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ABSTRACT Cold damage is one of the disasters that cause significant loss and irreversible damage in crop
production. To avoid yield loss, high-throughput phenotyping can be used to select the crop varieties with
cold stress resistance. Nowadays, non-destructive spectral image analysis has become an effective way and
is widely used in high-throughput phenotyping, which reflects the structural, physiological, biochemical
characteristics and traits of plant structure and composition, plant growth and development processes and
outcomes. This study used convolutional neural network (CNN) model to extract spectral features in the
visible-near-infrared range to estimate cold damage of corn seedlings. The hyperspectral images of cold
treated corn seedlings from five varieties were used as research objects in this study. The spectral range of the
images was 450-885nm. Gaussian low-pass filter and the Savitzky-Golay smoothing method combined with
the first-order derivative was used to do pre-processing for spectral data. For each corn variety, 3600 pixel
samples obtained from the selected region of interests in each variety of corn seedlings were used for the
CNN modeling. After the CNN modeling, 400 pixel samples extracted from the hyperspectral images were
used as the testing set for each variety. Finally, a 10-layer knot CNN model was determined by analyzing the
classification accuracy and computational efficiency. CNN detected the cold damage level of different types
of corn seedlings as W22 (41.8 %), BxM (35%), B73 (25.6%), PH207 (20%), Mo17 (14%), which had high
correlation with the ranking given by chemical method. The coefficient of correlation between cold damage
detection results of CNN and results from chemical method is 0.8219. Therefore, it proves that spectral
analysis based on CNN modeling can provide reference for detecting cold damage in corn seedlings.

INDEX TERMS CNN, deep learning, cold damage, hyperspectral imaging, high-throughput phenotyping,
corn.

I. INTRODUCTION

Cold damage refers to the phenomenon that crops delay
or stop growing when the temperature drops below the
temperature limit during the growth of crops. When crops
suffer from low temperatures, the disaster is called cold
damage. Cold damage occurs mostly in the fall-winter tran-
sition and winter-spring transition. It is often a short-term
low-temperature disaster. There have been many reports
in cold damage researches. Some researchers have made
progress on the mechanism and defense measures of
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cold damage, but real-time monitoring of cold damage is still
very limited [1], [2]. The traditional method of cold damage
diagnosis is mainly carried out through field investigation and
temperature data evaluation, which are time-consuming and
laborious. In many cases, remote sensing methods were able
to provide the detailed, rapid and wide-range understanding
of disasters [3], [4]. Therefore, remote sensing-based diag-
nostic methods are receiving increasing attention. In recent
years, these methods can be roughly divided into three cat-
egories: ground minimum temperature inversion, vegetation
index difference method and hyperspectral imaging [5]-[8].
Ground minimum temperature inversion is a method
derived from the disaster factors caused by cold damage.
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Kerdiles established a linear regression relationship between
the NOAA-AVHRR brightness temperature data and the low-
est temperature data from meteorological stations and carried
out research on the spatial mapping of cold damage in winter
wheat in Argentina [9]. Juan proposed a universal single
window algorithm, which is suitable for surface temperature
inversion of a variety of thermal infrared sensors [10]. Vege-
tation index method is comparing the changes of vegetation
index caused by the decrease of crop activity before and
after cold damage and then judging the degree of disaster.
Jurgens used the Landsat-5TM image to create a T-corrected
normalized vegetation index to monitor the cold damage in
agriculture [11]. Feng et. al. monitored the cold damage range
based on MODIS-NDVI before and after winter wheat cold
damage and evaluated the cold damage degree by analyzing
the correlation between NDVI recovery rate and winter wheat
yield [12]. Omanov studied the cold damage of winter crops
in Ukraine by monitoring snow cover and ground temperature
using NOAA and MODIS data [13]. Compared to the above
methods, the hyperspectral imaging method can accurately
monitor physiological state changes, as well as obtain data
quickly and accurately. The technical advantages of hyper-
spectral diagnosis have gradually made it a popular technique
in the current cold damage researches. Li Junling et. al.
analyzed the correlation between the spectral reflectance data
and the chlorophyll content of the leaves before and after cold
damage and obtained the characteristic bands for monitoring
the cold damage [14]. Wei Chenyang et al. obtained the
field experiment of different frost damage treatment of winter
wheat, and obtaining many types of hyperspectral parameters
in frost temperature and combined with winter wheat yield
factors, constructed an early spectral diagnostic model for
winter wheat night frost damage [15]. Wang et. al. ana-
lyzed the smoothed canopy spectral reflectance data of winter
wheat and obtained the winter wheat freeze damage severity
model with high precision [16]. However, these studies did
not utilize the full spectral dimension of the hyperspectral
images they collected. In addition, few studies have been
done on cold damage discrimination for corn using hyper-
spectral imaging.

In 2016, Minnesota harvested 8.39 million acres of corn,
including 8 million acres of corn grain and 0.39 million
acres of corn silage, which directly produced $5.1 billion
profit [17]. The corn crops in Minnesota are usually planted
in late April or early May. However, the cold weather in
May exposes risk to the young seedlings. The abrupt change
of temperature will directly affect the corn seedlings. It can
delay the development of the maize plants, reduce the num-
ber of leaves per plant, decrease the ear counts, reduce the
number of grains per ear, and reduce yield by 12%-15%
potentially [18]. Thus, non-destructive detection of cold dam-
age could contribute to the increase of profit for farmers in
Minnesota.

To detect cold damage using hyperspectral image anal-
ysis, multiple neural network algorithms can be applied.
The traditional BP neural network propagation has a simple

118240

structure with three layers. But it is prone to problems
such as inability to converge and easy to fall into local
minimum points. Deep learning proposes a method for the
computer to automatically learn the characteristics of the
pattern and integrates the feature learning into the process of
building the model, thus reducing the incompleteness caused
by the artificial design features. Deep learning is differ-
ent from traditional artificial neural network-based feature
extraction, it automatically extracts features from low-level
to high-level layers according to its own architecture. CNN
is the most representative method, which has high robustness
and strong generalization ability and has been widely used
in research fields such as image recognition and machine
vision.

Huang et. al. improved the training model based on the
GoogLeNet model and cascaded the extracted spike lesions at
various scales [19]. They achieved an accuracy rate of 92.0%
based on Softmax classification. Liu et. al. enhanced the
original image through the feature map, then down sampled
the recommended region through RPN and carried out border
regression and classification [20]. The detection rate of the
grape disease was 87.2%. Liu et. al. combined the sparse
self-encoder and CNN to increase the network branch, and
the sample input from the encoder training to obtain the
low-dimensional features representing the initial weight of
the CNN, which not only solved its own small sample size
problem but also accelerated the convergence of the net-
work [21]. Tan proposed a feature recognition method for
elastic momentum deep convolution lesions. Weight-update
mechanism of elastic impulses was proposed based on the
back propagation characteristics. He constructed the linear
elastic momentum and quadratic elastic momentum. The
integrated learning network fusion of feature extraction and
pattern recognition speeded up the convergence [22].

Therefore, this paper aims to study the corn seedlings
based on hyperspectral imagery after cold stress, extract the
spectral curves of the comprehensive evaluation index of cold
damage, and use deep learning analysis to construct a model
for corn seedling damage detection. It provides theoretical
and technical support for real-time monitoring and evaluation
of corn seedling cold damage.

Il. MATERIALS AND METHODS

A. HYPERSPECTRAL IMAGING SYSTEM

A push broom hyperspectral camera (PIKA II, Resonon,
Inc., Bozeman, MT 59715, USA) was used for image collec-
tion that required constant relative movement during image
acquisition. Normally, a hyperspectral imaging system has
two motion control methods: the camera is fixed while the
sample is moving, or the sample is fixed while the camera is
moving. The latter method was used in this study. The camera
was mounted on a linear gear slider and a Dayton DC gear
motor (model: 2008, Dayton electric Mfg Co. Lake Forest,
IL 60045, USA) was used to move the slider along at a set
speed, with the camera nadir oriented. The structure is shown
in Figure 1. All samples were scanned by the hyperspectral
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FIGURE 1. The whole structure of the imaging system.

camera line by line. The parameters for the imaging system
are as follows:

Spectral range: 395-885 nm

Spectral resolution: 2.05 nm

Spectral bands: 240

Frame rate: 34.0 Hz

Integration time (exposure time): 6.5 ms

Gain: 23.0 dB

B. PLANT SAMPLES

There are two replicate sets (three plants per set) for cold-
stressed and control corn plants of five different genotypes.
Therefore, a total of 10 hyperspectral images were collected,
and each contains six plants (three controls and three cold
stressed). The details of the hyperspectral images can be seen
in Table 1. “7°C stress day 11’ means the plants were grown in
the control condition until day 11, and then they were put into
a 7°C environment for 8 hours. After that, they were returned
to the control condition [18].

C. IMAGE COLLECTION AND CALIBRATION
In this study, a white Teflon reference panel with the spectral
reflectance of 99% was taken with the sample in each image.
The dark reference image with the spectral reflectance of near
0% was obtained by covering the camera lens and turning
off the lights. And the corrected image can be calculated
according to Equation (1), which is the empirical calibration
method.

]original — Liark

ey

Leatibrate =
catrae Lyhite — Ldark

where I.qjiprare 1s the calibrated image, Iy igina is the original
image, I,,pize 1s the white reference image, and 4, is the dark
reference image.
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TABLE 1. Details of the samples used in this study.

Genotype  Treatment HSI picture number

B73 Control Picl
7°C stress day 11

B73 Control Pic2
7°C stress day 11

Mol7 Control Pic3
7°C stress day 11

Mol7 Control Pic4
7°C stress day 11

BxM Control Pic5
7°C stress day 11

BxM Control Pic6
7°C stress day 11

PH207 Control Pic7
7°C stress day 11

PH207 Control Pic8
7°C stress day 11

W22 Control Pic9
7°C stress day 11

w22 Control Picl0

7°C stress day 11

TR
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FIGURE 2. The whole structure of the CNN model.

D. DETECTION MODEL

Usually, the deep learning model is initialized by unsuper-
vised learning and builds a multi-layer neural network con-
taining different levels of data representation. The model will
be fine-tuned in a supervised way. This structure can learn
from the shallow representation of the more essential deep
features, which are useful for extracting the abstract features
and invariant features of the data. CNN gives better results
in terms of image and speech recognition than other deep
learning structures. Compared to other depth and feedforward
neural networks, CNN requires fewer parameters which make
it a more suitable deep learning structure for the cold damage
detection using hyperspectral imaging.

CNN is a feedforward neural network, which is especially
prominent in the field of image recognition research. The
basic architecture of the network usually consists of three
types of layers: convolution layers, pooling layers, and fully
connected layers. A batch normalization algorithm is also
used, which normalizes the input of each layer to ensure that
the input data distribution of each layer is stable, thereby
accelerating the training. In the process of network training,
the parameter update will cause the distribution of input data
of each layer of the network to change constantly. Then each
layer needs to be constantly changed in the process of training
to adapt to this new data distribution, so the final e structure
of the CNN need a training process. Figure 2 is the structure
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of the CNN model. The purpose of the convolution layer is
to continuously learn the input sample features. As shown
in Figure 6, the convolution layer consists of several fea-
ture maps. Each neuron of a feature map is connected to
a neuron on its upper feature map. When a well-conceived
convolution kernel (filter) is convolved, a graph is generated.
Then, the new data will be passed to a nonlinear activation
function, and a new feature map will be obtained by applying
convolution kernels. The pooling layer is designed to control
the spatial information of the data. The main method is to
reduce the resolution of the feature map. The pooling layer is
normally located between two convolution layers. After the
input data passes several convolutional and pooling layers,
one or more fully connected layers will be set. The fully
connected layer acts as a “classifier” throughout the network.
CNN is a shared weight local connected neural network. The
neurons from the upper layer only sparsely connected to the
neurons from the lower layer and some neurons can share
weights and biases. This can reduce the number of training
parameters and simplify the network structure as much as
possible while extracting more abstract features.

In this study, Softmax Regression is used as it can generate
a well-formed probability distribution of the output. Assume
a given training set is {(x(i), y(i)); iel,...,N, y(i) e0,...,
k — 1}, where x is the i-th input, y(i) is its class label, N is
the number of inputs, and k is the number of classes. Then the
prediction value a@, which indicates that x) belongs to the
predicted class j, can be converted with the following Softmax
function. Softmax converts the prediction p; to a non-negative
value and performs regularization

; eaj(i)

pj= W @
E. DATA PROCESSING
ENVI 4.8 (Research System Inc., USA), MATLAB 7.1
(USA) and Excel 2013 (Microsoft, USA) software was used
for data processing. The data processing flowchart is shown
in Figure 3. First, we obtained maize seeding hyperspec-
tral images including normal maize seeding and cold-treated
maize seeding. The dark current and white boards were used
for hyperspectral image calibration. The third step was to
split the regions of interest (ROIs) from the hyperspectral
images and extract the full spectrum of ROIs. 3600 pixel
samples obtained from the region of interests in each corn
seedling hyperspectral images were used for the CNN mod-
eling. After obtaining the CNN model, 400 new pixel samples
from the hyperspectral images were used as the testing sets,
respectively. And then the structure of the CNN model was
determined according to the training procedure.

Reflectance curves (sample data) of the pre-treated spec-
tral data were extracted from the hyperspectral images. The
method is as follows: The reflectance values were generated
by ENVI software. The ROIs are delimited from the images,
and then three sample points were extracted from each ROI.
The average spectral curve of the three sample data points was
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FIGURE 3. The specific data processing process of the paper.
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FIGURE 4. The procedure of the sample data selection from ROIs.

used as the representative spectrum of the ROI. Wavelengths
450-885nm (a total of 213 bands) were analyzed due to the
noise removal in the 400-450nm range. Figure 4 shows the
procedure of the sample data selection. The training set was
assigned as shown in Table 2 [26]-[28].

IIl. ANALYSIS

In order to show the cold damage of different maize geno-
types more intuitively, the reflectance curves of the samples
were drawn by Matlab and shown in Figure 5. Samples
from different corn varieties and treatments are clustered
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FIGURE 5. 3D spectral plot of the sample.

TABLE 2. Details of the samples used in this study.

Cultivars | Treatments Training Sample Size
B73 Control 1800
7°C stress day 11 | 1800
Total 3600
Mol7 Control 1800
7°C stress day 11 1800
Total 3600
BxM Control 1800
7°C stress day 11 1800
Total 3600
PH207 Control 1800
7°C stress day 11 | 1800
Total 3600
w22 Control 2300
7°C stressday 11 | 1300
Total 3600
Sum Control 9500
7°C stressday 11 | 8500
Total 18000

and separated by spaces in the x-axis. It can be seen from
Figure 5 that the spectral curves of different kinds of samples
are similar in pattern, and the wavelengths corresponding
to the reflectance peaks have very similar values. For all
genotypes, the spectral reflectance values of stressed plants
were always lower compared to the control samples. All in
all, the specificity of the leaves can be reflected in the spectral
domain by hyperspectral techniques [29]-[31]. However, the
differences between the control and cold-treated seedlings
vary among genotypes, especially in the range of 700-885 nm.
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FIGURE 6. The pre-processing result compared with the original data.
(a)Original spectral data for corn seeding from five varieties (b) The
pre-processing result based on savitzky-golay smoothing method
combined with first-order derivative.

The original spectral data points collected from the ROIs
contain a variety of noise due to the influence of light source
and optical components performance, which will affect the
image quality. Therefore, the pre-treatment process is very
important for establishing the classification models. Gaussian
low-pass filter and the Savitzky-Golay smoothing method
combined with the first-order derivative were used to do
pre-processing. Gaussian low-pass filter was used to remove
noise and then the Savitzky-Golay smoothing method com-
bined with the first-order derivative was used to eliminate
the influence of high-frequency noise and baseline off-
set [23]-[25]. The moving window width of the Savitzky-
Golay smoothing method was set to 7 to achieve a better
result. With the pre-processing, the average spectral curves
for control and cold stressed samples of different geno-
types can be seen more clearly in Figure 6-b. For the same
genotype, the spectral reflectance values differed between
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the control and stressed samples in the near-infrared (NIR)
spectral region. The control samples have higher reflectance
values than stressed ones in this area. However, W22 has the
least spectral differences between the control and stressed
samples, which indicates strong cold resistance. There is
a spectral peak at 550nm, which is the nitrogen response.
In the red edge range (680-710 nm), the spectral reflectance
increased sharply. According to a previous study, the low
reflectance at 450-680 nm is caused by the strong absorption
of photoactive pigments (chlorophylls, anthocyanin and
carotenoids), and the high reflectance in the near-infrared
range (700-885 nm) is because of the multiple scattering by
crop leaf cells. The cold-damaged leaf cells tend to have much
lower reflectance in this range.

IV. RESULTS AND DISCUSSIONS

A. THE TRAINING PROCESS OF THE CNN MODEL

In this study, the CNN model was implemented using the
Keras framework. Keras is based on the Python language,
which enables more efficient optimization, tuning and eval-
uation of the deep neural networks. The model takes the
reflection spectra of corn seedlings as the input and the cold
damage level as the output. The following steps were used for
the training of the CNN model:

a. Model parameters initiation: initial model parameters 6
were randomized, and sample size, the number of training
iterations, the learning rate were set to meet the training
requirement. In this study, CNN adopts a sequential model.
The convolution layer is used for neighborhood filtering on
the input spectral signals, the pooling layer performs maxi-
mum pooling on the signals.

b. The spectral data input was transformed into a fea-
ture sequence after the CNN layers, and the classification
decisions were made by the logistic regression classifier.
Use x! as the output of the current layer /, and then calculate:
x! =f (ul), where

b = wikl=t 4 ! 3)

where: W' and b' represent the weight and offset of the
current layer; f is the layer I’s excitation function.

The modified linear unit (ReLLU), a non-linear function that
allows the network to learn faster and avoids saturation for
large positive inputs [32]-[35], was used as the excitation
function for the convolution pooling layers and the fully
connected layers. The formula of ReLU is:

f(x) = max(0, x) 4

Compared with sigmoid and tanh, the advantage of
ReLU is:

(1)The gradient is not saturated. The gradient calculation
formula is: 1{X > 0}. Therefore, in the back propagation
process, the problem of gradient dispersion is alleviated, and
the parameters of the first few layers of the neural network
can be quickly updated.

(2) The calculation speed is fast. During forward propa-
gation, the sigmoid and tanh functions need to calculate the
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FIGURE 7. The training process.

exponent when calculating the activation value, while the
ReLU function only needs to set the threshold. If x < 0, f
(x) =0, ifx > 0, f (x) = x. Speed up the calculation of forward
propagation. Therefore, the ReLU activation function can
greatly speed up the convergence.

The pooling layer uses the maximization function maxi-
mum, the output layer uses the softmax function and outputs
the classification label, and P(y) predicts the probability of
belonging to each class in the current iteration. The calcula-
tion formula is as follows

exp (WiTx,' + bi)
>_exp (VViji + bi)

c. Parameters update by the gradient descent method

The cost function of the CNN network has many forms,
such as squared error function, cross entropy, and so on. The
general classification problem uses the form of cross entropy
with the loss expression of the system as:

P(y =Ilx, W,b)=s(Wx + b)= 5

1
C:_;Zx[ylna+(1—y)ln(1—a)] (6)

where C represents the cost function, X represents the sample
size, y represents the actual value, a represents the output
value, and n represents the sample size. Backpropagation
is needed to update the initial parameters 6 by the gradi-
ent descent method. As the number of iterations increases,
the return value of the cost function becomes smaller and
smaller, meaning that the current output gradually approaches
the target output. The number of iterations was decided when
the training error is small enough. The training process is
shown in Figure 7.

In practical applications, a large number of samples are
usually difficult to obtain, which often leads to over fit-
ting. This study used the rectified linear unit (ReLU) and
the Dropout method to improve the imbalance between the
high dimensionality of spectral data and small sample size.
ReLU can enhance the expression ability of model and accel-
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erate the convergence. The Dropout method randomly dis-
cards some model parameters and sets some hidden neurons
to zero. It also establishes different network models in dif-
ferent training iterations. Therefore, its features are suitable
for high-dimensional spectral data input and can improve
the robustness of the model. During the training process,
80% of the training samples were used to learn the weighting
parameters of each neuron, and the remaining 20% were
used as a verification set to evaluate the performance of
the network and guide the correct architecture design. When
optimizing the model, we focused on adjusting the number
of convolution kernels, the size of the convolution kernel and
the number of neurons in the fully connected layer. We then
made adjustments according to the convergence rate of the
model.

Adding the Dropout layer doubles the training time of a
network. Therefore, the network structure only adopted the
Dropout strategy at the fully connected layers. The selection
of Dropout parameters in model training has a great influ-
ence on the training result. Therefore, five parameters in the
range of 0.1-0.5 were tested in the training process, as shown
in Figure 8. It is found that the classification model is optimal
when Dropout is set as 0.5. The overall convergence is faster
when the Dropout is 0.5 as well. The training is optimal after
100 iterations.

The trend of training error and classification accuracy
with the number of iterations is shown in Figure 9. It is
observed that the classification accuracy of the training set
is high and continuously improved. The effect of the test set
is also ideal, so the optimal classification model is finally
determined. In general, training accuracy is better than val-
idation accuracy. From Figure 9 we can see validation accu-
racy was better than training accuracy, which is because
Dropout layer was added. A percentage of the features
were set to zero (dropout) during training, while all features
were used during validation. This led to higher validation
accuracies.
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Based on the above analysis, the specific network structure
parameters are shown in Table 3, with I1 as the input layer,
C2,C3,C5,C6 and C7 as the convolution layers, P4 and P8 as
the largest pooling layers, F9 as the fully connected layer, and
010 as the output layer of the convolutional neural network.
Input layer I1 was set as 3 x 1 after principal component
analysis, and the decisive dimension of the input was 5. The
size of the convolution kernel was set as 3 x 1 because
one-dimensional CNN filters were used.

B. THE TEST RESULT OF CNN

Table 4 and Figure 10 show the CNN detection results and
chemical method results. It can be seen from Table 4 that
the detected cold-stressed plant pixels of different varieties
of corn seedlings were significantly different when using
the CNN detection model. And chemical method results of
different kinds of corn reed are different too. According
to the research conclusion from Enders et al. [39], where
the percentage of necrotic tissue was assessed for 40 geno-
types after 7°C stress at day 11, some genotypes had a
significant increase in tissue necrosis rate compared to the
controls. Among the five genotypes used in this study, tis-
sue necrosis rates of four (W22, B73, PH207 and M17)
were given in Enders et al. (2019). From Figure 10 we
can see the detected cold damage results W22 (41.83%),
BxM (35%), B73 (25.6%), PH207 (20%), Mol7 (14%) in
this study had high correlation confidence with the ranking
given by chemical method in Tara A. Enders et.al [39].
The correlation confidence between cold damage detec-
tion results of CNN and results from chemical method are
0.8219.

The CNN model effectively overcomes the shortcom-
ings of BP network that are easy to fall into local opti-
mum and long training time due to random initialization
weight parameters, and can better solve practical problems
such as high dimensionality, nonlinearity and local mini-
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TABLE 3. The structure of the CNN model.

Corn seedling freeze damage Architecture
recognition model configuration
Input layer (I1) 64, 3*1
One-dimensional ReLU Filters(The number of
convolution layer convolution kernels, the
Conve2(C2) dimensions of the output):
64
Kernel size (Airspace
window length of
convolution kernel): 3*1
One-dimensional ReLU Filters(The number of
convolution layer convolution kernels, the
Conve3(C3) dimensions of the output):
64
Kernel size (Airspace
window length of
convolution kernel): 3*1
Poolingl (P4) Pool size: 3*1
One-dimensional RelLU Filters(The number of

convolution layer
Conve5 (C5)

convolution kernels, the
dimensions of the output):
128
Kernel size (Airspace
window length of
convolution kernel): 3*1

One-dimensional ReLU Filters(The number of
convolution layer convolution kernels, the
Conve6 (C6) dimensions of the
output) :128
Kernel size (Airspace
window length of
convolution kernel): 3*1
One-dimensional ReLU Filters(The number of
convolution layer convolution kernels, the
Conve7 (C7) dimensions of the output):
128
Kernel size (Airspace
window length of
convolution kernel): 3*1
Pooling8(P8) Pool size: 3*1
Fully connected layer Sigmoid Units (Output dimension):
(F9) 1
Classified output (O10) 2

TABLE 4. The results of detection of cold damage of corn seeding using
CNN model and chemical method.

Cultivars  Cold damage Results of Cold damage Results of chemical
CNN (%) method (%)

w22 41.8 17

BxM 35.0 N/A

B73 25.6 14

PH207 20 13.5

Mol7 14 12

mum points. It effectively avoids the occurrence of over-
learning and under-learning. It can be seen that the per-
formance of the CNN is stable and reliable in practical
applications.

Our goal was to provide a basis for work towards max-
imizing the ability of maize to withstand and recover
from early season cold stress events. Future study based
on hyperspectral images still need to do more work.
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FIGURE 10. The comparing result of CNN and chemical method.

Hyperspectral image-based phenotyping methods can pro-
vide a more in-depth analysis of cold stress responses in
maize.

V. CONCLUSION

Since the development of convolution neural networks,
the high performance of algorithms has attracted the attention
of scholars. At the same time, the effective identification
of crop diseases is the need for smart agriculture develop-
ment, but the traditional recognition model based on artifi-
cially designed features has lower accuracy and it is stable.
Based on these problems, this paper uses CNN to design five
varieties of corn seedling cold damage recognition model,
detailing hyperspectral image pre-processing method, sample
extraction method, and deep convolution networks. Different
network structures are established corresponding to different
input data in the whole process, and the segmentation result
is obtained. In the case of a small sample of corn seedling
cold damage, a convolution neural network is applied to the
corn cold damage detection model, and the structure of the
CNN model was constructed. The influence of the weight
distribution characteristics, activation function and different
initialization methods of the CNN is analyzed. By com-
bining with the Dropout strategy to enhance the features,
the over-fitting problem and the negative impact of network
depth on the pre-training effect are solved. The model solves
the defect of random initialization weight. Finally, under
the small sample of corn seedling disease, the effectiveness
of the pre-training method is verified, and CNN detected
the best effects of different types of corn seedlings W22
(41.8%), BxM (35%), B73 (25.6%), PH207 (20%), Mol17
(14%) which had high correlation coefficient with the cold
damage detection result obtained from chemical method. The
next work will introduce hyperspectral image dimension fea-
tures, extract the texture characteristics of crop disease tissue
structure, and joint models with spectral dimension informa-
tion to further improve the classification performance of the
model.
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