(p) and

hence the whole distribution function, since the angle integrals are

simply numbers independent of fp. Of more interest is the situation

where f is not isotropic. Then a measurement of jk at a single harmonic

is insufficient to determine the angular dependence of fe. However,

if jX is available for two different harmonics then their ratio is

independent of fp but depends on fe through the pitch angle integrals.

The problem is thus reduced to an investigation of how the anisotropy

of the distribution affects the pitch angle integrals:

1T

/cosO J(x+sine) 2
GEg(p) = NKc) t(xs n) f sine d6 (11)

N-K(y/p)Jt(x-sin6) + sine Jt(x-sine)
0

where x± = XN±p/y.
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In general we shall have only a very few independent harmonics,

since for large k, overlap becomes more and more severe. Therefore, we

are obliged now to make our only ad hoc assumption, namely that we

shall choose f6 to have a form parametrized by a single function of p.

Explicitly we take

f= = L exp(-A(p) cos 2 6), (12)

where [14]

A 1
LA2 - (13)

iT erf(/A)

IT

is chosen to satisfy the normalization condition J fe sin6 d6 = 2. Of
0

course, other choices of function are possible but this form is well

suited to representing distributions which are reasonably smooth and

either prolate (enhanced in the parallel direction) or oblate (enhanced

in the perpendicular direction) corresponding to A less or greater than

zero respectively. The form is illustrated in Fig.l. This form cannot

represent distributions with maxima or minima at angles other than

6 = 0 or 7r/2. If this were required then, in principle, our results

could be used in a direct generalization utilizing a sum of two functions

of the above form. This would naturally require more information to

determine the appropriate sum. Distributions which are asymmetric in

pu may be dealt with only by assumptions about this asymmetry since no

information comes from the emission. For example it might be appropri-

ate to take fe non zero only for 6 < 7T/2. Such a case is easily treated

using the results here given, but to avoid confusion we shall deal with

symmetric distributions and present results for cases where Eq.(12)

applies for the full range of 6, 0 to n.



-10-

With this choice of fe distribution we can calculate the pitch

angle integrals as a function of the anisotropy factor, A, and momentum.

Using the values of these integrals the deconvolution from observations

can be performed to give fp(p) and A(p) and hence the distribution.

3. TENUOUS PLASMA, IGNORING REFRACTIVE EFFECTS

We now restrict our attention to cases in which the finite plasma

density effects can be ignored, generally requiring w >> Wp. Later it

will be shown how to correct these results when the finite density is

not ignorable. For the present, then, the angle integrals are

w/ 2
+ ~cosO J2.(x sinO)) 2

0 (p,A) = 2 L exp(-A cos 2 6)sinO dO (14)
sine J,(x sine)

0

with x = Zp/y (=Zv/c). For general values of A we must now resort to

numerical computation of these angle integrals. The results are shown

in Figs 2 through 5 in which we plot the value of 0 as a function of

A for a range of electron energy values at the first four cyclotron

harmonics. Energies greater than y = 1/(2-i) for t > 1 will overlap

with a lower harmonic adding complexity to the deconvolution process.

For example, above 511 keV the second harmonic overlaps the first.

In order to deduce the effective value of A requires one to take a

ratio of emissivities so as to eliminate fp(p). Such a ratio can be ob-

tained from the 0 data. As examples of particular interest we show in

Fig.6 the ratio j32as a function of A and in Fig.7 the ratio j /j .

These show that the harmonic ratio J3/i2 is a sensitive measure of A for A

< 0, prolate distributions, while the polarization ratio J /J~ is a

sensitive measure of A for A > 0, oblate distributions.
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The insensitivity of these ratios for the opposite inequalities prevents

them being useful for those cases. For example the J3/i2 ratio cannot

be used effectively to diagnose A > 0, oblate anisotropies.

The general procedure is to deduce A(p) from a suitable ratio of

emissivities, using, for example,

(3 11 )
2SI

72---

3 03 (A,p)

2 02 (A,p)

With this in hand fp(p) can be deduced from the emissivity by using

(16)
eA 2 ka

--- = -- - 2r p3f (p) O(A,p).
8 c y

4. EXTREME ANISOTROPY: ANALYTIC APPROXIMATIONS

It is useful and revealing to obtain analytic approximations valid

in two opposite limits.

4.1. Parallel Tail , - A >> 1

In this case, where the distribution is confined to a narrow

'cigar shaped' region along the po axis we can make the approximations

sin6 = 6, cos 2 e = (1-62), JI = (xe/2)Z/Z! and thus

f) = 2(-A) exp(A6 2 ) - A >> 1 (17)

+ ((x8/2)Z/Z! 2
2 J (-A) exp(A82 )26 d6

0 1X(xe/2)1/xZ!

(18)

(15)
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The integral may now be evaluated to give

2X
2 pt

ty2,p2}(19)
(-A)It! 2y 1 2/P

Notice that the integral is now effectively over a short vertical straight

line segment on which f - exp(Apj/p2). Therefore this limit models a

distribution with Gaussian perpendicular variation corresponding to a

perpendicular temperature

mOc2  p2
T- = - (20)

-A 2y

In this limit of narrow perpendicular spread, when the integral can be

taken as a straight line, it is easy to show that the emissivity of the

Xth harmonic is proportional to the 2 Xth moment of the perpendicular

momentum,

CO

+ e2w 2 1 2t i p 2
e2 2 () 2 1(P)2 2p idp 1 (21)

8i e0c p 2y 2
0

regardless of whether the perpendicular variation of f is Gaussian, as

our model assumes, or not [151. In the absence of indications to the

contrary the Gaussian assumption seems most natural and then the ratio

of harmonic emissivities gives directly the perpendicular 'temperature'.

It should be noted, however, that using the 'straight line' approxima-

tion Eq.(21) rather than the full pitch angle integral for a case where

fp = constant and p << y leads to an overestimate of 0 by a factor of

approximately

21 + I {£-1}

1 + (22)
-2A )
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Thus, for example, the value of T1 deduced from the J3/i2 ratio using

the 'straight line' approximation is an overestimate by already 25%

when A = -20. This approximation is thus accurate only for extremely

anisotropic distributions.

4.2. Perpendicular 'tail', A >> 1

When A >> 1 the electron distribution is restricted to a 'disc' near

the pi axis. We may therefore approximate sin6 = 1, cos = 7r/2 - 6 =

so that

2 - exp[-A( u/2-6)2] (23)

J2(x) O $2
2 exp(-A 2 ) d (24)

and hence

J (x)/A
0 (25)

2J 2(x)

In this case the approximately straight line segment to which the

integral is restricted is horizontal and f a exp(-Ap2/p 2) modelling a

distribution with Gaussian parallel variation and parallel temperature

moc2 p 2
T = - (26)

A 2y

The emissivity is in fact a simple moment of the parallel momentum,

again regardless of the precise form of model for the distribution,
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tJX I .(27)e2 2 2~fp
jkg(w) = 8tcj 2(x2 p f f(p) dp (27)

where x - Xp/y, and of course w = XSI/y. The polarization ratio thus

provides a direct measurement of the second moment of pl and hence the

'mean parallel energy'

mec 2  fpf(pdp m-c2 2J 2  +

T g = ----- 2 (28)

y ff(p)dpq yt(x)j -

These approximations, valid for highly anisotropic distributions,

are useful for understanding the results already observed in the

numerical curves for |AI >> 1. However, it is likely that most experi-

mental plasmas will be insufficiently anisotropic for these to be

accurate approximations. Usually the numerical results will be required.

This point is illustrated in Fig.8 where the approximate and exact

results are compared.

5. FINITE-DENSITY CORRECTIONS

When the plasma density is such that significant modifications to

the refractive index occur, the full Eq.(6) for the emissivity must be

used. The values of the refractive index for perpendicular propagation

are

2 2 2

N+ 1 -N = 1 - 5( (29)
w2  2 2 2  12)

The corrections are of three basic types. First, the argument of the

Bessel function (Ykivi/w) is altered by the additional factor N± because
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k1 is different. Second, the emissivity is enhanced by the factor

N± (again basically because of phase speed modification). Third, for

the extraordinary mode, since K is no longer zero, an extra term must

be included in the pitch angle integral. This correction arises because

of modification of the wave polarization.

The ordinary wave, whose polarization is unchanged at perpendicular

propagation, has no correction of the third type. Therefore our pre-

vious results for the angle integrals can be used directly. All that

is required is to use N.p instead of p inside the integral. Then an

additional multiplication by N+ corrects j+ completely. Note that the

correction factors will be different for different harmonics so that

Fig.6 cannot be used directly. Generally the effect will be to

reduce the lower harmonics relatively more than the higher compared to

tenuous plasma calculations; thus for example j /j+ is increased by

finite density effects.

The extraordinary mode is much more difficult to deal with exactly.

To do so would require a calculation of the angle integral for essen-

tially every desired value of wp/Q. However, provided we exclude fre-

quencies close to a wave resonance (N + -), which in any case will tend

not to be easy to deal with experimentally, we can employ an approximate

correction scheme which enables us to use the angle integrals already

evaluated.

The approach is to note that K is already a small correction and

the recurrence formulae for Bessel functions give

N-psin 6
JX( RN-psin6/y) = (Ji + JZ+1 ) (30)

Y
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(all the arguments being the same). The Jg+1 term may also be treated

as small, provided N-psinO/y 4 1. Therefore the finite density correc-

tion term inside the integral can be written as N2K(1+JA+1/JA) times a

term of the same form as the tenuous plasma term; i. e. sine Jj.

Although Jk+1/J' is a function of 6, it represents only a second order

correction, so we shall obtain sufficient accuracy if we treat it as a

constant, equal to its value at the angle at which the integrand is

maximum. This angle may readily be shown to be given by

X
sin 2 emax =- for-A> 1 (31)

-A,

= 1 otherwise.

Therefore the approximate form we obtain for the finite density angle

integral then reduces (using the expansion for the Bessel functions) to

2

F(p) 1 + N2K 1 + --- sin 2 max en (Np). (32)
2y2  u+1ousx Ot). (32

This approximate form introduces an error of less than - 10% in the

coefficient of K, for N-p/y < 1. And it becomes exact in the limit

pi + 0, (i.e. A + -- or p + 0).

In Fig.9 we plot values of 0G (p cWNi2) as a function of w showin

how the finite plasma corrections alter the emissivity. The approximate

treatment of the extraordinary mode is indistinguishable in the figure

from the full angle integration of the exact equations. The purpose of

plotting this particular quantity is that it is a normalized form of

the radiation source function, j/N2 (see Section 7); i.e.
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0 p3 w 4 0c j
ip 0 (33)

NS e2  2fp ±

Thus it takes the shape of the emission spectrum from a plasma in which

fp = constant. We have cut off each harmonic at the point where it

would overlap with the next lower harmonic, so as to avoid confusion.

Naturally, if fp extends to high enough energy in a practical situation

overlap will occur. We have also suppressed emission between Q and the

upper hybrid frequency, ( + S21/2, for clarity and also because it

will tend to be inaccessbile.

6. ABSORPTION

It may also be of interest to use cyclotron absorption caused by

non-thermal electrons for diagnosis of the distribution function. The

absorption coefficient, a, may be deduced immediately in integral form

from the emission coefficient using the principle of detailed balance [1].

It is obtained, for the case of perpendicular propagation, by replacing

f(p) in the equation for j Eq.(6) by

---' - - (34)
N 2 2m, pL ap2

where Nr is the ray refractive index and is equal to the wave refractive

index N± for perpendicular propagation.

This simple relationship enables us to use our results to deduce

the perpendicular derivative 3f/ap2 from measurements of absorption

provided we regard it as being represented by the form
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af af
-- (L exp(-A cos 2 e). (35)

ap I ap

However, this is a different form of assumption about f itself than was

made for emission. That previous form Eq.(12) would have led to

f 1/ f cot9 df 1 /af Acos 2 O
2 - - = fe + ff fe (36)

ap~ i ( p ae

combining both fp and afp/3p. This is not immediately amenable to the

approach we have adopted. Therefore combinations of measurements of j

and a are not directly interpretable by the present methods in general.

An exception to this difficulty is the extremely anisotropic case

-A >> 1. For this parallel tail type, one may readily show that the

absorption coefficient reduces to a moment of the perpendicular momentum

(regardless of the exact angular dependence):

2e2rr y g 29 2 p
k e2It9 2 t L2  rpf _.. 2 l)21Tpjdp1  (37)a = -- - f( p2

me eoc p \2y X!2 Y 0

just as with the emission Eq.(21) (though the order of the moment is 2

less). In particular jt/a reduces to the anticipated Rayleigh-Jeans

type of Black Body value, w2T1/81
3c2 in a tenuous plasma, giving the

perpendicular temperature. This simplification occurs in the vertical

straight line approximation because integration by parts is possible.

In other cases no such simplification is available.
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7. PRACTICAL APPLICATION

The application of our results to a practical situation requires

primarily that measurements of emission intensity should be able to be

related to the emissivity and hence to the distribution function.

Naturally a view of the plasma will provide only an average value

of j along the line of sight. This is, of course, no different from

many other types of diagnostic and radial information may be obtained,

in principle, by Abel inversion etc. More importantly the plasma view

must be sufficiently collimated that the propagation is truly perpendic-

ular. This requires that the spread of resonant loci in p-space

arising from the angular spread in view (via Eq.(2)) be much smaller

than the typical spread of f(p). For relativistic particles this is

not an overly stringent condition.

For the emission intensity to be proportional to j also requires

that absorption be negligible i.e. the plasma must be optically thin.

This will depend on f(pI but may, in some circumstances rule out the

first harmonic [16] or ultimately prevent the approach from working

for any harmonic. For example the thermal bulk plasma is usually too

dense even up to X = 3 to be diagnosed explicitly therefore one must

avoid w X S1 in the spectrum.

When the plasma refraction is non-negligible, it is important also

to account for this fact in relating the observed intensity to local

emissivity. If absorption is negligible then the intensity is given by

[1],
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j
I f - di (38)

N2r

where Nr is the ray refractive index (again equal to N for perpendicular

propagation). This corrects for the fact that solid angles within

which the radiation propagates vary with Nr* It was in anticipation of

this point that Fig.9 plotted the quantity in Eq.(33) which is the appro-

priately normalized source function observed by emission measurements

in finite-density plasmas.

In practice, another difficulty may be harmonic overlap which will

tend to obscure the true harmonic ratios. Mild overlap may be able to

be compensated for using information from more than two harmonics or

else by making plausible assumptions about how the distribution function

extrapolates. However, strongly relativistic electron distributions

will probably defeat our scheme.

A final critical practical point is the necessity of avoiding

radiation entering the acceptance angle by multiple reflections from

the chamber walls. This effect would tend to distort as well as enhance

the spectrum because the multiply reflected radiation will not in gen-

eral propagate perpendicular to the field nor along the initial line

of sight where |B! is constant. Rather effective viewing dumps are

required in order to reduce the multiple reflections to a negligible

level and despite the fact that suitable ones have been developed [17]

this problem will probably remain the limiting factor in practical

experiments. This is particularly so for large anisotropy where one

wishes to take the ratio of two emissivities (either harmonics or polar-

izations) with very different magnitudes.
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8. CONCLUSION

We have shown that cyclotron emission from mildly relativistic

electrons can potentially provide very detailed information about the

electron distribution function. We have calculated emissivities for

tenuous and finite-density plasmas using a model of the distribution

which lends itself to direct determination via the cyclotron emission.

Using these calculations it is possible to determine directly the

anisotropy and the phase space density as a function of total electron

energy from measurements of two distinct optically thin harmonics (or

polarizations). These results promise to be directly applicable to

diagnosing plasmas with significant 'tails' on the electron distribution

due, for example, to RF heating or current drive or simple electron run-

away.
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FIGURE CAPTIONS

Figure 1 The pitch-angle distribution, fe, versus the momentum pitch-

angle, 6, for representative values of the anisotropy factor,

A.

Figure 2 The first harmonic cyclotron emission pitch-angle integral,

01, versus the anisotropy factor, A, for (a) ordinary mode,

(b) extraordinary mode. The different curves correspond to

different total electron energy (in keV) as indicated on

the figure.

Figure 3 As for Figure 2 but for the second harmonic.

Figure 4 As for Figure 2 but for the third harmonic.

Figure 5 As for Figure 2 but for the fourth harmonic.

Figure 6 The harmonic ratio, j3/i2, versus the anisotropy factor, A,

for different values of the total electron energy; (a)

ordinary mode, (b) extraordinary mode.

Figure 7 Polarization ratio of the second harmonic emission, j+/j-,

versus the anisotropy factor, A, for different values of

the total electron energy.

Figure 8 Approximations to the second harmonic cyclotron emission

pitch-angle integral, 02, versus the anisotropy factor, A,

for (a) ordinary mode, (b) extraordinary mode. For JAI >> I

these approximations agree well with the exact solutions,

shown by the broken lines.



-24-

Figure 9 Normalized emissivity, OGp 3 uVN 2 Q, versus the normalized

frequency, w/Q, for the first three harmonics with A - 0,

at three densities: 2/q 0, 0.25, 0.5. Harmonic

overlap is suppressed. (a) Ordinary mode; (b) Extraordinary

mode.
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