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Abstract—This paper proposes a fault diagnosis approach 
for detection and diagnosis of parametric faults in linear 
dynamical systems. It is assumed that the system is modeled by
an auto-regressive (ARX) model, and a recursive least-squares
(RLS) algorithm with variable forgetting factor is used for on-
line parameter identification. The fault detection task is done
using a statistical principal component analysis (PCA) method
applied to ARX parameters. The fault isolation is done using an 
influence matrix method. The proposed methodology is applied 
to a simulation model of a DC motor under closed-loop control,
and the performance is discussed.

Keywords: fault detection and diagnosis, system identification, 
statistical analysis.

I. INTRODUCTION

HE operation of technical processes requires
increasingly advanced supervision and fault diagnosis

methods to increase reliability, safety and economy, [7]. The
monitoring of faults in feedback control system components
is commonly named Fault Diagnosis, or Fault Detection and 
Isolation (FDI). Process monitoring and diagnosis
techniques can be classified as being associated with one or 
more of three approaches to FDI, namely, analytical, data-
driven, and knowledge-based.

During the last two decades, many investigations have 
been mostly made using analytical approaches to FDI based 
on quantitative models. The main idea is the generation of
signals that reflect inconsistencies between nominal and
faulty system operation. Such signals, termed residuals, are 
usually generated using analytical approaches: observers [3], 
parameter estimation [7], or parity equations [6].

The data-driven approaches to FDI are based directly on 
process data. The strength of data-driven techniques is their
ability to transform the high-dimensional data into a lower
dimension, in which the important information is captured,
especially in large-scale systems that produce a large amount
of multivariate data. Some common multivariate data-driven
techniques are principal component analysis (PCA), Fisher
discriminant analysis (FDA), partial least-squares (PLS), 
and canonical variate analysis (CVA) [4]. The PCA is the
most widely statistical multivariate technique used in

industry.
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The knowledge-based approaches to FDI use qualitative
models, and are especially suited for systems in which 
detailed mathematical models are not available. These kinds 
of approaches are usually based on causal analysis, expert 
systems, and/or pattern recognition [4]; fuzzy and neural
techniques are commonly used. Like the analytical 
approach, most applications of the knowledge-based
approach have been applied to systems with a relatively
small number of inputs, outputs, and states.

Each process monitoring and fault diagnosis technique
has its strengths and limitations. The combination of
different FDI schemes can result in better process
monitoring performance for many applications, [4], [7],
[11].

The FDI methodology proposed in this paper follows this
research direction of combined approach to FDI, focused on 
the main goal of increasing the overall performance. Section
II presents the theoretical aspects of the proposed fault
detection and diagnosis approach. Section III describes the
simulation model of the DC motor used for simulations.
Simulation results are depicted in section IV, and the
conclusions appear in the last section.

The main contributions of the paper are: a) the fault 
detection approach based on the application of PCA analysis
to parameters of ARX models; b) the improvement of fault
isolation performance by introducing a variable forgetting 
factor in the RLS algorithm.

II. FAULT DETECTION AND DIAGNOSIS APPROACH

A. Discrete-time input-output ARX modeling 
In this work, it is assumed that a discrete-time dynamical

system is modeled by a single-input single-output (SISO)
linear and time-invariant (LTI) system. The polynomial
representation based on an auto-regressive with exogenous 
input model, ARX(na,nb,nk), will be used [13]:

A(q-1) y(k) = q-nk B(q-1) u(k) + e(k) (1)
A(q-1) = 1 + a1 q-1 + + ana q-na

B(q-1) = b0 + b1 q-1 + + bnb-1 q-(nb-1)

In (1) the input and output signals are, respectively, u(k)
and y(k), being k the discrete-time instant. The signal e(k) is 
assumed to be a white noise signal. The argument q-1

denotes the backward shift operator, so q-1u(k) = u(k-1), etc. 
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The orders of the polynomials are na and nb, and nk is the
pure time delay. The ARX parameter vector is expressed by

 = [a1 a2  ana b0 b1   bnb-1].

B. Closed-loop control architecture
Typically, most of the dynamical systems in industry

work under closed loop control, as depicted in Fig. 1. 
Assuming a SISO system, the process plant is represented 
by the block P, and the blocks A and S represent,
respectively, the actuator and the sensor. The blocks A/D
and D/A are the analog-to-digital and digital-to-analog
converters. The digital computer implements the supervision
and control algorithms. The digital signals are also
represented in the figure: the reference signal, r(k), and the 
input and output signals, u(k) and y(k), respectively. The 
other signals are analog signals: the real process input ur(t),
and the real process output yr(t). The signals w(t) and v(t)

are, respectively, the disturbance input to the plant, and the
disturbance or noise in the sensor. 

C. Recursive least squares algorithm
In this work, a modified recursive least-squares (RLS) 

algorithm was used to perform the on-line identification of
the parameters of the ARX model (1). This means that the
parameters will be time-varying signals, and a function of
the discrete time k:

(k) [a1(k) a2(k)  ana(k) b0(k) b1(k)   bnb-1(k)] (2)

The traditional RLS algorithm may be found in [13]. A 
variable forgetting factor, (k) = 1 - 1/ (k), is proposed in
this work. (k) is a function of the memory horizon (k).

(k) is a design parameter, and different values are used to
cope with different operating conditions: a) the start-up
( (k) = s ), the nominal region without faults ( (k) = n ),
and the faulty situations where an exponential variation is
assumed ( (k) = f (k) + s (1 - (k)) ;

(k) = exp(-(k-kf)/ )). For the faulty case, kf  is the time
instant of fault detection, and  is a design parameter (a 
decay time constant); kf is updated after fault detection. The 
variable forgetting factor allows an increase in the RLS
performance, especially in faulty situations where occurs
changes in the system dynamics.

Fig. 1.  Closed loop control architecture.

D. Fault detection based on principal component
analysis
It is assumed that the system is working in steady-state 

and it is modeled by an ARX model; the parameter
identification is done through a RLS algorithm, and 
parametric faults occur. A principal component analysis
(PCA) model is introduced in this paper to perform fault
detection. The main contribution of the paper is the
application of PCA to ARX parameters, (k), instead of the 
traditional way of application to the input-output signals.
The PCA technique is used here for the reduction of the
parameter space of the ARX model, assuming that 
correlations exist between the parameters. This space 
reduction allows, typically, a reduction of dimension from
five, or more, to two, or three dimensions; that allows a 
better visualization and understanding of the system
behaviour.

The PCA multivariate analysis has been extensively
studied and applied in many fields of science and 
engineering [4], [8], [14]. First a static PCA technique will
be explained, and applied to build a PCA nominal model for
the nominal region (without faults). This model will be used
as a PCA reference model for fault detection. After that, will
be explained how the PCA can be extended to dynamic PCA 
in order to cope with dynamical systems.

The static PCA technique will be explained in a concise
form, applied to ARX parameters. Consider a system
modelled by an ARX(na,nb,nk) model, with m elements in
the parameter vector (k). If n samples are acquired in the 
nominal region, then a data matrix X n m will be
available to compute the PCA nominal model:

X = [x1 x2  xm]; xi
n 1 (3)

First the original data (di=xi) is scaled, in order to each
variable (each ARX parameter) has zero mean and unity 
standard deviation. This is done by:

xi = (di - i) / i (4)

In the second step, the correlation matrix, S m m, is 
computed accordingly to (5). The eigenvalue matrix

m m, and the eigenvector matrix V m m, are 
obtained by a singular value decomposition (SVD). 

S = 1 / (n - 1) XT X = V  VT (5)

The third step, consists in choosing the number of 
principal components, a, to retain in the PCA model. A
number of techniques are available, but there appears to be
no dominant technique. In this work, the percent variance
test is used, [4], [8]; this method determines a by calculating 
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the smallest number of loading vectors (“principal 
components”) needed to explain a specific minimum 
percentage of the total variance (generally, greater than 80 
%). The first a eigenvalues, 1 a, explains the 
greatest variance, and the corresponding loading vectors 
define the scores space. 

In the fourth step, the scaled data is projected onto the 
scores space. Selecting the columns of the loading matrix 
P m a   to correspond to the loading vectors 
V m m associated with the first a eigenvalues, the 
projections of the observations in X into the lower-
dimensional space are contained in the score matrix, 
T n a:

T = X P (6)

 If the number of principal components is two, a = 2, then 
a two-dimensional scores plot can be used to visualize the 
scores; the points in the two-dimensional scores space: 
{t1(i), t2(i)}; i=1, 2, , n.

In the final step it is necessary to compute the threshold 
for the scores. In this work, was assumed that only the first 
two principal components (a = 2) are retained in the PCA 
model; for this case, the elliptical confidence region for the 
scores is limited by an ellipse (threshold) accordingly the T 2

statistics, [4]: 

t
2

1  / 1 + t
2

2  / 2  T
2

T
2
 = 

a(n-1)(n+1)
n(n-a)  F  (a,n-a)

(7)

In (7), t1 and t2 are the projections along the orthogonal 
axes defined by the two main loading vectors, and 1 and 2

are the eigenvalues of greater variance. The T 2 statistics 

threshold is T
2
, and F  (a,n-a) can be obtained from an F-

distribution table for a certain level of significance , [8].
Several techniques exist for the implementation of 

dynamic PCA methods, [4]. In this work, a method based on 
a sliding window averaging the observations was 
implemented. The observations (ARX parameter vector), 

(i,k); i=1, 2, , L, within a sliding window of length L are 
projected in the scores space defined accordingly (6); the 
obtained scores defines a data cluster. The centroid of the 
scores (cluster) associated to the sliding window is 
computed based on a k-means clustering algorithm, [2]. A 
fault is detected if the cluster centroid falls outside the 
elliptical confidence region defined by (7). 

E. Fault isolation based on influence matrix method 
A method for fault diagnosis based on an influence matrix 

(IMX) was first developed by Ono and co-workers, [10], 

and some developments were done by Doraiswami and co-
workers, [5], [12]. This method allows the detection, 
isolation and estimation of faults, and was developed for 
systems represented by input-output models. Assuming that 
the model parameters are multi-linear in the physical 
parameters (resistance, controller gain, etc), the influence of 
each physical parameter on the model parameters (called the 
influence vector) can be interpreted as a fault template line 
associated with that physical parameter. The influence 
matrix is assumed to have been computed off-line, and 
stored for later use in on-line fault diagnosis, [12]. 

Let’s consider the parameter (feature) vector of an 
ARX(na,nb,nk) model as a column vector   

 = [a1 a2  ana b0 b1   bnb-1]T, and the physical 
parameters denoted by  = [ 1 2 p]T. The relationship 
between the model parameters and the physical parameters 
can be expressed as  = f( ). Let the nominal values of the 
physical parameters be denoted by nom, and the vector of 
their deviations due to a fault by  = [ 1 2 p]T.
The vector  = f( nom + ) can be written in the form of a 
Taylor’s expansion, and assuming there is only a single fault 
and each component of the feature vector is multi-linear in 
the physical parameters, then the Taylor’s expansion will be 
simplified as [12]: 

 = nom + 
i
| nom i

(8)

In (8), the partial derivative of the feature vector, , with 
respect to the ith physical parameter, i , is termed the ith 
influence vector, denoted by i . For each physical 
parameter, j , the associated influence vector is defined as: 

nom
j  = 

j
| nom  ; for j = 1, , p

(9)

Then the influence matrix, , is the matrix whose 
columns are the p influence vectors given by (9): 

 = [ 1 p] = [
1 p

] nom
(10)

Accordingly (8) and (9), the feature vector deviation, ,
caused by a perturbation or fault, j , obeys (11). When a 
fault occur, the feature vector deviation  will be aligned 
with the associated influence vector i . 

i i (11)

The presence of noise will cause error in estimation of 
ARX parameters, and the estimated  will never lie 
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exactly in the direction of i , but will be expected to have 
the largest projection on i  than on the other influence 
vectors, assuming that the influence vectors are well 
separated in the Euclidean space of feature vectors. 

After the faulty physical parameter, say i , has been 
determined, then an estimate of the value of its deviation, 
say i , may be obtained by solving a least-squares 
estimation (LSE) problem. The optimal solution to this LSE 
problem is: 

*
i  = (

T
i i)-1 T

i
T

i i
2 (12)

The magnitude of the projection of  on i  is given by 

(13), where T
i  is the unitary vector in the direction of i . 

P
i
 = || i

*
i  || = |

T
i  |

(13)

In [12] is proposed the following method for single fault 
diagnosis. Having estimated   (hence  ), the index of the 
faulty physical parameter, i , is determined by the largest 
projection of  on the influence vectors, that is: 

i = argmaxj { |
T

j  | ; j=1, ,p }
(14)

In this work, a new different method is proposed. Having 
estimated   (hence  ), the index of the faulty physical 
parameter, i , is determined by the minimum angle (direct 
or indirect) between the feature vector deviation, , and 
the influence vectors, i . With this method can be 
determined if a fault corresponds to an increase or a 
decrease of the physical parameter. The method consists in 
determine the direct angles (angles between  and each 

i ), and the indirect angles (angles between  and each 
- i ). The faulty physical parameter is the one with the 
minimum angle obtain from all (direct and indirect) angles. 
If   is more aligned with i  than occurs an increase in i ,
i.e., i > 0 ; if   is more aligned with - i  than occurs a 
decrease in i , i.e., i < 0 . An optimal estimation of the 
fault magnitude is computed by (12). 

III. THE SIMULATION MODEL

In this section is described the simulation model used for 
the computer simulations, and the operating conditions.  

A. The DC motor continuous-time model 
To test the proposed FDI methodology a DC motor 

continuous-time simplified model was used. In armature 

controlled DC motors, the applied voltage ua(t) controls the 
angular velocity r(t) of the shaft. A simplified continuous-
time transfer function of the DC motor can be given by (15), 
a 2nd order system, [9]. Km is the torque constant, L is the 
armature inductance, R is the armature resistance, J is the 
rotor inertia, Kf  is the viscous-friction coefficient, and Kb is 
the back-emf constant. The values, in S.I. units, used for the 
simulations are: Km = Kb = 0.1 [Nm/A], L = 0.5 [H], 
R = 2 [ ], J = 0.8 [Kg m2 / s2] , and Kf = 0.2 [Nms] .

Gm(s) = r(s) / ua(s)  = 

Km / ( (L J) s2 + (L Kf + R J) s + (R Kf + Km Kb) )

(15)

B. The closed-loop ARX model 
To model the overall system, under closed-loop control, 

as depicted in Fig. 1, an ARX(na=3,nb=2,nk=6) model was 
used relating the output signal y(k) and the reference signal 
r(k). In order to guarantee the persistent excitation 
conditions, a white noise dither signal with variance 1e-4

was added to r(k).
A digital PI Controller, with anti-windup term, was 

implemented and tuned based on the relay method, [1]; the 
controller parameters are Kp = 1.69, Ti = 6.42 [s]. 

The actuator has unitary gain, and the sensor has a gain of 
four in order to have a closed-loop unitary static gain. A 
white noise signal with variance 1e-7 was added to the 
sensor.

C. The operating conditions 
All the simulations were performed on the 

Matlab/Simulink environment. A hybrid simulation model 
was used: the DC motor model runs as a continuous-time 
model, and the algorithms runs on discrete-time; this allows 
a situation nearest the real environments. 

The nominal ARX parameters, nom, have been estimated 
in the nominal region; around 2400 samples have been used. 
For the RLS algorithm, the variable forgetting factor 
depends on the memory horizon (a design parameter). The 
values used for the memory horizon are: a) start-up region, 

s = 20 / Ts; b) nominal region, n = 120 / Ts; c) faulty 

situations, f = 10 / Ts, and 12 / Ts.
For the fault detection algorithm based on PCA applied to 

ARX parameters the following values were obtained. For 
the nominal region, the eigenvalues obtained are 

3.36  1.07  4.3e-1  1.39e-1  4.06e-9  . The first two 
principal components (a = 2) justify around 89 % of the 
total unitary variance; this value justify why only two 
principal components were retained in the PCA model. To 
compute the threshold for the nominal region, a value 
F  (a,n-a) = 12.97 was obtained from an F-distribution 
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table; this value was obtained for n = L = 15 (the sliding
window length) and a = 2 (two principal components), and
was multiplied by a gain (1.2 ), in order to reduce the false 
alarm rate. Only one PCA model has been build, in off-line,
for the nominal region.

The fault isolation task only performs after a fault is 
detected. Fault isolation signal becomes j when fault j is 
isolated, accordingly the influence matrix method. For the 
fault isolation algorithm based on the influence matrix
method, [12], two parametric faults were considered in this
work. Fault F1a is an increase (R  1.5 R) in the armature
resistance. Fault F1b is a decrease (R  0.5 R) in the
armature resistance. 

All the signals in the simulations were normalized to be in
the range [0;1]. The sampling time used is Ts = 1/3 [s]. The
duration of the simulation experiments is 1200 [s].

IV. SIMULATION RESULTS

A. Faults on motor resistance 
The first fault considered is fault F1a, corresponding to an

increase (R  1.5 R) in the armature resistance. In Fig. 2,
from top to bottom can be observed the following signals:
the reference signal r(k), the sensor signal y(k), the actuator 
signal u(k), the distance between the centroid and the origin
for the PCA model cd(k), the angle between  and each 
influence vector an(k), the fault magnitude fm(k), the fault
detection signal fd(k), and finally the fault isolation signal
fi(k). In the figure can be observed that fault occurs at time
instant 840 s, and the detection time delay is 30 s; this time
depends on the transient behavior of the RLS algorithm.
After the fault is detected, less than 1 s is sufficient to be
well isolated; the minimum angle tends to zero, and that 
indicates an increase in the physical parameter, R.
Accordingly to fm(k), the estimated fault magnitude is about
0.6, a value near the real value (0.5). The dotted line in the
plot for fd represents the real fault signal. A positive signal
represented by a dotted line in fi(k) graphic indicates an 
increase in R, and a negative signal indicates a decrease. 

The fault F1b is a decrease (R  0.5 R) in the armature
resistance, and the simulations can be observed in Fig. 3. 
The PI controller cannot stabilize the system, but the
diagnosis performance is better than the F1 case. The
detection delay is 2 s, and 1 s is sufficient to isolate the fault.
The angle tends to 180 degree, meaning a decrease in R, as 
shown by the negative (dotted) signal in fi(k) graphic.

In the experiments were considered two influence vectors,
i . One for the fault in the motor resistance, R, and the

other for the fault in the proportional gain of the controller,
Kp. The signals an(k) and fm(k) shows the features of each 
influence vector. 

Fig. 4 shows the evolution of the PCA scores, for the
faulty case F1b. The ellipse defines the threshold in the
scores space. 
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Fig. 2.  Signals for fault F1a.
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Fig. 3.  Signals for fault F1b.
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Fig. 4.  Evolution of PCA scores for fault F1b.

For the faulty case F1b, Fig. 5 shows the influence
vectors, i  (labels iv1 and iv2), and the feature deviation
vectors,  (label dth), only in the plane {a1;a2} of ARX 
parameters; the nominal ARX parameters, nom, have the
label thnom. Other figures can be depicting to others planes
({a1;a3}; {a2;a3}; etc). The first influence vector iv1 is
associated with fault on motor resistance, R, and the second 
influence vector is associated with fault on controller
proportional gain, Kp. Can be observed that the angle
between vectors iv1 and dth is approximately 180 degree;
this is expected, since the fault F1b concerns a decrease in 
the motor resistance. 
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Fig. 5. Influence vectors and feature deviation vector for Fault F1b.

V. CONCLUSION

A combined approach to fault diagnosis was proposed. 
The proposed method requires a rich input signal, and an on-
line identification of an ARX model, for the both tasks of
fault detection and fault isolation.

A fault detection scheme based on the application of a
data-driven technique (statistical PCA) to ARX parameters
was proposed. Our experience shown that the threshold must
be greater than the value given by the F-distribution table;
the reason is due to the influence of noise in the ARX 
parameter estimation via RLS. 

The influence matrix method for fault isolation reveals a 
reasonable performance. A good performance can be 
obtained if exits a linear relationship between model
parameters and physical parameters.

The overall performance of the proposed methodology is
good, and has the great advantage of do not require a precise
mathematical model of the system. The application of the 
proposed methodology to control systems will improve the 
reliability and reduce the down-time.

The future work will be related to the improvement of the
overall performance of this methodology, and the extension
to nonlinear systems.
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