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Abstract: Methods applied for early diagnosis of osteoarthritis (OA) are limited. Early prevention and
treatment can effectively reduce the pain of OA patients and save costs. The present study aimed to
develop a rapid non-destructive detection method for early diagnosis of OA by evaluating infrared
(IR) spectroscopy combined chemometrics. Our cohort consisted of (a) 15 patients with osteoarthritis
(OA) and (b) 10 without clinical signs of the disease and they were used as controls. Attenuated total
reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was used to investigate serum samples
(50 µL) collected from these patients. A supervised classification algorithm namely discriminant analysis
(DA) was applied to evaluate the diagnostic accuracy spectral processing and chemometrics analysis
allowed for detecting spectral biomarkers that discriminated the two cohorts. About 250 infrared
spectra were statistically important for separating the groups. Peaks at 1000 cm−1 in OA serum were
associated mainly with C–O stretching vibration associated with the changes in the proteoglycan contents
previously reported in OA. A good overall classification accuracy of 74.47% was obtained from the
DA model. Our findings indicated that this discriminating model, which incorporated the ATR-FTIR
spectrum, could provide a rapid and cost-effective blood test, thus facilitating the early diagnosis of
human OA.

Keywords: biomarkers; osteoarthritis; infrared spectroscopy; blood testing; serum diagnostics;
ATR-FTIR; chemometrics

1. Introduction

Osteoarthritis (OA) is a well-known condition involving the degeneration of the
articular joints that, over the years, has caused much pain, disability, and loss of economy
worldwide. The disease is common in the elderly as age is the most prominent risk
factor for the development and progression of OA [1]. Knee OA is more important not
only for its high prevalence rate compared with other types of OA but also because the
incidence of knee OA increases with age and further increases with a longer lifetime
and higher average weight of the population [2]. Large weight-bearing joints like the
knee and hip are frequently afflicted [3]. These joints are characterised by reactive bone
hyperplasia at the joint edge and beneath the cartilage, synovial distension, inflammation,
thin and rough articular cartilage [4]. OA is characterised as a failure of the joint organ
that impacts all the tissues in and around the joint. These effects include changes to
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the periarticular muscles, nerves, bursa, and local fat pads as well as articular cartilage
degradation, thickening of the subchondral bone, osteophyte formation, varying degrees of
synovial inflammation, degeneration of ligaments, and hypertrophy of the joint capsule [5].
In OA, dysregulation brought on by the presence of various bio factors results in the loss of
cartilage homeostasis, which in turn causes the extracellular matrix (ECM), which is rich
in collagen and proteoglycans, to degrade. Cell death, matrix calcification, and vascular
invasion are other effects that follow [6].

Ageing, obesity, genetic predisposition, acute trauma, chronic overload, gender, hor-
mone profile, and metabolic syndrome are all known risk factors for OA [7]. Reactive
oxygen and nitrogen species produced by mitochondria and cellular stress responses, re-
spectively, are the main causes of this damage in ageing. The accumulation of somatic
mutations and DNA damage, telomere shortening, protein and lipid degradation, and
mitochondrial dysfunction are the immediate effects of these reactive oxygen species (ROS).
These molecular alterations lower the threshold of damage-inducing stress and decrease the
ability of chondrocytes to maintain cartilage homeostasis [8]. Another illustration is post-
traumatic osteoarthritis caused by traumatic injuries such anterior cruciate ligament (ACL)
tears and meniscal resection, which frequently result in joint instability or intraarticular
fractures (PTOA) [9].

The disease, which man has recognised since the early part of human civilisation, has
never been treated successfully. Many treatment regimens have been tried to address this
problem, besides using prosthetic implants for joint replacement and other similar means
to overcome the issues. Although these treatments have brought limited success in the
long term, they remain the mainstay practice for over 70 years, with minor improvements
seen along the way. The fact is that, without tissue repair, artificial tissues would not yield
good tissue functioning. Typical diagnostic methods for osteoarthritis consists of imaging
tests such as X-rays [10], magnetic resonance imaging (MRI) [11], ultrasound [12], micro
CT [13] as well as alternative methods such as vibroarthrography [14]. However, the current
diagnostic methods are inconvenient, time-consuming, expensive, invasive, and in most
cases, painful. Meanwhile, the only lab test available is joint fluid analysis [15]. By far, there
is no blood test available for osteoarthritis diagnosis, and the only medications available are
focused on decreasing the symptoms of the disease, such as pain-relieving medications in-
cluding acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs) [16]. Besides,
conducting physical examinations such as examining muscle atrophy, limb alignment and
passive and active knee range of motion (ROM) [17] could be done. Physical examination
alone is not sufficient to diagnose clinically significant hip osteoarthritis [18]. As such, the
treatments of OA have been relatively limited, and the use of more biological approaches
has been promoted more aggressively, albeit with limited long-term success. Considering
that the formation of osteoarthritis typically develops over decades [19], this gives us plenty
of windows to alter its course. We believe that precautions are the primary key to avoiding
getting into this critical condition. Hence, early diagnosis of OA is vital.

When the whole joint is affected by OA, it results in molecular and macroscopic
changes within the articular cartilage, synovium, subchondral bone, ligaments, meniscus,
and synovial fluid [20]. Identifying OA at its early stages may represent a critical clinical
window for effective intervention strategies. However, currently, there are no sensitive
biomarkers for early-stage OA, and the clinical diagnosis is mainly made at the later stages.
Thus, serum research is crucial to understand the serum metabolomics network indicating
ageing in OA pathogenesis and determining the variation of biomarkers’ potential diagnos-
tic utility [21,22]. In this study, we investigated the capability of infrared spectroscopy to
classify the sera from patients with OA and controls.

Vibrational spectroscopy is a promising method for the diagnostics of a great variety
of disorders. Non-invasive biofluids such as blood, urine, tears, and saliva have been
investigated as essential sources of biological information [23]. Each type of these fluids
has their specific functional groups, which are structural units within organic compounds
defined by specific atom and bond arrangements. Attenuated total reflection Fourier-
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transform infrared (ATR-FTIR) spectroscopy is an amazing device for the identification
of functional groups as it can provide a fingerprint of the biochemical substances present
in a sample by highlighting their atomic vibrations (bending, stretching, and torsions of
the chemical bonds) after the sample has absorbed the infrared [24]. The fingerprinting
approach using a combination of FTIR and chemometric tools offer various advantages,
including rapid, low-cost, sensitive, and reliable [25]. The ATR-FTIR spectroscopy uses a
diamond crystal to direct the infrared (IR) beam to the sample, thus creating an evanescent
wave. The latter penetrates the sample for a few microns to derive its chemical information
to the detector as peaks known as spectrum data, which present promising results as a
potential diagnostic or screening tool [26]. The performance of ATR-FTIR spectroscopy in
detecting OA in human serum has, however, not been investigated. Validation of the ability
of an ATR-FTIR-based approach to detect and monitor the progression of OA is considered
a critical step before adapting this approach to future preclinical screening. Additionally,
ATR-FTIR provides additional specificity for isomers where mass spectrometry (MS) often
fails due to similar fragmentation patterns.

Therefore, one approach that has been identified is to develop a rapid non-destructive
detection method for the early diagnosis of OA by evaluating the IR spectroscopy combined
chemometrics and by providing potential spectral markers indicative of disease. The ATR-
FTIR spectroscopy is advantageous as it allows easy sample preparation and is inexpensive
and reliable when combined with chemometrics. We hypothesised that circulating biomark-
ers of disease were reflected in the spectral profile. By using a classification algorithm
through chemometrics, segregation between the OA and control groups was undertaken,
and subsequent diagnostic accuracy was assessed. The levels of the discriminatory spectral
markers indicative of disease were also calculated and correlated with certain bonds within
the biological molecules.

2. Methodology
2.1. Ethical Approval

Medical Research Ethics Committee, University Malaya Medical Centre (MREC ID
No.: 2016927-4288) approved this prospective observational cohort research.

2.2. Sample Size Calculation

Sample size calculation based on a 95% power range using a two-tailed t-test esti-
mated a group size of 14 in the OA group (an effect size of 0.50) based on a hypothetical
50% detection rate of OA.

2.3. Participants

Inclusion criteria for the OA group included a range of age of 60–80 years old, re-
gardless of gender (female or male), osteoarthritis stage (end-stage/stage 4), primary
osteoarthritis, and knee joint as the location of interest. We focued on patients needing
a knee replacement (Table 1). Meanwhile, the exclusion criteria included inflammatory
diseases (rheumatoid arthritis), age below 60, early stage of osteoarthritis, secondary os-
teoarthritis, hips and hands as the locations of interest, and secondary osteoarthritis. Most
early OA patients did not visit the hospital for treatment and relied on painkillers (Table 1).
Due to the lack of data from these early-stage OA patients, the inclusion criteria were
focused on end-stage OA instead. For control group, volunteers with no clinical diagnosis
of OA were assigned to the healthy group (n = 10). The control group had no orthopaedic
or systematic abnormalities based on physical and orthopaedic examinations.

2.4. Serum Collection

After the blood withdrawal, the blood samples were centrifuged at 1320 g for 15 min,
and the supernatant was taken off. The serum samples were collected and aliquoted into
typical 1 mL microtubes before further use. Each group used a volume of 50 µL serum for
spectroscopic analysis.
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Table 1. Criteria for selection of each study group.

Inclusion Control Group
(Non-OA)

Inclusion Experimental Group
(OA Group) Exclusion Control and Experimental Group

• Individuals around 60–80 years from
normal population which came to the
Blood Bank for donating in UM Medical
Centre (UMMC), Malaysia.

• Patients with symptomatic radiographic
primary knee OA, attending the
orthopaedic clinic in UM Medical Centre
(UMMC), Malaysia will be recruited.

• Patients with end-stage OA disease that
were planned to receive an arthroplasty
(OA group).

• Patient with mild to established OA that
had no indication for an arthroplasty.

• Individual who are unable and unwilling
to provide written informed consent
(signature or thumbprint if unable to
write).

• Individual who has medical history of
inflammatory diseases such as
autoimmune disease.

• Individual who has been taking
anti-inflammatory drugs especially
nonsteroidal anti-inflammatory drugs
(NSAIDs).

2.5. ATR-FTIR Spectral Acquisition

About 15 OA serum samples and 10 control serum samples were scanned 10 times
for each formulation using an ABB MB3000 ATR-FTIR spectrometer (Clairet Scientific,
Northampton, UK) equipped with a diamond crystal of ATR GladiATR platform (Perkin
Elmer, MA, US). An amount of 1–2 g of samples was put in touch with the diamond crystal
at 20 ◦C. The scanning was carried out in the mid-infrared range of 450 cm−1 to 4000 cm−1

at 4 cm−1 resolution. A total of 250 produced absorbance spectra were pre-processed using
Horizon MB ATR-FTIR software version 3.0.13.1 (ABB, Montreal, QC, Canada) to facilitate
the differentiation process among the samples. All spectra were subjected to baseline and
smooth corrections to obtain a better spectrum. The spectra were analysed for chemo
metrics analysis as shown in the Figure 1.

Figure 1. The framework of the infrared spectroscopy combined chemometrics in osteoarthritis
human serum.
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2.6. Chemometrics
2.6.1. Data Pre-Processing

The spectra were converted into comma-separated values (CVS) and imported to the
dataset table in XLSTAT 2016 software [27]. At first, the functional group (4000 to 1701 cm−1)
and fingerprint group (1700 to 450 cm−1) were separated. Then, DA was carried out
on both functional fingerprinting groups and the most significant wavenumbers from
these groups were combined (104 spectrum data). Subsequently, the Kaiser-Meyer-Olkin
(KMO) test verified dataset adequacy before carrying out a second DA with the combined
wavenumbers [28]. Meanwhile, 47 data were utilised for cross-validation, 24 data were used
for the testing dataset, and 24 data were used for the verification dataset. Then, the most
significant wavenumbers were selected from DA and proceeded with principal component
analysis (PCA) to find the apportionment of wavenumber on serum.

2.6.2. Kaiser-Meyer-Olkin Test

The dataset was analysed for dataset adequacy by the KMO test. An adequate dataset
determines the ability of a generated model to extract latent variables from the dataset.
In this study, the KMO test was employed at a significant level (α) of 0.01. The cal-
culated KMO was ranked as KMO < 0.5 = inadequate, 0.5 < KMO < 0.7 = mediocre,
0.7 < KMO < 0.8 = good, 0.8 < KMO < 0.9 = very good, and KMO > 0.9 excellent to indicate
the dataset adequacy [29].

2.6.3. Dataset Transformation

To ensure that the dataset followed a normal distribution before the PCA, the dataset
normality was tested using Shapiro-Wilk test at α of 0.01. The dataset was transformed
using standard deviation (n−1) methods.

2.6.4. Discriminant Analysis (DA)

Each group (OA and non-OA serum) was used as training, cross-validation, and testing
dataset in DA. The OA sera were marked as “100%”, and the non-OA sera were marked
as “0%”, which indicated serum from the healthy group. Furthermore, the developed DA
model was used to classify the unknown serum for verification.

2.6.5. Dataset Exploratory by PCA

The PCA of Pearson correlation was applied to recognise the dataset pattern, to
explore the contribution of each fatty acid (FA) to the cosmetic soap formulations, to find
and explain the variance of intercorrelated FAs, and to transform the dataset into smaller
sets of new independent variables called principal components (PCs). The principle of PCA
was to significantly reduce the dataset dimensionality (p < 0.01) to achieve these aims.

3. Results and Discussion
3.1. Validation and Verification of the DA Model between OA and Healthy Serum Samples

To achieve relevant findings, pre-requisite MDA must be carried out [30], beginning
with choosing the appropriate dataset for the study using the KMO test. For the 250 datasets,
the KMO test produced a KMO score of 0.820 (Table 2). A lack of the KMO test may result in
reporting inaccurate findings and interpretations because of a small dataset [31]. According
to a general report, the KMO value of 0.8 to 0.9 was deemed good [32]. Many different
research areas such as analytical chemistry, multivariate statistical process control, food,
pharmaceutical, and biomedical investigations used standardised (n−1) transformation
while assuring the normal distribution of the dataset.

Table 2. The KMO test produced a KMO score of 0.820 for 250 datasets.

Kaiser-Mayer Measure of Sampling Adequacy:

KMO: 0.820
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There is a lack in the studies that have mentioned any dataset transformation. Hence,
our study recommended that all variables be transformed by using the standard deviation
(n−1) method. The dataset transformation simultaneously corrects the linearity issue as
well. Hence, the linearity test is on a case-by-case basis. The last step before MDA is
performing assumption testing, which involves normalisation. The normalisation of the
dataset was conducted by performing the Shapiro-Wilk test at α of 0.01, which allows
only a 1% chance of a false positive as this study was designed for authentication analysis.
Therefore, it should be very effective in reducing errors.

In this study, discriminant analysis (DA) was employed to develop a discriminating
model (DM) differentiate to differentiate controls from human with OA by calculating
the distance from each class evaluated in distance units. The classification of unknown
samples to one of the specific classes can be predicted after the classification model was
obtained [33]. Discriminant analysis classifiers are routinely used in the spectroscopic
analysis of biological tissues [34,35]. The validation of the DA model is essential for a
reliable estimation of model accuracy using root mean square error of prediction (RMSEP)
for instance [36]. Several validating models are available, including cross-validation across
replicates. Previous publications on multivariate data analysis (MDA) are not always clear
whether the technical replicates of the same specimen or specimen extracted from the same
individual are used in both the training and the test sets. However, in the present study,
cross-validation across replicates was used by systematically taking all replicates for the
same physical sample [36] for the DA model validation. Thus, the validation tests how
precisely one can re-measure the same physical sample.

Significant wavelengths were identified by the DA in OA and healthy serum (OAHS)
samples (Figure 2). The DA model was established by highlighting the wavelength that can
differentiate one source to another, known as the supervised pattern recognition technique.
Moreover, DA in OAHS can accurately classify 100% for the training dataset, 74.47% for the
cross-validation dataset, and 100% for the testing dataset to its classes (Table 3). In other
words, there were almost no samples being misclassified from their group’s validation.
The created models were also utilised to predict whether or not an unknown blood serum
sample would be suspected of having OA. The question of whether the unidentified
samples resembled OA or the healthy group was decided. With the value of the verification
dataset at 100%, the analysed blood serum samples from OA and healthy serum were
clearly distinguished using the OAHS model. In general, the OAHS DA model accurately
classified training, cross-validation, testing, and verification datasets for differentiating the
presence of OA in the blood serum samples.

Figure 2. Comparison of FTIR spectra of OA and healthy serum.
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Table 3. Classification matrix of training, validation, testing and verification datasets by discriminant
analysis (DA). DA in OAHS model can accurately classify 100% for the training dataset, 74.47% for
the cross-validation dataset, and 100% for the testing dataset to its classes.

Discriminating Model (DM)

Ranking of Significant of
Functional Group (cm−1)

Contributed to Discriminating
Model (p < 0.01)

Dataset Correct Classification (100%)

OAHS: Osteoarthritis & healthy
serum

3960, 3880, 3860, 3850, 3842, 3841,
3819, 3816, 3814, 3786, 3779, 3769,
3743, 3742, 3729, 2583, 2579, 2569,
2559, 2558, 2551, 2547, 2540, 2532,
2520, 2510, 2503, 2502, 2499, 2497,
2487, 2484, 2480, 2476, 2459, 2458,
2455, 2453, 2443, 2439, 2437, 2434,
2420, 2418, 2416, 2298, 2272, 2270,
2198, 2061, 2055, 2053, 2010, 1954,
1929, 1919, 1915, 1904, 1887, 1870,
1869, 1866, 1865, 1860, 1858, 1856,
1854, 1852, 1850, 1846, 1843, 1841,
1839, 1836, 1833, 1831, 1830, 1824,
1823, 1821, 1815, 959

Training dataset
0% 100%
100% 100%
Total 100%
Cross-validation dataset
0% 79.17%
100% 69.57%
Total 74.47%
Testing dataset
0% 100%
100% 100%
Total 100%
Verification dataset
0% 100%
100% 100%
Total 100%

Routine radiography in early OA has insufficient discriminative power to predict
future OA, it is difficult to identify people at risk for incident disease or disease progres-
sion [37]. Other radiography drawbacks include its low sensitivity to longitudinal change
and lack of sensitivity and specificity for the diagnosis of OA-associated articular tissue
deterioration [38]. The confirmation of biochemical and imaging biomarkers that identify
patients at risk for progressive disease and the identification of genetic processes that detect
early disease is thus necessary [39]. Therefore, this study has highlighted the use of ATR-
FTIR combined with chemometrics due to its excellent capacity for rapidly distinguishing
between diseases and healthy groups [40].

3.2. Apportionment of Wavenumber Contributing to OA in Serum

The greatest options for osteoarthritis biomarkers are most likely structural molecules
or fragments associated with cartilage, bone, or synovium and may also include other
biological fluids like serum [41]. Diagnostic biomarkers should identify patients at the
stage of osteoarthritis where the highest benefit from treatment may be expected. A
previous report has shown that serum could be used to determine potential predictive
markers such as serum hyaluronan, urinary collagen type II C-telopeptide (uCTX-II) and
cartilage oligomeric protein (COMP), all of which are high in populations of individuals
with hip or knee osteoarthritis [39]. A recent meta-analysis by [42] found that serum
COMP was elevated in patients with knee osteoarthritis and was sensitive to osteoarthritis
disease severity. Serum levels of COMP and type II collagen cleavage product (C2C)
have also been shown to correlate with knee degeneration in patients with symptomatic
knee osteoarthritis [41]. Hence, blood serum was used as the sample of choice in this
present study since the relevance of using the blood serum in the diagnosis of OA has been
previously reported [43].

Besides performing DA from ATR-FTIR spectral data derived from OA and healthy
serum in the present study, PCA was also conducted and it is one of the unsupervised
pattern recognition techniques used in multivariate analysis. The reason of conducting PCA
is to simplifies the complexity in high-dimensional data and showing the trends or patterns
between OA and control groups. Moreover, PCA projects the original data in reduced
dimensions defined by the PCs. This technique is useful when there is a correlation between
data [44]. In this study, PCA was accomplished using ATR- FTIR spectra wavelength of
blood serum from OA and healthy groups at the frequency region of 3994–509 cm−1 after
the data were transformed. The OAHS model had two formulas (Formula (1) and (2)),
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which explained the observation/variables value of 72.57% (Figure 3) for the whole dataset.
This observation/variables value indicated that the OAHS model could explain the dataset
very well as the CV value was greater than 70% [45]. The ATR-FTIR analysis supported
the significant wavelengths from the PCA results, which demonstrated peaking at the
wavelengths of 2019–2015 cm−1, 1745–1740cm−1, 1456–1453 cm−1, and 1152–1145 cm−1.
Additionally, PCA highlighted the overall significant wavelength from the ATR-FTIR data,
describe the correlation and distribution of significant wavelength as identified by the DA
in OAHS model as well as demonstrated pattern classification between groups (Figure 4).

Figure 3. Principle component analysis (PCA) of OAHS model by showing the significant wavelength
involved in the OAHS dataset with observation/variables value of 72.57%. The observation/variables
value indicated that PCA of OAHS model could explain the dataset very well as the CV value was
greater than 70% [45].

Figure 4. The Principle Component Analysis (PCA) in OAHS model. The PCA model could explain
the dataset very well by showing Observation/Variables value of 100% and demonstrated well
pattern classification between two groups. (Green classes: OA group & Blue classes: HS).
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The ATR-FTIR analysis revealed the presence of various characteristic functional
groups in the serum samples derived from OA and normal subjects. The frequency range
and functional groups obtained from the absorption spectra in OA group are presented in
Table 4.

Table 4. FTIR frequency range and functional groups obtained from absorption spectra in serum
from osteoarthritis patients.

Peak Frequency Range (cm−1) Functional Group Compound Class Description References

1 3248 O-H Stretching Carboxylic Acid Carboxylic Acid Indicates
Fatty Acids Level [46]

2 1000 C-O Stretching Alcohol
Associated With The
Changes In The
Proteoglycan Contents

[26–47]

3 635 C-Ci Stretching Halo Compound
Due To The Presence Of
Ring Deformation Of
Phenyl Compounds.

[34]

With this classification, the spectral differences between the OA and healthy serum
samples can be seen, especially in the carboxylic acid (3248 cm−1), alcohol (1000 cm−1), and
halo compound (643 cm−1) regions. Osteoarthritis is a degenerative, complex, multifaceted
joint disease that eventually causes substantial joint pain. The first signs of cartilage
degeneration are proteoglycan (PG) loss and collagen degeneration, leading to higher tissue
permeability [48]. This present study found that a peak at wavelength 1000 cm−1, shows
changes in proteoglycan, as also recorded in the previous studies [26]. The previous study
showed that the accumulated polyunsaturated fatty acids (PUFAs) under an imbalance of
lipid metabolism stimulated the release of pro-inflammatory cytokines in the joints driving
the cartilage into a stress-induced condition [49] and underwent auto-degradation through
chondrocyte death. High PUFA levels can lead to a newly discovered cell death known
as ferroptosis [50]. Ferroptosis is the outcome of depleted antioxidant enzymes known as
glutathione peroxidase 4 (GPX4) that scavenges PUFA. It has been found that omega-3
(ω-3) and omega-6 (ω-6) are two main families of PUFA, and they are strongly involved
in the ferroptosis process [51]. Highly oxidised PUFA enriched in the cell membrane can
be hazardous as it can convert the PUFA to PUFA phosphatidyl etherolamine (PUFA-PE)
with the help of ACSL4 and LPCAT3 genes leading to the formation of lipid peroxide. This
process eventually undergoes lipid peroxidation, thereby leading to ferroptosis. Hence,
this information supports the present study’s findings, which showed the presence of FA
that was significantly higher in the OA serum samples compared to the serum samples of
healthy group.

Referring to the spectrum data from OA serum, a halo compound was also seen at a
wavelength of 1000 cm−1. This can be linked to the receipt of knee pain injections containing
6-halo-4-quinolone compound, which is a producing agent administered once a week based
on the severity condition of the OA patient [52,53]. The 6-halo-4-quinolone compound is
usually used for treating osteoarthritis and in pharmaceutical compositions. The compound
is an organic compound that has hydrogen atoms occupying the molecular sites of the
halogen atoms in halocarbons. The infrared spectrum table by frequency range showed
a wavelength of 635cm−1, which was due to the ring deformation of phenyl compounds.
This discovery made sense considering that the halo compound and phenyl compound
are often mixed and referred to as halophenyl, a compound used in knee injection for
knee injection due to their therapeutic potentials such as an an antimicrobial [54]. While
these changes can be visually seen in the average and difference spectra, they might not
be statistically significant by themselves, thus requiring the utilisation of the multivariate
methods.

The biplot of OA and control group serum samples exhibited two PCs in accordance
with 34 and 48 significant wavelengths (p < 0.01), respectively. Figure 5 of the wavelengths
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in the OA plot shows positive correlations due to same plot direction among 887~1815cm−1

that associated to the extended carbohydrate region (950–1400 cm−1), the amide I region
(1585–1720 cm−1), the amide II region (1485–1585 cm−1), and the combination of the carbo-
hydrate, amide I, and amide II regions [55], whereas the wavenumber observed between
3814~3960 cm−1 due to CH, OH, and NH stretch bands was located in the target region for
understanding the hydration of cartilage [56]. The biplot of the control group in Figure 5 were
grouped in two clusters and showed positive correlations for wavenumber 1815~1954 cm−1

and 2010~2583 cm−1 results from CO2 vibrations [57].

Figure 5. Biplot of OA and HS group by showing the significant and different wavelength involved
in each groups.

4. Limitations

The limitations of the present study are the fact that the control and OA groups had a
wide range of gender. The obtained results were promising considering the limited amount
of data for modelling in the current study and it only focused on primary OA instead of
taking into account secondary OA as well. In terms of a future strategy, gender groups
should be established, and patients might be enrolled based on whether they are in the
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early, mid, or late stages of OA. The study’s focus can further be narrowed by emphasizing
OA in a young population such as among athletes who suffer from stress fracture tibia.
To pinpoint precisely which substances are present in the control and OA groups, a more
sophisticated analytical tool, like an LCMS or GCMS, could be used.

5. Conclusions

The present study was limited by the relatively low number of samples. However,
the overall performance of the DA model was good as the accuracy and PCA were 74.47%
and 72.57%, respectively. Furthermore, the ATR-FTIR spectroscopy supported by the
chemometric method was successfully employed to discriminate the OA and healthy
groups based on the analyses of the blood serum samples. Chemometric tools such as PCA
aided in pattern recognition, whereas DA enabled differentiation of the chemical bonding
presence between two groups. The results can be further applied to other biological fluids
in humans. In conclusion, this was the first study using ATR-FTIR spectroscopy as a
potential serum-based screening test for OA in humans. Prospective studies evaluating the
predictive model’s performance in a larger population of OA patients with stricter selection
criteria are warranted.
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12. Yeğin, T.; Altan, L.; Aksoy, M.K. The effect of therapeutic ultrasound on pain and physical function in patients with knee
osteoarthritis. Ultrasound Med. Biol. 2017, 43, 187–194. [CrossRef]

13. Sulaiman, S.Z.S.; Tan, W.M.; Radzi, R.; Shafie, I.N.F.; Ajat, M.; Mansor, R.; Mohamed, S.; Ng, A.M.H.; Lau, S.F. Comparison of
bone and articular cartilage changes in osteoarthritis: A micro-computed tomography and histological study of surgically and
chemically induced osteoarthritic rabbit models. J. Orthop. Surg. Res. 2021, 16, 663. [CrossRef]
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