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Abstract

Machine learning models have been successfully employed in the diagnosis of Schizophrenia
disease. The impact of classification models and the feature selection techniques on the
diagnosis of Schizophrenia have not been evaluated. Here, we sought to access the perfor-
mance of classification models along with different feature selection approaches on the struc-
tural magnetic resonance imaging data. The data consist of 72 subjects with Schizophrenia
and 74 healthy control subjects. We evaluated different classification algorithms based on
support vector machine (SVM), random forest, kernel ridge regression and randomized neu-
ral networks. Moreover, we evaluated T-Test, Receiver Operator Characteristics (ROC),
Wilcoxon, entropy, Bhattacharyya, Minimum Redundancy Maximum Relevance (MRMR)
and Neighbourhood Component Analysis (NCA) as the feature selection techniques. Based
on the evaluation, SVM based models with Gaussian kernel proved better compared to other
classification models and Wilcoxon feature selection emerged as the best feature selection
approach. Moreover, in terms of data modality the performance on integration of the grey
matter and white matter proved better compared to the performance on the grey and white
matter individually. Our evaluation showed that classification algorithms along with the
feature selection approaches impact the diagnosis of Schizophrenia disease. This indicates
that proper selection of the features and the classification models can improve the diagnosis
of Schizophrenia.
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1. Introduction

Schizophrenia is a severe mental disorder that affects millions of people worldwide.
Schizophrenia makes people slowly lose contact with reality, leading to hallucinations, delu-
sions, and extremely disordered thinking. Patients report hearing voices or seeing things
that are not there; they also tend to develop fixed and false beliefs. Suicidal tendency is also

Email addresses: mtanveer@iiti.ac.in (M. Tanveer), ee180002022@iiti.ac.in (Jatin Jangir),
phd1901141006@iiti.ac.in (M.A. Ganaie), Iman.beheshti@umanitoba.ca (Iman Beheshti),
msc1903141002@iiti.ac.in (M. Tabish), ee180002040@iiti.ac.in (Nikunj Chhabra)

Preprint submitted to IEEE March 23, 2022

ar
X

iv
:2

20
3.

11
61

0v
1 

 [
cs

.L
G

] 
 2

2 
M

ar
 2

02
2



a common trait among Schizophrenia patients. Moreover, patients inflicted with Schizophre-
nia are 2 − 3 times more likely to die than the general public due to patients not seeking
aid for preventable physical diseases [16]. Luckily, Schizophrenia is treatable with medicines
and psycho-social support, and these methods have proven successful [37]. Thus, the central
blockade in eradicating Schizophrenia is lack of its early detection.

Several attempts have been made to remedy this problem. Many studies show promising
results but, Machine Learning (ML) has seen little use in clinical practice for Schizophrenia.
This can perhaps be credited to the unreliability or stability of some machine learning
models; this influences the consensus that ML solutions are not dependable and cannot
be trusted, especially for a medical job. Even though doctors sometimes make mistakes
themselves, people still trust them. Developing this same level of trust for a machine would
be an arduous task. Machine learning should be seen as a research tool to advance the field
of study, not the be-all and end-all. In the past few years, extensive research has been done
on various classification algorithms and their improved versions have been proposed like for
SVM, it’s extensions like twin support vector machine (TWSVM) [9], twin bounded SVM
(TBSVM) [25] etc. are proposed to improve the performance of SVM algorithm. Other
methods such as k-nearest neighbour (KNN) [7], random forest (RaF) [1] have also been
thoroughly studied. Interested readers can refer to the comprehensive review on TWSVM
[32].

Our intent with this study is to perform a comprehensive evaluation and bring aware-
ness towards using different classification algorithms and their variants and extensions for
diagnosing schizophrenia disease. In this study, we evaluate single-modal methods using ex-
clusively Structural MRI (sMRI) scans to train and validate them. We use the same dataset
for all the algorithms. The results of this study will help choose a suitable classification
algorithm and feature selection technique based on the requirement. The rest of the paper
is organized as follows: In Section 3, we discuss about subjects, 3D MRI processing and
give a brief description of various classification algorithms and feature selection techniques
used and also about validation and experimental setup. Performance of various classification
algorithms on white matter, grey matter and integrated matter is discussed in Section 4.
Analysis and summarizing of results is done in Section 5. Conclusions and future works
are discussed in Section 6. Please note, Figures and Tables referenced from the attached
Supplementary Paper have been suffixed with an “S-”.

2. Related Works

The current diagnosis scheme for Schizophrenia is to rule out other mental disorders and
then employ psychiatric and physical screening. The studies [26, 27] evaluated magnetic
resonance imaging (MRI) scans for the detection of Schizophrenia. A review of MRI findings
in schizophrenia [26] discusses brain abnormalities due to Schizophrenia. Thus, there is
significant evidence that by using MRI scans, one can exploit ML techniques to automate
and improve the detection of Schizophrenia. Several studies [5, 39] have already attempted
to do so with varying degree of success. A basic summary for most of the studies is: process
the MRI scan into a usable format, apply a feature extraction algorithm on the MRI scan to
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select the appropriate features, then finally use a classification algorithm for the diagnosis
of schizophrenia.

The classification of schizophrenia patients and healthy controls from sMRI scans in two
large independent samples was studied in [22]. The authors used whole-brain grey matter
densities from MRI scans with SVM as the classifier and concluded that SVM models trained
with less than 130 samples results in an unstable model. The key difference of the study
[22] from previous similar studies [23, 5], was utilizing a large dataset and using an entirely
separate dataset to perform the validation. Additionally, noting that typical schizophre-
nia medications affect the striatum (part of the brain), they masked it out, ensuring the
model doesn’t relate medication effects to Schizophrenia detection. Each imaging technique
provides a different view of the brain functioning. To get the benefit of different imaging
techniques, a multimodal classification model [29] combined 3 different data types: resting
state functional MRI (rs-fMRI), Diffusion tensor imaging (DTI) and sMRI. While the idea
proposed in [29], don’t have the main focus on classification but to design and evaluate a
multivariate method which can find cross-information in more than two data types. In [28],
multi-set canonical correlation analysis (MCCA) was used to combine the data of rs-fMRI,
Electroencephalogram (EEG) and sMRI and proposed ensemble feature selection approach
which resulted in very high prediction performance approaching 100% by utilizing the ad-
ditional modalities. Though they also concluded that combining multiple modalities does
not always result in an enhanced result. A similar study [17] which used rs-fMRI and sMRI
with a similar outcome of increased accuracy when compared to single modalities. It can
easily be realized what the major downfall of this multi-modal training scheme is: lack of
data. Some datasets combined from various sources reach the 250 marks, like the one used
in [22] or in [24], but most datasets sit at 80 samples.

Gaining insight from the previous studies about the feasibility and reliability of individ-
ual classification based on the sMRI, a novel machine-learning algorithm provided an inter-
pretable brain signature [24]. Instead of behaving like a “Black Box” spewing out predictions,
the model provided insights into the neuroanatomic markers aiding clinical interpretability.
This was achieved using ElasticNet Total Variation (Enet-TV) [6] penalty, which gave Struc-
tured sparsity (which is a sparse and structured pattern of predictors). Furthermore, they
pitted the Enet-TV against other SVM algorithms, showing similar predictive performance
across the board. In addition to providing a clinically interpretable model, their research
also suggested a shared neuroanatomical signature for early or late-stage Schizophrenia pa-
tients. The study in [17] attempted to identify the significantly contributing brain regions
by averaging the weights across the five datasets used and reported the top 10 brain regions.

Until now, the papers discussed have undertaken the entire brain, sometimes obfuscating
certain regions to remove the effects of medications. But studies like [18] suggest that only
particular brain regions, i.e. caudate nuclei, thalami and right side amygdala, are significant
in identifying a Schizophrenia patient. Since Schizophrenia patients have structural changes
in hippocampus and amygdala regions, and the study [5] extracted only the hippocam-
pus and amygdala regions of the brain for the classification of Schizophrenia subjects and
concluded that hippocampal and amygdaloid structures could be utilized for classification.
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3. Subjects and Methods

3.1. Subjects

The data used in this study is obtained from the Center for Biomedical Research Excel-
lence (COBRE) data set (Available at http://fcon 1000.projects.nitrc.org/indi/retro/cobre.html).
Data consists of 72 subjects with schizophrenia (38.1 ± 13.9 years old, range 18− 65 years)
and 74 age-matched healthy control (35.8 ± 11.5 years old, range 18− 65 years).
3.2. 3D MRI Processing

Image processing was performed using the CAT12 package (http://dbm.neuo.uni-jena.de)
implemented in the Statistical Parametric Mapping (SPM) toolbox version 12 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm12/). In summary, 3D T1-weighted MRI scans were par-
cellated into grey matter (GM), white matter (WM) and cerebrospinal fluid, skull, scalp
and air cavities. In this study, the GM and WM tissues have been examined. Using a
high-dimensional Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra
algorithm (DARTEL), the GM and WM images were normalized into Montreal Neurologi-
cal Institute (MNI) space. The smoothed GM and WM images were generated through an
8-mm full-width-half-maximum Gaussian kernel. The GM and WM images were visually
inspected after each step in the preprocessing phase. Besides, we used the quality check
procedure implemented in the CAT12 toolbox to identify possible outliers. Finally, we re-
sampled GM and WM images to 4-mm isotropic spatial resolution and extracted GM and
WM voxel values from whole-brain data (i.e., total of 29, 852 voxel values per modality) as
raw features for classification tasks.
3.3. Classification Algorithms

The classification algorithms evaluated in this study for schizophrenia are explained
below. Detailed information on the algorithms is available in the Supplementary file.

3.3.1. Random Forest (RaF) [1]

Random Forests proposed by Leo Breiman et al. in 2001 is a collection of tree predictors
(also called tree-structured classifiers, which at their core are nested if-else statements used
to vote for classes) where each tree is generated via independent and identically distributed
random vectors. It has been shown that a sufficiently large forest always converge and a
forest generated using random features generally produces better accuracy than a single
tree classifier. RaF combined both the concepts of bagging and random subspace which
improved its generalisation performance.

3.3.2. Oblique RaF (MPRaF-T, MPRaF-P and MPRaF-N) [40]

Oblique RaF was proposed to handle multiclass classification with an improved geo-
metric property. Multisurface Proximal Support Vector Machine (MPSVM)[20] is used to
generate clustering hyperplanes at the non-terminal nodes of a decision tree. Now, RaF
is implemented using the MPSVM-based decision trees and then subsequently using var-
ious regularisation methods. It was shown that Oblique RaF performs better than RaF
and have significantly less variance and bias. MPRaF-T, MPRaF-P, and MPRaF-N repre-
sent the MPSVM-based RaFs with Tikhonov, axis-parallel, and NULL space regularization,
respectively.
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3.3.3. Heterogeneous RaF [11]

As noted by [40], RaF’s data splitting leads to axis-parallel decision boundaries, which
can lead to poor utilization of the geometric property of the data. But [11] noted that even
though Oblique RaF allows for oblique splits, it is sub-optimal. The Heterogeneous RaF
uses diverse linear-classifiers at the tree’s nodes and searches for the best split at every node
by optimizing the impurity criteria. Heterogeneous RaF Forests are shallower and faster to
train than RaF. For the decision trees, each split is rated based on impurity criterion. All the
splits at each non-leaf nodes are linked with an impurity measure. The one which is having
the maximum value is the selected split for that particular node. The six different classifiers
which have been employed are SVM, MPSVM, Linear Discriminant Analysis (LDA), Least
Squares SVM (LSSVM), Ridge Regression (RR) and Logistic Regression (LR) as they have
performed well in several domains [4].

3.3.4. Kernel Ridge Regression (KRR) [10]

One of the kernel-based methods is the Kernel Ridge Regression (KRR). The KRR has
a closed-form solution which lends it to faster training. Despite being relatively straightfor-
ward than other members of kernel-based methods such as SVM, it can produce comparable
results. The kernel ridge regression method is based on Ridge Regression and Ordinary
Least Squares.

3.3.5. K nearest neighbours (KNN) [7]

K nearest neighbours algorithm assigns the label depending upon the similarity of the
point with its neighbours. A constant K is first chosen for the algorithm. The Euclidean
distance of the given point is calculated and the K nearest members are selected from it.
The number of data points is counted and new data points are assigned to the category for
which there are maximum number of neighbours. The number of nearest neighbours, K, in
our case is 5.

3.3.6. Neural Networks [13]

Neural networks are network of node layers comprising of an input layer, multiple hidden
layers and an output layer. Each layer has multiple number of nodes and the nodes of each
layer are interconnected with the other layers. The output of each of the layer is calculated
through an activation function and the output of activation layer of the last layer is the final
output. Adam optimization technique [13] has been used in order to tune the parameters.

3.3.7. Random vector functional link network (RVFL) [41]

RVFL is the randomized version of the functional link neural network. It shows that
from the input layer to the hidden layer, the value of weights can be generated randomly in
a suitable domain and fixed in the learning stage. The closed-form based RVFL obtains the
output weights in a single-step and exhibits a higher efficiency than the iterative method.

3.3.8. Random vector functional link network with Auto Encoder (RVFLAE)[42]

Autoencoder is an unsupervised learning model for which the output and input layers
share the same neurons in order to reconstruct its own inputs. In this method, we adopt a
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sparse autoencoder to learn appropriate network parameters of RVFL, which are developed
via l1norm optimization instead of the usual l2 norm retaining more informative features.

3.3.9. Support vector machine (SVM) [2]

SVM is a binary classification algorithm which classify the labelled data in two classes.
SVM generates an optimal hyperplane using data to separate the classes. Since there may
be more than one hyperplane possible for that, SVM finds the optimal hyperplane to do the
classification by solving a Quadratic Programming Problem (QPP). Thus, a new data point
can be classified based on the optimal hyperplane formed by SVM. And if the given data is
not linearly separable, SVM do the task using kernel method.

3.3.10. Twin support vector machine (TWSVM) [9]

Inspired from SVM, TWSVM is a classification algorithm which classifies the given la-
belled data into two classes by generating two non-parallel hyperplanes. TWSVM solves two
smaller sized QPPs, unlike SVM, each for one class. The two required planes are formed by
solving a problem which minimize the distance of points of corresponding class to the plane
and keep it as far as possible from another class. Then, a new data point is assigned a class
by calculating its distance from the planes.

3.3.11. Twin bounded support vector machine (TBSVM) [25]

TBSVM is an improved version of TWSVM which modified the optimizations problem
in TWSVM to give better performance and thus making the classification more accurate.
It added an extra regularization term in the formulation of TWSVM which applied the
structural risk minimization principle in the model.

3.3.12. Least square twin support vector machine (LSTSVM) [15]

LSTSVM is the least squares version of TWSVM. The formulation of LSTSVM leads to
fast and simple algorithm to generate the two non-parallel hyperplanes for binary classifi-
cation. The two primal problems used to find the required hyperplanes are formulated in
least squares sense i.e. using the equality constraints instead of the inequality constraints.
The problem in LSTSVM can be solved very easily and simply by solving a system of two
linear equations.

3.3.13. Robust energy based least square twin support vector machine (RELSTSVM) [31]

Robust energy based LSTSVM, proposed by Tanveer et al., is another extension of
TWSVM which adds a maximum margin regularization term in primal problem and more-
over uses an energy parameter in the constraints, which helped in lessening the effect of
noise in the data. According to a recent study [30], RELSTSVM model leads to better
classification performance among the TWSVM models.

3.3.14. Pinball general twin support vector machine (PinGTSVM) [33]

Pinball general twin support vector machine also generates non-parallel hyperplane for
classification, similar to TWSVM, but uses pinball loss function in place of hinge loss without
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affecting the computational complexity of the algorithm. The use of pinball loss function
makes it less sensitive to noise in classification of data and make it more stable for re-sampling
of data.

3.4. Feature Selection Methods

The feature selection methods evaluated in this study for schizophrenia are explained
below:

3.4.1. RankFeatures() function and its various criterions

The rankfeatures() is a MATLAB® [21] function which ranks key features by class sep-
arability criterion. It uses various independent evaluation criteria to assess the significance
of features. The criterion here refers to an objective function that minimises the overall
feasible feature subset. The rankfeatures() uses the following feature independent criteria:

T-test [34]. The “ttest” is the default, criteria used by the rankfeatures() function. The T-
test ranks the features based on an absolute value, two-sample T-test with pooled variance
estimate. The “ttest” criterion assumes that the classes are normally distributed.

Entropy [14]. The “entropy” criterion uses the relative entropy, also known as Kullback-
Liebler distance or divergence. The “entropy” criterion assumes that the classes are normally
distributed.

Bhattacharyya [34]. The “Bhattacharyya” criterion uses the minimum attainable classifica-
tion error, or Chernoff bound to rank features. The “Bhattacharyya” criterion assumes that
the classes are normally distributed.

ROC [34]. The “ROC” criterion uses the area between the empirical receiver operating
characteristic (ROC) curve and the random classifier slope to rank features. The “ROC”
criterion is a non-parametric test.

Wilcoxon [36]. The “Wilcoxon” criterion uses the absolute value of the standardised U-
statistic of a two-sample unpaired Wilcoxon test, also known as Mann-Whitney, to rank
features. The “Wilcoxon” criterion is also a non-parametric test.

3.4.2. Minimum redundancy maximum relevance (MRMR) algorithm [3]

The MRMR algorithm is a sequential feature selection method that finds an optimal set
of mutually and maximally dissimilar features. The MRMR performs this by maximising
the relevance of the feature set to the response variable and minimising the redundancy of
a feature set.

3.4.3. Neighborhood Component Analysis (NCA) [38]

NCA is a non-parametric feature selection method used explicitly for regression and
classification algorithms. The feature weights (importance of a feature) are obtained using
a gradient ascent technique to maximise the expected leave-one-out classification accuracy
with a regularisation term.
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3.5. Validation, Experimental Setup

This study used Matlab® R2021a[21] to implement all the required code for the different
methods. The functions used were (but not limited to): rankfeatures(), fscmrmr(), fscnca().
In all experiments, 10-fold cross-validation was used. To study the variation of accuracy with
increasing number of features and to obtain the minimum or the optimal number of features,
we experimented with 100−1300 (with a step size of 100) selected features. The various hyper
parameter ranges used for various methods have been tabulated in Table 1. The classification
accuracies corresponding to different classification models versus feature selection approaches
for the combined matter at 500 features are available in Table 2. The results of 500 features
are presented as maximum accuracy for Integrated GM and WM occurs at the same. The
Tables corresponding to WM and GM are available in the Supplementary file as Table S-2
and S-3.

Table 1: Parameter Ranges and values for various methods. (1i = 1, 2, 3, . . . , 2Number of
Samples)

Parameter Name Symbol Range/Value

Penalty parameters ci
1 {10i|i = −5 : 5}

(for TSVM-based models)
Non-linear kernel parameter γ {2i|i = −10 : 10}
NCA regularisation term λ {2i/N2|i = 1 : 20}
RELSTSVM parameter E {0.5, 0.6, 0.7, 0.8, 0.9, 1}
RVFL & RVFL-AE C {−5 : 1 : 14}
parameters N {3 : 20 : 203}
Ensemble size of the trees 100
for RaF methods
pinGTSVM parameter ε 0.05

4. Results

The performance of the classification models varies with different feature extraction
methods and the number of features selected. We discuss the performance of the models
with GM, WM and the integration of GM and WM data. When discussing classification
models, accuracy means the average accuracy across both feature extraction techniques
and the feature range, unless otherwise stated. Similarly, the accuracy assigned to a given
feature extraction technique represent the average accuracy across the different classification
models. Tables of other metrics i.e. AUC, Sensitivity, Specificity, Precision, F-Measure and
G-Mean are available in the Supplementary file.

4.1. White Matter

Across the entire feature range (i.e. 100 - 1300), the TWSVM based classification mod-
els showed the highest average accuracy compared to the rest of the classification models,
as can be seen in figure S-1a. The rest of the families, i.e. RaF, Neural Networks, KNN
and KRR, stay together through the feature range. Among SVM-based classifiers, the non-
linear RELSTSVM (75.16%) and non-linear TBSVM (74.30%) achieved the highest average

8



accuracy. Non-linear TWSVM followed them with 73.24% accuracy, closely followed by
non-linear LSTSVM at 72.47%. The linear TBSVM and RELSTSVM showed ∼70% accu-
racy. The lowest-performing models are pinGTSVM and RVFLAE with ∼60.7% accuracy.
Heterogeneous-RaF achieves the maximum accuracy of 84.04% for WM with 900 features
selected using Wilcoxon feature selection.

Among the RaF based models, Heterogeneous-RaF shows the best performance, with
an average accuracy of 67.70%. In contrast, MPRaF-T shows the lowest average accuracy
with 62.93%. Among the variants of neural networks, the standard neural network and
randomized based neural network show ∼65.5% average accuracy. The autoencoder based
RVFL model showed the lowest average accuracy (60.89%) among the neural network mod-
els. Also, the non-linear kernel-based KRR model (accuracy 67.15%) is better than the
linear kernel-based KRR model (accuracy 63.36%) in terms of average accuracy.

Discussing the feature selection methods we can refer to S-2a, the Wilcoxon is the best
choice across the entire feature range with an average accuracy of 76.16%. The NCA, in
addition to being the worse performing method with an average accuracy of 61.50% it is
also unstable with the number of features selected. ROC, Entropy and Bhattacharya all
perform with an average accuracy of ∼67.1%. MRMR and T-test follow with 65.42% and
62.51% average accuracy, respectively.

Observing that Wilcoxon feature selection performs better than all other methods for
the entire feature range, comparing classifiers based on Wilcoxon feature selection is more
beneficial than average. Since we have already discussed classifiers with respect to (w.r.t.)
average, we now look at classifiers which significantly different. When comparing w.r.t.
Wilcoxon, the Neural Network becomes the best classifier (averaged across all feature range)
at 80.91%. Heterogeneous-RaF also performs significantly better, achieving 80.42% at rank
4. Additionally, RaF-LDA also performs much better with 79.31% and rank 6.

4.2. Grey Matter

The grey matter has some exciting results both in terms of classification techniques and
feature selection methods. From Figure S-1b, it is obvious to see that the SVM family of
classifiers perform better than the rest of the families for the entire feature range. Another
observation can be made for the neural networks that they perform worse than all other
families throughout the feature range. Non-linear TBSVM and non-linear RELSTSVM
achieved the highest 73.36% and 72.64% average accuracy, respectively, followed by non-
linear TWSVM (72.03%) non-linear LSTSVM (70.79%). The lowest-performing models are
pinGTSVM and RVFLAE with ∼59.5% accuracy. Non-linear RELSTSVM achieves the max-
imum accuracy of 83.99% for grey matter with 1200 features selected using Bhattacharyya
feature selection.

Among the RaF based models, the standard RaF method shows the best performance,
with an average accuracy of 67.09%. In contrast, MPRaF-N shows the lowest average
accuracy with 64.27%. Among the variants of neural networks, the standard neural network
and randomized based neural network show ∼65% average accuracy. The RVFLAE model
showed the lowest average accuracy (59.06%) among the neural network models. Also, the
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non-linear kernel-based KRR model (accuracy 69%) is better than the linear kernel-based
KRR model (accuracy 63.67%) in terms of average accuracy.

Discussing the feature selection methods we can refer to S-2b, the Wilcoxon is the best
choice across the entire feature range with an average accuracy of 75.21%. The NCA again
is very unstable but performs very well with an average accuracy of 68.08%. Entropy and
Bhattacharya both perform terribly at lower features (dipping as low as 52%) but approach
the best performing Wilcoxon at higher features. MRMR performs better than both ROC
and T-test at 67.5%. ROC and T-test achieve an average accuracy of 62.62% and 63.32%,
respectively.

Wilcoxon feature selection performs better than all other methods for the entire fea-
ture range. Thus, we can compare classifiers based on Wilcoxon feature selection. When
comparing w.r.t. Wilcoxon, the linear RELSTSVM (78.85%) perform just marginally lower
than the non-linear variation (79.13%). The neural network (78.28%) performs significantly
better than when using the average, but it is not at the top.

4.3. Integrated GM and WM

The combined matter (i.e. integrated GM and WM data) achieves better results than in-
dividual grey matter and white matter. From Figure 1, it can be inferred that the SVM based
classifiers perform significantly better than the rest of the families for the entire feature range.
The RaF based methods come next, followed by KNN and KRR. Neural networks again per-
form the worst. Non-linear TBSVM and non-linear RELSTSVM achieved the highest 78.47%
and 77.71% average accuracy, respectively, followed by non-linear TWSVM (77.62%) non-
linear LSTSVM (76.32%). The lowest-performing models are RVFLAE, pinGTSVM and
KNN with ∼66% accuracy. The standard neural network achieves the maximum accuracy
of 86.71% for combined matter with 500 features selected using Wilcoxon feature selection.

Among the RaF based models, the Heterogeneous-RaF method shows the best perfor-
mance, with an average accuracy of 73.31%. In contrast, MPRaF-T shows the lowest average
accuracy with 68.92%. Among the variants of neural networks, the standard neural network
and randomized based neural network show 73% and 70.77% average accuracy, respectively.
The RVFLAE model showed the lowest average accuracy (65.85%) among the neural net-
work models. Also, the non-linear kernel-based KRR model (accuracy 72.13%) is better
than the linear kernel-based KRR model (accuracy 71.15%) in terms of average accuracy.

Discussing the feature selection methods we can refer to 2, the Wilcoxon is the best choice
across the entire feature range with an average accuracy of 77.12%. The NCA is unstable
and performs poorly with an average accuracy of 69.78%. Entropy and Bhattacharya both
start out being the worst performing methods at lower features (dipping as low as 60%) but
approach the best performing Wilcoxon at higher features. ROC and T-test perform better
than MRMR, which is at 70.71%. ROC and T-test achieve an average accuracy of ∼72%.

Wilcoxon feature selection performs better than all other methods for the entire feature
range. Thus, we can compare classifiers based on Wilcoxon feature selection. When com-
paring w.r.t. Wilcoxon, the standard neural network comes out on top (83.98%), becoming
the best classifier. The Heterogeneous-RaF becomes the second-best classifier at 82.36%.
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The linear TBSVM (80.61%) and linear RELSTSVM (79.75%) performs slightly better than
non-linear TBSVM (80.56%) and non-linear RELSTSVM (79.62%).

Figure 1: Average performance of classifiers families w.r.t Integrated WM and GM (Com-
bined matter)
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Figure 2: Average performance of feature selection methods w.r.t Integrated WM and GM
(Combined matter)

0 200 400 600 800 1000 1200 1400

Feature range

0.6

0.65

0.7

0.75

0.8

A
cc

u
ra

cy
 (

%
)

Ttest

ROC

Wilcoxon

Entropy

Bhattacharyya

MRMR

NCA

Figure 3: Performance of linear and non-linear kernels for combined matter

5. Discussion

This study aimed to perform a comprehensive evaluation of modern classification tech-
niques and feature selection methods for schizophrenia classification. We have presented a
basic overview of the different classification methods and evaluated them against different
feature selection approaches on the same dataset. Selection of the optimal features and us-
ing the best available classification technique is essential for an MRI-based machine learning
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Figure 4: Average performance of classification algorithms with different matter types (i.e.
WM, GM and Integrated GM and WM (CM)
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Table 2: Accuracies for Integrated GM and WM for 500 features.
Feature selection methods

Classification T-Test ROC Wilc- Entr- Bhatta- MRMR NCA
techniques oxon opy charyya
Linear variations:
Het-RaF 72.57 73.95 82.1 67.95 62.29 74.62 63.62
KNN 69.95 71.81 73.9 60.48 60.48 65 69.67
MPRaF-N 73.1 71.67 72.48 64.33 62.95 69 61.62
MPRaF-P 71.71 75.19 75.9 61.57 67.19 70.33 69
MPRaF-T 74.52 75.86 75.1 55.29 53.33 68.29 69.1
Neural 77.38 78.76 86.71 61.57 64.24 72.29 66.52
pinGTSVM 68.57 67.76 75.1 58.95 58.86 58.1 64.14
RaF-LDA 75.33 73.29 81.38 54.62 64.33 69.71 65.81
RaF-PCA 74.57 74.48 71.62 66.29 68.33 69.81 69.9
RaF 71.67 71 75.14 64.48 65.05 75 71.05
RVFLAE 62.48 58.86 71.1 60.57 62.71 66.48 58.1
RVFL 73.33 72.76 76.48 71.19 65.57 68.48 60.95
KRR 73.14 71.86 75.24 62.76 64.1 74.43 67.1
LSTWSVM 71.85 65.62 75.4 69.28 68.25 67.33 63.71
RELSTSVM 74.28 73.18 78.84 69.12 70.7 72.14 67.8
SVM 77.43 71.95 71.71 66.24 66.9 67.1 61.71
TBSVM 75.52 73.9 80 68.29 69.05 72.95 67.86
TWSVM 73.48 67.81 78.57 68.29 68.29 69.86 66.48
Non-linear (Gaussian Kernel) variations:
KRR 73.19 73.9 72.48 66.43 67.14 73.19 67.76
LSTWSVM 74.6 74.52 79.84 78.38 76.9 73.26 69.75
RELSTSVM 76.21 76.32 79.83 79.37 79.7 76.56 69.75
SVM 77.48 71.95 71.71 61.48 64.81 66.29 61
TBSVM 78.19 78 79.95 79.52 78.86 76.62 69.76
TWSVM 77.95 77.95 79.95 78.1 78.1 74.52 69.62
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system aimed at early diagnosis. Our findings indicate that using twin SVM-based methods
such as RELSTSVM or TBSVM performs best for nearly all matter types. The random for-
est based methods generally perform mediocrely. The worst performing classification models
are the pinGTSVM, RVFL-AE, KRR, KNN and MPRaF-T.

Figure 3 is constructed by averaging only the methods that have both linear and non-
linear variants (i.e. SVM, KRR, TWSVM, TBSVM, LSTWSVM and RELSTSVM). Infer-
ring from figure 3, a critical observation can be made for the performance of non-linear kernel
functions against linear ones. In nearly all studied methods (pinGTSVM and standard SVM
being the exception), the non-linear kernel function performs better than the linear variation.
This observation follows suit with the result that a linear kernel is the degenerate version of
the non-linear (RBF or Gaussian) kernel [12]. Thus an adequately tuned non-linear kernel
consistently out-performs the linear kernel. But, an observation can be made that with an
increasing number of features, the advantage of using a non-linear kernel diminishes. This
diminished performance can be attributed to the fact that at a higher number of features,
one may not need to map features to a higher dimension [8]. Thus, the time penalty to tune
the kernel function (in case of non-linear) becomes outweighed by the rapid computation of
the linear kernel when both kernels provide relatively similar accuracy. Thus, with a large
number of features, one is better off using a linear kernel.

The feature selection methods significantly impact the performance of classification mod-
els, as one might expect. The Wilcoxon was the all-around best feature selection method,
performing the best for all the different matter types and across the entire feature range.
This observation is supported by previous studies [35] and [19]. The exceptional performance
of Wilcoxon is especially prevalent when sample sizes are small or the data doesn’t resemble
Normal distribution. Entropy and Bhattacharya are fascinating methods. At lower feature
numbers, they perform equally terribly, but at a higher number of features, they approach
the best performance. This behaviour can be seen in figure S-2, especially in integrated and
grey matter. The MRMR, ROC and T-Test all perform mediocrely, varying based on what
matter type is used. At present, using our specific dataset, our findings indicate that we can
classify schizophrenia patients with a maximum of 86.71% accuracy when using a standard
neural network with 500 features from combined matter, selected using Wilcoxon. The main
advantages of twin SVM based models like TWSVM, TBSVM, RELSTSVM, LSTSVM etc.
over standard SVM is that they give competitive performance in terms of accuracy and re-
duce the computational complexity of SVM because these models generate two non-parallel
hyperplanes instead of one single hyperplane in SVM which leads to solving two smaller sized
Quadratic Programming Problems (QPPs) instead of one larger QPP in SVM. The paper
[30] concludes that twin SVM based models performs better than other family of classifiers.

Referring to figure 4, our results strongly suggest that using both grey matter (GM)
and white matter (WM), i.e. integrated matter, leads to improved performance for the
classification of schizophrenia patients. The GM performs better than WM after reaching
a threshold number of features (in our case 700), but the results shoot up by a substantial
margin (∼4%) when the combined matter is used. It can be seen from figure 4 that this is
the case for all the evaluated classification techniques and that there are no exceptions for
this observation.
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6. Conclusions

In this study, we comprehensively evaluated various classification models to identify the
best available machine learning model for the classification of schizophrenia subjects. We
assessed 25 classification models involving the variants of support vector machines, twin
support vector machines, random forest, Kernel ridge regression and neural networks. Ad-
ditionally, we evaluated 7 feature selection methods: Wilcoxon, MRMR, ROC, Entropy,
T-Test, Bhattacharyya and NCA. Moreover, these evaluations were conducted on the fea-
tures based on grey matter (GM), white matter (WM) and the integrated GM and WM
data.

The contributions from this paper are four-fold. First, we underlined how different
families of machine learning algorithms perform with the schizophrenia dataset. We found
that, for the most part, the Non-linear twin SVM-based family of classifiers outperform all
other classifiers. This family includes (in the order of gradually worsening performance)
RELSTSVM, TBSVM, TWSVM and LSTSVM. However, the pinGTSVM is the worst-
performing family member, ranking the lowest across all the classifiers. On the other hand,
the KNN, KRR, MPRaF-T and non-linear SVM are the lowest performers. Most RaF-based
methods occupy the middle of the spectrum. An additional observation is that, for the most
part, the non-linear variant of a method outperforms the linear variation.

The second contribution is that we evaluated the performance of different feature selec-
tion methods. Our results indicate that Wilcoxon is the best performing methods with a top
rank across all the matter types. Entropy and Bhattacharyya have improved performance
with an increasing number of features. NCA is an unstable method, although it had a good
average performance. T-Test, ROC, MRMR are also reasonable choices for feature selection,
but they are not recommended.

Third, we found that utilising both grey and white matter for classification yields better
results than any individual matter type.

In conclusion, the feature selection method, the number of features selected and the
classification model should be appropriately chosen for better generalisation performance on
the classification of schizophrenia subjects. This study recommends using standard neural
network, RELSTSVM, TWSVM, or heterogeneous-RaF as the classification model with
∼700−1200 features selected via Wilcoxon feature selection method for better generalisation
performance on the classification of schizophrenia datasets. We hope that the evaluation
presented in this paper encourages future research to use better classification algorithms and
feature selection algorithms for clinical dataset classification.

New developments in machine learning are rapid and can improve the results of previous
algorithms by a significant margin. In the future, much scope remains for the development of
better specific models. Therefore, these new variants or methods need to be tested on real-
life datasets such as schizophrenia to grasp their viability. In the future, one can extend this
study by various margins, i.e. (1) the dataset can be enhanced to utilise data from multiple
sources; thus, it should be evaluated if combining data from various sources (i.e. MRI images
with varying scanning parameters such as slice thickness, field of view, bandwidth, repetition
time, etc.) leads to better generalisation or if it results in a worse performance. (2) This
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study utilised a single feature extraction technique (i.e. DARTEL); thus, future research for
the effect of different feature extraction techniques needs to be conducted. (3) This study
used a single modality (i.e. sMRI) and usage of different modalities including the Functional
MRI (fMRI), Electroencephalogram (EEG) should also be evaluated using a similar setup
in future studies. The source code will be available at https://github.com/mtanveer1
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Supplementary file of Diagnosis of
Schizophrenia: A comprehensive evaluation

1 Classification Algorithms

The classification algorithms evaluated in this study for diagnosis of schizophre-
nia are explained below. Let the training set be ((x1, y1), · · · , (xN , yN))
where N is the total number of training examples. X is the feature ma-
trix [x1, x2, · · · , xN ] of size N × d and Y = [1, 2, · · · ,m] is a N × 1 vector of
class labels.

1.1 Support Vector Machine (SVM)

Support Vector Machine [1] is supervised learning algorithm which classifies
the given data into two classes by constructing a hyperplane. From the many
possible hyperplanes, SVM chooses the one which maximize the margin be-
tween the two classes of data points.
SVM finds the optimal hyperplane by solving the following optimization
problem,

min
w,ξ

1

2
||w||2 + C

m∑

i=1

ξi,

s.t. yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . ,m (1)

where w, x ∈ Rn, ξ is the degree of misclassification and C is the penalty
parameter. Using Karush-Kuhn Tucker (KKT) conditions [2], we can solve
the above problem.
The optimal hyperplane is given as wTx+ b = 0.
SVM underperforms in places where number of features for each data point
exceeds the number of training data samples.

1

ar
X

iv
:2

20
3.

11
61

0v
1 

 [
cs

.L
G

] 
 2

2 
M

ar
 2

02
2



1.2 Twin Support Vector Machine (TWSVM)

TWSVM [3] divides the given data into two classes by generating two non-
parallel hyperplanes by minimizing the distance of each class points from its
corresponding hyperplane. So, TWSVM solves a pair of quadratic program-
ming problems for two classes of data points.
The pair of QPPs is given as:

min
w1,b1,ξ

1

2
||X1w1 + e1b1||2 + c1e

T
2 ξ

s.t. − (X2w1 + e2b1) ≥ e2 − ξ, ξ ≥ 0 (2)

and

min
w2,b2,η

1

2
||X2w2 + e2b2||2 + c2e

T
1 η

s.t. (X1w2 + e1b2) ≥ e1 − η, η ≥ 0, (3)

where c1, c2 are penalty parameters and ξ, η are slack variables. Solv-
ing the above primal problem by taking Lagrangian and then using K.K.T.
conditions [2], we get the dual of the respective problems as follows:

max
α

eT2 α−
1

2
αTG(HTH)−1GTα

s.t. 0 ≤ α ≤ c1 (4)

and

max
γ

eT1 γ −
1

2
γTP (QTQ)−1P Tγ

s.t. 0 ≤ γ ≤ c2 (5)

where H = [X1 e1], G = [X2 e2], P = [X1 e1], Q = [X2 e2] which can be
solved to give [wi bi], i = 1, 2. The new data point xj can be assigned class
i by the equation class(xj) = arg min

i=1,2
|wTi xj + bi|

For non-linearly separable data points, appropriate kernel can be used to
project data points to a higher dimensional space where they can be linearly
separable.
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1.3 Twin Bounded Support Vector Machine (TBSVM)

TBSVM [4] is an extension of TWSVM that introduces a maximum margin
regularization term which improves the classification accuracy. The mini-
mization of extra regularization term leads to maximizing the margin be-
tween the decision hyperplane and its parallel plane.
So, the formulation of TBSVM is given as follows:

min
w1,b1,ξ

1

2
||X1w1 + e1b1||2 + c1e

T
2 ξ +

1

2
c2(||w1||2 + b21)

s.t. − (X2w1 + e2b1) ≥ e2 − ξ, ξ ≥ 0 (6)

and

min
w2,b2,η

1

2
||X2w2 + e2b2||2 + c3e

T
1 η +

1

2
c4(||w2||2 + b22)

s.t. (X1w2 + e1b2) ≥ e1 − η, η ≥ 0, (7)

where c1, c2, c3, c4 are the penalty parameters and 1
2
c2(||w1||2+b21), 1

2
c4(||w2||2+

b22) are the extra regularization terms. Now, considering the Lagrangian and
using K.K.T. conditions, one can get the dual of the above problems as:

max
α

eT2 α−
1

2
αTG(HTH + c2I)−1GTα

s.t. 0 ≤ α ≤ c1 (8)

and for the second problem dual is

max
γ

eT1 γ −
1

2
γTP (QTQ+ c4I)−1P Tγ

s.t. 0 ≤ γ ≤ c3, (9)

where H = [X1 e1], G = [X2 e2], P = [X1 e1], Q = [X2 e2] and I is the
identity matrix of appropriate dimension. Solving the above dual problems
one can get the required decision hyperplanes.

1.4 Least Squares Twin SVM (LSTSVM)

LSTSVM [5], proposed by Kumar et. al., is an extension of TWSVM. The
formulation of LSTSVM leads to very simple and fast algorithm for gener-
ating the two non-parallel hyperplanes to classify the data points. LSTSVM
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formulation solves a system of linear equations instead of two QPPs.
So, the formulation of LSTSVM is given as:

min
w1,b1,

1

2
||X1w1 + e1b1||2 +

c1
2
ξT ξ

s.t. − (X2w1 + e2b1) = e2 − ξ, (10)

and

min
w2,b2

1

2
||X2w2 + e2b2||2 +

c2
2
δT δ

s.t. (X1w2 + e1b2) = e1 − δ, (11)

where c1, c2 are penalty parameters and ξ, η are slack variables. e is the
vector of ones of appropriate dimension. By substituting the constraints in
objective function for each problem, above equations can be solved to give a
system of two linear equations as:

[
w1

b1

]
= −(GTG+

1

c1
HTH)−1GT e2 (12)

[
w2

b2

]
= (HTH +

1

c2
GTG)−1HT e1 (13)

where H = [X1 e1] and G = [X2 e2], So, the required non-parallel separating
hyperplanes can be generated by solving the above system of equations.

1.5 Robust Energy-based Least Squares Twin Support
Vector Machine (RELSTSVM)

RELSTSVM [6] is another extension of TWSVM which adds an extra reg-
ularization term to the objective function of each problem and incorporates
the structural risk minimization principle. Moreover, RELSTSVM adds an
energy to each hyperplane to lessen the impact of noise and outliers, thus
making the algorithm more efficient.
Similar to LSTSVM, the constraints of RELSTSVM makes the distance of
hyperplanes to the data points to be exactly 1. and the extra regularization
term in objective function leads to the following formulation:

min
w1,b1

1

2
||X1w1 + e1b1||2 +

c1
2
ξT ξ +

c2
2

(||w1||2 + b21)

s.t. − (X2w1 + e2b1) = E1 − ξ (14)
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and

min
w2,b2

1

2
||X2w2 + e2b2||2 +

c3
2
ηTη +

c4
2

(||w2||2 + b22)

s.t. (X1w2 + e1b2) = E2 − η (15)

where c1, c2, c3, c4 are positive parameters and E1, E2 are the energy parame-
ters. Without help of any external toolbox, the above primal can be directly
solved by substituting the constraint in the objective function and setting
the gradient of the obtained function with respect to (w.r.t.) to w1, b1 equal
to zero, we get the system of linear equations as

v1 = −(c1Q
TQ+ P TP + c2I)−1c1Q

TE1 (16)

and for the second QPP,

v2 = (c3P
TP +QTQ+ c4I)−1c3P

TE2 (17)

where vi =

[
wi

bi

]
for i = 1, 2, P = [X1 e], Q = [X2 e2]

1.6 Pin-GTSVM

Pin-GTSVM [7] is an extension of TWSVM that uses pinball loss instead of
hinge loss which helps in making the algorithm insensitive to noise in data
and more stable for re-sampling of data. Pinball loss also puts penalty on
the correctly classified points. Hence, Pin-GTSVM obtains pair of planes for
classification of data points by solving the following pair of QPPs:

min
w1,b1,ξ

1

2
||X1w1 + e1b1||2 + c1e

T
2 ξ

s.t. − (X2w1 + e2b1) ≥ e2 − ξ,

− (X2w1 + e2b1) ≤ e2 +
ξ

τ2
(18)

and

min
w2,b2,η

1

2
||X2w2 + e2b2||2 + c2e

T
1 η

s.t. (X1w2 + e1b2) ≥ e1 − η,
(X1w2 + e1b2) ≤ e1 +

η

τ1
, (19)
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where τ1, τ2 ∈ [0, 1] are pinball loss parameters. Forming the Lagrangian and
using the K.K.T. conditions, we can obtain the dual as:

max
α−β

eT2 (α− β)− 1

2
(α− β)TG(HTH)−1GT (α− β)

s.t.− τ2c1e2 ≤ (α− β) (20)

and

max
γ−δ

eT1 (γ − δ)− 1

2
(γ − δ)TH(GTG)−1HT (γ − δ)

s.t.− τ1c2e1 ≤ (γ − δ) (21)

where H = [X1 e1], G = [X2 e2] Solving the above dual one can get the two
decision hyperplanes and a new data point x ∈ Rn can be assign a label for
it’s class using the equations of hyperplanes.

1.7 Random Forest

A random forest (RaF) is an ensemble of axis-parallel decision trees that are
trained independently. Decision trees in a random forest employ recursive
partitioning of the training data into smaller subsets that further aid in
classification by optimizing an impurity criterion such as information gain or
gini index [8]. In RaF, each non-leaf node is associated with a split function
f(x,Θ) where

f(x,Θ) = 1; x(Θ1) < Θ (22)

0; otherwise (23)

where Θ1 ε {1, 2, · · · , d} is the selected feature and Θ2 ε R is a threshold. The
outcome determines the child node where x is routed to. The leaf nodes of
the tree can either store class probability distributions or class labels based
on the training samples they receive. At the time of testing, a test sample x,
each tree returns probability distribution pt(y|x) and the label of the class is
obtained as average or majority vote.

y∗(x) = arg max
y

1

T

T∑

t=1

pt(y|x) (24)

Here T is the number of trees in the forest.
Random Forest requires high computational power and time as it combines
numerous decision trees in order to determine the class.
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1.8 Oblique Random Forest

Oblique RaF [9] was proposed to handle classification with an improved geo-
metric property. Multisurface Proximal Support Vector Machine (MPSVM)
[10] is used to generate clustering hyperplanes in decision trees. Now, RaF is
implemented using the MPSVM-based decision trees and then subsequently
using various regularisation methods. It was shown that Oblique RaF per-
forms better than RaF and have significantly less variance and bias. MPRaF-
T, MPRaF-P, and MPRaF-N represent the MPSVM-based RaFs with Tikhonov,
axis-parallel, and NULL space regularization, respectively.

1.9 Heterogeneous Random Forest

Even though some of the oblique random forest based [9] on linear classifier
perform better consistently, they aren’t always the best variant of oblique
random forest for every dataset. Heterogeneous RaF [11] uses several linear
classifiers for generating the separating of hyperplanes. Even when some
of the linear classifier based variants have lower ranks, they can still be
integrated forming a heterogeneous linear classifier based oblique random
forest. This would require us to evaluate n classifiers in K binary partitions,
hence requiring nK number of evaluations at each node. They employed
a hyper class based partitioning with one-vs-all partitioning using multiple
linear classifiers at each node.

The six different classifiers which have been employed are Support Vec-
tor Machines (SVM), Multisurface Proximal SVM (MPSVM), Linear Dis-
criminant Analysis (LDA), Least Squares SVM (LSSVM), Ridge Regression
(RR) and Logistic Regression (LR) as they have performed well in several
domains [12].

For the decision trees, each split is rated based on impurity criterion. All
the splits at each non-leaf nodes are linked with an impurity measure Gini
Index. The one which is having the maximum value is the selected split for
that particular node. Instead of looking for optimal oblique split in whole
search space, the recursive partitioning property exhibited by decision trees,
generating few oblique splits and used their g(i) for selecting the best oblique
split.

The ideal gini score (gi) is the one which is obtained when all the samples
of one class are perfectly seperated from other class by an oblique split. By
training the linear classifiers on partitions with higher gi and are likely to
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give higher g. One can ignore the partitions with lower gi which are likely to
give lower g.

min
i=1,...,k

[
min

i=i+1,...,k

(
diss(ci, cj)

maxm=1,...,kdiam(cm)

)]
(25)

Here diss(ci, cj) = minxεci,yεcj ||x − y|| is the dissimilarity between cluster ci
and cj and diam(c) = maxx,yεC ||x− y|| is the intra cluster function. We use
Bhattacharyya distance as the metric for distance.

1.10 Kernel Ridge Regression

Kernel Ridge Regression [13] and SVM [1] are the best known members
using kernel method. Kernel based methods are very useful when there is
non-linear structure in data. KRR is faster to train and simpler with its
closed form solution and can achieve performance which is comparable to
complex methods such as SVM.

The kernel ridge regression method is based on Ridge Regression [14] and
Ordinary Least Squares. The OLS minimizes the loss min

β
||Y −Xβ||2 which

is the L2 norm. A shrinkage parameter λ is added to control the trade-off
between variance and bias in the above expression giving us the following
problem.

min
β
||Y −Xβ||2 + λ||β||2 (26)

The closed form solution for above can be problem given as β = (XTX +
λI)−1XTY . The label predicted for the new unlabeled example x is given
as βTx. The Kernel ridge regression method extends linear regression into
non-linear and high-dimensional space. The data which is present in X is
replaced with the feature vectors :xi −→ φ = φ(xi) induced by the kernel
where Kij = k(xi, xj) = φ(xi)φ(xj). Hence the new predicted class label for
the new example x is given as :

Y T (K + λI)−1k (27)

Here k = (k1, k2, ...kN)T , kn = xn.x and n = 1, 2, ...N .
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1.11 Random vector functional link network (RVFL)
[15]

RVFL [15] is the randomized version of the functional link neural network.
Here, the input layer to the hidden layer, the weights are generated randomly
in a suitable domain and fixed in the learning stage. Weights are generated
in this manner ensuring that the activation functions g(aTj x + bj) are not
all saturated. All weights are generated with uniform distribution within
[−S,+S]. Here S is a scale factor which is determined at the stage of pa-
rameter tuning. Only the output weights need to be determined by solving
the problem :

yi = dTi β, i = 1, 2, ...N (28)

Here P is the number of data samples, t is the target and d is the vectorised
concatenation of random and the original features. Least squares can be
used as a regularization technique in order to avoid over-fitting and obtain
the solution. The two classes of RVFL algorithm are iterative RVFL, which
obtains the output weights in an iterative manner based on the gradient of the
error function and the closed-form based RVFL, which obtains the output
weights in a single-step. The closed-form based RVFL exhibits a higher
efficiency. L2 norm regularized least square is used to solve the following
problem :

∑

i

(yi − dTi β)2 + λ||β||2 ; i = 1, 2, · · · , N (29)

The solution for the same is given as β = D(DTD + λI)−1Y , where λ is the
regularization parameter to be tuned. D and Y are the stacked features and
targets of all the data samples in matrix form.

1.12 Random vector functional link network with Au-
toEncoder (RVFLAE) [16]

Autoencoder is an unsupervised learning model for which the output and
input layers share the same neurons in order to reconstruct its own inputs
instead of predicting target values for given input data. Sparse pre-trained
RVFL is the unsupervised parameter learning method for RVFL. A sparse
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autoencoder is used to learn appropriate network parameters, which are de-
veloped via l1 norm optimization instead of the usual l2 norm. This means
that more informative features will be retained to participate in the subse-
quent learning processes. During the learning process, the sparse autoencoder
captures the excellent features in the encoding stage and learns the output
weights in the decoding stage. Let the input data be X, then the sparse
autoencoder has optimization problem given as :

Ow = arg min{||H̃ω̄ −X||2 + ||ω̄||l1}

Here H̃ ∈ RN×L is the output matrix of hidden layer obtained via random
feature mapping. ω̄ ∈ RL×d is the output weight matrix of the sparse en-
coder. ||H̃ω̄ − X||2 measures the loss to model the reconstruction process
of input data and ||ω̄||l1 is the l1 norm regularization. The solution of this
optimization problem is given by Fast iterative shrinkage threshold algorithm
(FISTA) [17].

1.13 K nearest neighbours

K nearest neighbours algorithm assigns the label depending upon the sim-
ilarity of the point with its neighbours. A constant K is first chosen for
the algorithm. The Euclidean distance of the given point is calculated and
the K nearest members are selected from it. The number of data points is
counted and assign data points is assigned to the category for which there
are maximum number of neighbours.

1.14 Neural Network

Neural networks [18] are network of node layers comprising of an input layer,
multiple hidden layers and an output layer. Each layer has multiple num-
ber of nodes and the nodes of each layer are interconnected with the other
layers. Each of the nodes consists of weights which are tuned by training on
the examples. The output of each of the layer is calculated through an acti-
vation function, which is then passed to the next layer. We have divided the
dataset into 85% training and 15% test set for our network. The layers of our
network depending upon the activation functions are Feature Input Layer −→
Fully Connected Layer −→ Batch Normalized Layer −→ Relu Layer −→ Fully Connected Layer −→
SoftMaxLayer −→ Classification Layer.
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For the tuning of our parameters, we have used Adam Optimizer. It is
the combination of the Stochastic Gradient Descent with momentum and the
Root Mean Square Propagation and hence is quite efficient.

The network once trained, is used to make predictions on the test set.

2 Statistical Analysis

We follow Friedman Test [19, 20] to test the significant difference among
the linear and non-linear classification models. Consider k algorithms are
evaluated N datasets/feature selection techniques. Let rji be the rank of jth

algorithm on ith feature selection technique. The ranks of the algorithms are
compared by taking their average performance Rj = 1

N

∑
i r
j
i . As per the

null hypotheses, the ranks Rj of the algorithms should be equal considering
that all algorithms are equivalent.

χ2
F =

12N

(k)(k + 1)
[
∑

j

R2
j −

k(k + 1)2

4
]

Here the Friedman statistic is distributed as per χ2
F with degrees of freedom

as k − 1 considering k and N are large(N > 10 and k > 5).
Friedman’s χ2

F is considered to be conservative and a better statistic has been
derived [21]. The better statistic FF is given as follows

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

This statistic having k−1 and (k−1)(N−1) degrees of freedom is distributed
as per the F distribution.
We can proceed with a post-hoc test in case the null-hypothesis is rejected.
The Nemenyi test [22] is used while comparing the classifiers with each other.
If the average ranks of two classifiers differ by atleast the critical difference,

Critical Difference = qα

√
k(k + 1)

6N
(30)

then the performance of classifiers is considered to be different significantly.
Here, the qα critical values are dependent upon Studentized range statistic
divided by

√
2. Here, N = 7, K = 12. With simple calculation, we have
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χ2
F = 54.48, FF = 14.52. From Statistical tables, FF (11, 66) = 1.937. Since

14.52 > 1.937, hence we reject the null hypothesis. Thus, significant dif-
ference exists among the models. With qα=0.05 = 3.268, we get CD = 6.3.
Hence, if the rank difference of two classifiers is atleast CD, then the two
models are significantly different. Based on the Nemenyi test, Table S-1 gives
the significant difference among the models. No significant difference exists
among the other methods not given in Table S-1.
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Figure S-1: Average performance of classifiers families

Table S-1: Statistical analysis on linear and non-linear variants of classifica-
tion models.

Models KRR (Linear) KRR (Non-Linear) LSTWSVM (Linear) TWSVM (Linear) SVM (Linear) SVM (Non-Linear)
RELSTSVM (Non-Linear) Yes No Yes No Yes Yes
TBSVM (Non-Linear) Yes Yes Yes Yes Yes Yes
TWSVM (Non-Linear) Yes No Yes No Yes Yes
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Figure S-2: Average performance of feature selection methods
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3 Supplementary Tables

Tables S-2 and S-3 are accuracies for White Matter (900 features) and Grey
Matter (1200 features). Tables S-4, S-5, S-6, S-7, S-8, S-9 are other per-
formance metrics (AUCs, Sensitivity, Specificity, Precision, F-Measure and
G-Mean) for White Matter (900 features). Tables S-10, S-11, S-12, S-13,
S-14, S-15 are other performance metrics for integrated GM and WM (500
features). Tables S-16, S-17, S-18, S-19, S-20, S-21 are other performance
metrics for Grey Matter (1200 features).
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Table S-2: Accuracies for White Matter for 900 features.

Feature selection methods

Classification T-Test ROC Wilc- Entr- Bhatta- MRMR NCA
techniques oxon opy charyya
Linear variations:
Het-RaF 67.95 67.24 84.05 66.57 67.76 66.33 51.9
KNN 54.86 65.14 74.52 57 55.62 60.95 44.48
MPRaF-N 59.62 66.52 70.24 68.48 61.67 65 47.24
MPRaF-P 65.19 65.62 69.67 69.24 65 66.62 50.76
MPRaF-T 63.05 51.43 73.71 65.14 66.33 55.43 49.33
Neural 55.57 66.62 81.9 63.57 60.86 62.38 47
pinGTSVM 54.1 58.19 73.19 71.24 68.67 50.05 49.81
RaF-LDA 56.86 63.67 76.57 62.05 67.81 67.86 48.57
RaF-PCA 62.24 68.57 72.38 67.71 64.48 63.14 47.24
RaF 61.76 65 70.52 69.14 63 68.57 50.76
RVFLAE 50.1 58.71 72.48 60.81 58.71 60.19 56.71
RVFL 61.67 61 77.95 64.14 72.52 68.33 55.71
KRR 66.52 69.86 73.76 71 71 52 54.19
LSTWSVM 62.92 63.79 75.49 67.5 66.17 65.92 56.99
RELSTSVM 65.88 72.63 77.79 74.06 74.06 70.01 59.54
SVM 58.86 64.38 74.43 67.57 68.24 64.29 56.67
TBSVM 66.33 72 77.29 72.43 72.38 69.71 60.71
TWSVM 59.62 65.1 77.24 68.24 68.29 66.95 59.57
Non-linear (Gaussian Kernel) variations:
KRR 64.48 66.43 73.81 69.9 69.9 68.52 52.81
LSTWSVM 66.91 71.08 79.29 77.63 79.4 71.56 58.4
RELSTSVM 69.25 76.15 81.09 81.11 82.13 72.68 59.89
SVM 57.62 67.14 75.1 67.48 68.24 66.48 56.62
TBSVM 68.62 73.33 79.9 79.43 78.81 73.29 61.76
TWSVM 67.24 72.71 78.52 78.71 78.71 72.67 59.71
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Table S-3: Accuracies for Grey Matter for 1200 features.

Feature selection methods

Classification T-Test ROC Wilc- Entr- Bhatta- MRMR NCA
techniques oxon opy charyya
Linear variations:
Het-RaF 62.86 61.52 76.71 71.29 73.95 70.43 67.71
KNN 62.24 60.86 73.29 63 64.33 67.76 65.14
MPRaF-N 61.52 63.57 72.43 69.62 74.43 67.62 71.24
MPRaF-P 65 63.57 69.71 71.86 71 68.95 69.14
MPRaF-T 67.76 64.9 75.9 69.52 70.24 64.29 71.81
Neural 62.24 60.81 74.62 61.57 65 61.67 66.38
pinGTSVM 56.76 53.29 71.76 67.05 69.86 62.14 66.38
RaF-LDA 65.81 56.71 77.9 69.9 65 67.71 66.19
RaF-PCA 67 58.62 77.24 68.95 73.76 67.81 61.71
RaF 66.29 63.62 71 70.29 71.14 68.29 67.81
RVFLAE 54.86 53.43 69.71 58.38 61.76 60.38 64.29
RVFL 61.67 65.48 71.81 72.52 67 68.52 65
KRR 60.86 58.76 76.67 70.52 70.48 67.67 70.38
LSTWSVM 59.5 58.25 75.26 70.3 69.89 67.94 69.56
RELSTSVM 64.9 64.26 78.26 73.73 73.33 69.75 73.91
SVM 57.62 52.76 74.57 71.86 73.24 67.1 71.14
TBSVM 64.24 64.29 79.48 72.48 73.9 69.29 71.81
TWSVM 60.24 58.95 74.57 72.48 67.86 67.05 66.48
Non-linear (Gaussian Kernel) variations:
KRR 68.52 69.9 76.05 73.95 73.19 70.29 67.62
LSTWSVM 64.52 64.91 78.16 80.9 82.51 71.12 76.29
RELSTSVM 67.95 68.78 77.88 82.82 84 69.91 77.28
SVM 55.52 60.86 74.57 72.52 75.14 60.38 73.86
TBSVM 71.19 69.86 77.95 82.24 82.86 72.43 76.71
TWSVM 67.1 68.38 77.9 82.14 82.86 71.62 76.71
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Table S-4: Evaluation of classification models based on AUCs with White
Matter (900 features).

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 67.98 67.29 83.68 68.51 69.14 67.58 51.23
KNN 54.06 65.40 74.88 56.24 54.97 61.32 45.83
KRR (Linear) 65.89 70.42 73.66 72.47 72.47 55.03 54.55
KRR (Non-Linear) 65.33 67.42 73.99 71.09 71.16 68.72 53.91
LSTWSVM (Linear) 57.12 59.69 68.22 64.65 63.65 57.70 55.08
LSTWSVM (Non-Linear) 60.46 68.59 88.54 81.65 78.00 65.92 51.61
MPRaF-N 63.58 67.71 73.03 70.68 64.32 66.26 51.37
MPRaF-P 66.22 65.37 69.60 70.41 66.44 67.62 51.73
MPRaF-T 63.24 56.94 74.54 66.13 67.04 57.01 49.59
Neural 56.04 66.26 81.91 64.33 62.41 61.68 46.55
pinGTSVM 55.79 59.00 73.80 69.54 67.77 50.10 48.29
RaF-LDA 57.84 64.84 76.26 62.86 67.88 67.21 49.74
RaF-PCA 62.54 68.72 72.11 67.53 64.95 62.84 47.04
RaF 62.23 64.18 71.27 69.59 63.84 69.42 51.38
RELSTSVM (Linear) 59.79 73.62 73.81 75.69 75.69 68.77 61.61
RELSTSVM (Non-Linear) 70.73 84.62 74.77 83.15 86.76 66.92 57.83
RVFLAE 49.95 57.97 72.53 61.12 58.90 60.37 56.45
RVFL 61.73 60.43 77.49 64.89 72.27 68.20 55.80
SVM 56.65 67.37 75.33 68.42 69.20 65.88 55.81
TBSVM (Linear) 65.08 71.91 76.81 73.97 73.70 72.53 60.11
TBSVM (Non-Linear) 68.81 73.44 79.71 79.27 79.65 73.38 59.92
TWSVM (Linear) 58.92 63.72 76.81 68.21 68.12 66.41 58.29
TWSVM (Non-Linear) 67.79 72.27 78.10 78.16 77.83 72.73 57.94
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Table S-5: Sensitivities of the classification models for White Matter (900
features).

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 63.27 63.56 80.56 59.99 59.88 60.84 38.35
KNN 25.35 52.64 62.98 17.20 16.09 41.32 18.92
KRR (Linear) 65.13 69.07 72.19 70.23 70.23 67.75 52.38
KRR (Non-Linear) 53.96 70.05 61.21 61.12 60.00 62.29 30.03
LSTWSVM (Linear) 68.73 67.88 82.75 70.35 68.69 74.15 58.91
LSTWSVM (Non-Linear) 73.35 73.56 70.04 73.62 80.81 77.19 65.20
MPRaF-N 76.25 68.80 82.48 63.42 57.25 65.19 67.48
MPRaF-P 60.92 58.28 65.00 65.49 59.00 61.60 32.04
MPRaF-T 54.13 56.42 67.75 47.65 49.66 30.17 39.51
Neural 48.56 60.27 78.50 61.18 58.92 57.98 46.44
pinGTSVM 61.40 63.77 66.03 74.71 71.04 62.53 56.38
RaF-LDA 51.10 55.60 63.11 52.36 53.24 56.57 25.79
RaF-PCA 57.64 60.01 67.21 58.27 52.15 48.35 33.14
RaF 55.28 55.32 66.72 66.83 58.56 62.42 35.99
RELSTSVM (Linear) 71.96 71.63 81.77 72.44 72.44 71.25 57.46
RELSTSVM (Non-Linear) 67.77 67.67 87.40 79.06 77.51 78.44 61.95
RVFLAE 42.71 52.24 66.21 58.33 58.33 55.16 56.88
RVFL 49.22 56.24 76.21 64.42 68.61 63.32 52.27
SVM 51.34 68.41 74.85 66.92 67.94 59.18 51.46
TBSVM (Linear) 72.09 72.19 70.72 74.26 72.60 72.75 57.50
TBSVM (Non-Linear) 71.34 70.08 77.46 74.00 80.23 64.91 46.54
TWSVM (Linear) 54.09 57.61 71.72 69.06 68.88 61.73 59.11
TWSVM (Non-Linear) 73.65 82.16 73.12 65.04 64.37 64.50 44.11
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Table S-6: Specificity of classification models for White Matter (900 features).

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 72.70 71.02 86.80 77.04 78.40 74.33 64.11
KNN 82.77 78.16 86.77 95.28 93.85 81.33 72.73
KRR (Linear) 66.65 71.77 75.14 74.70 74.70 42.32 56.73
KRR (Non-Linear) 76.69 64.79 86.78 81.06 82.31 75.14 77.80
LSTWSVM (Linear) 67.19 65.39 77.44 66.78 65.42 71.14 57.96
LSTWSVM (Non-Linear) 72.38 72.41 73.68 74.09 79.13 71.69 57.39
MPRaF-N 50.90 66.62 63.59 77.95 71.38 67.33 35.25
MPRaF-P 71.52 72.47 74.20 75.33 73.88 73.63 71.42
MPRaF-T 72.35 57.46 81.33 84.62 84.42 83.85 59.66
Neural 63.53 72.25 85.31 67.48 65.89 65.39 46.66
pinGTSVM 50.17 54.22 81.57 64.38 64.49 37.67 40.19
RaF-LDA 64.58 74.08 89.40 73.36 82.52 77.85 73.69
RaF-PCA 67.44 77.42 77.01 76.79 77.74 77.33 60.94
RaF 69.17 73.04 75.82 72.35 69.12 76.42 66.77
RELSTSVM (Linear) 69.89 71.27 78.65 71.04 71.04 68.72 57.58
RELSTSVM (Non-Linear) 68.33 70.59 81.81 77.86 77.53 72.94 58.82
RVFLAE 57.19 63.70 78.85 63.91 59.46 65.58 56.02
RVFL 74.24 64.63 78.77 65.37 75.94 73.09 59.33
SVM 61.96 66.33 75.81 69.91 70.46 72.59 60.15
TBSVM (Linear) 58.07 71.63 82.91 73.69 74.80 72.31 62.71
TBSVM (Non-Linear) 66.29 76.80 81.96 84.54 79.06 81.84 73.31
TWSVM (Linear) 63.75 69.83 81.91 67.35 67.35 71.08 57.46
TWSVM (Non-Linear) 61.93 62.37 83.07 91.28 91.28 80.96 71.78
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Table S-7: Precision of classification models for White Matter (900 features).

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 69.45 69.61 84.71 74.13 73.58 69.92 50.08
KNN 52.83 70.18 81.75 NaN NaN 67.98 32.95
KRR (Linear) 69.73 70.97 72.06 71.31 71.31 55.01 53.35
KRR (Non-Linear) 71.87 67.75 79.48 77.53 78.89 69.09 64.19
LSTWSVM (Linear) 59.52 60.49 71.45 64.78 63.67 61.82 54.45
LSTWSVM (Non-Linear) 63.24 68.73 79.42 76.75 75.78 67.13 52.89
MPRaF-N 63.51 68.59 67.60 75.48 69.35 66.65 50.71
MPRaF-P 68.79 68.29 69.28 74.44 70.58 72.45 52.88
MPRaF-T 68.22 NaN 75.31 74.08 79.95 72.33 50.02
Neural 56.87 68.40 82.23 63.73 60.33 63.04 44.84
pinGTSVM 57.18 56.86 75.65 68.18 66.18 49.46 47.90
RaF-LDA 59.49 70.65 86.13 68.46 76.67 71.81 NaN
RaF-PCA 64.83 72.07 74.84 71.59 71.76 66.57 44.83
RaF 64.19 70.36 72.54 70.60 67.15 74.11 50.35
RELSTSVM (Linear) 62.51 71.18 75.46 71.08 71.08 67.03 58.19
RELSTSVM (Non-Linear) 68.12 75.99 77.62 79.56 81.14 68.74 56.86
RVFLAE 43.47 58.43 74.63 60.99 58.27 61.37 57.48
RVFL 63.42 61.00 75.61 62.65 72.89 69.18 50.61
SVM 55.09 66.95 72.99 66.70 66.97 70.02 57.20
TBSVM (Linear) 65.67 70.82 79.75 71.38 71.20 71.35 59.65
TBSVM (Non-Linear) 67.36 75.31 78.52 81.40 77.62 75.26 56.96
TWSVM (Linear) 59.28 65.49 77.73 67.52 67.83 66.84 56.58
TWSVM (Non-Linear) 67.63 69.73 78.39 84.05 82.38 75.22 55.89
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Table S-8: F-Measures for White Matter for 900 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 64.33 64.11 81.89 61.47 62.45 62.39 NaN
KNN NaN 58.40 69.46 NaN NaN 47.93 NaN
KRR (Linear) 65.47 68.22 71.02 68.54 68.54 57.01 51.34
KRR (Non-Linear) 58.46 66.42 68.33 65.49 65.29 64.73 37.97
LSTWSVM (Linear) 60.79 61.48 72.13 65.25 64.10 63.07 55.46
LSTWSVM (Non-Linear) 64.74 69.60 80.26 77.30 77.14 67.93 53.68
MPRaF-N 63.96 66.09 71.52 65.35 56.24 63.49 54.44
MPRaF-P 61.84 61.11 66.01 67.39 60.88 62.29 NaN
MPRaF-T 58.15 NaN 69.73 54.76 58.31 38.30 41.98
Neural 49.86 62.74 79.43 61.22 57.63 59.67 44.49
pinGTSVM 55.21 58.32 68.97 71.02 68.13 53.62 50.50
RaF-LDA 53.25 58.66 71.15 57.34 61.52 62.24 NaN
RaF-PCA 58.97 63.26 69.25 62.86 57.12 53.53 36.71
RaF 57.31 59.80 67.83 67.79 58.61 64.53 39.84
RELSTSVM (Linear) 63.63 71.80 75.85 72.19 72.19 67.87 58.88
RELSTSVM (Non-Linear) 68.82 76.79 77.95 80.03 81.63 69.32 57.58
RVFLAE NaN 53.97 69.21 58.51 57.44 56.56 55.49
RVFL 53.80 58.03 75.00 61.45 69.95 65.02 NaN
SVM 51.72 66.28 72.76 65.28 65.84 60.93 52.46
TBSVM (Linear) 67.18 70.37 74.12 70.64 70.01 68.48 56.52
TBSVM (Non-Linear) 67.03 71.14 77.61 76.66 77.99 68.22 NaN
TWSVM (Linear) 55.35 59.41 74.02 66.80 67.04 63.04 56.64
TWSVM (Non-Linear) 68.53 72.79 75.35 72.09 70.98 67.96 NaN
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Table S-9: G-Means for White Matter for 900 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 65.31 65.26 82.26 63.72 64.35 63.79 43.29
KNN 35.86 59.82 70.88 NaN NaN 50.71 22.64
KRR (Linear) 66.43 69.10 71.57 69.62 69.62 59.09 52.08
KRR (Non-Linear) 60.47 67.62 69.32 67.29 67.24 65.21 41.85
LSTWSVM (Linear) 5.61 5.57 5.56 5.52 5.75 5.72 5.51
LSTWSVM (Non-Linear) 0.31 0.29 0.31 0.31 0.31 0.31 0.31
MPRaF-N 66.75 67.35 73.24 67.27 59.14 64.66 56.64
MPRaF-P 63.26 62.12 66.56 68.63 62.63 64.15 39.65
MPRaF-T 59.57 NaN 70.60 57.27 61.22 43.47 43.32
Neural 51.20 63.51 79.90 61.83 58.61 60.08 45.05
pinGTSVM 57.05 59.29 69.89 71.23 68.37 54.78 51.31
RaF-LDA 54.24 60.69 72.82 58.83 63.20 63.20 NaN
RaF-PCA 60.08 64.61 70.11 63.86 59.42 55.29 37.80
RaF 58.44 61.23 68.69 68.25 60.24 66.20 41.38
RELSTSVM (Linear) 5.50 5.38 5.40 5.36 5.44 5.42 5.54
RELSTSVM (Non-Linear) 0.35 0.33 0.33 0.35 0.34 0.34 0.34
RVFLAE 41.79 54.64 69.81 59.08 57.87 57.40 56.32
RVFL 55.01 58.32 75.45 62.47 70.34 65.63 50.69
SVM 52.45 66.97 73.33 66.03 66.63 62.71 53.38
TBSVM (Linear) 68.02 70.93 74.67 71.70 70.92 70.19 57.52
TBSVM (Non-Linear) 68.15 71.90 77.80 77.17 78.46 69.12 51.11
TWSVM (Linear) 56.00 60.44 74.37 67.54 67.69 63.65 57.23
TWSVM (Non-Linear) 69.56 74.33 75.55 73.29 72.13 68.87 48.90
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Table S-10: AUCs for Combined Matter for 500 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 72.16 73.21 81.50 69.35 63.93 73.62 64.08
KNN 68.77 71.92 72.53 59.92 59.92 65.27 69.26
KRR (Linear) 72.22 71.00 74.07 63.64 64.98 73.74 66.33
KRR (Non-Linear) 71.89 73.68 72.18 66.68 67.73 73.22 67.17
LSTWSVM (Linear) 68.44 64.33 68.77 65.21 63.21 66.38 66.04
LSTWSVM (Non-Linear) 67.99 64.88 90.13 72.05 70.21 69.51 64.70
MPRaF-N 73.17 72.11 73.35 65.75 63.99 67.87 63.09
MPRaF-P 70.30 75.02 76.53 61.49 67.19 70.72 68.64
MPRaF-T 73.02 74.14 74.70 54.97 55.62 68.27 68.94
Neural 76.10 77.60 85.88 61.74 64.36 72.27 66.15
pinGTSVM 69.25 67.13 75.92 57.73 56.75 59.33 64.31
RaF-LDA 74.30 72.01 81.20 56.27 65.80 69.06 66.08
RaF-PCA 73.45 73.91 71.66 66.45 68.29 70.77 69.32
RaF 71.46 70.54 75.91 64.72 65.26 75.23 70.51
RELSTSVM (Linear) 76.63 75.20 73.35 64.32 64.01 74.20 63.14
RELSTSVM (Non-Linear) 74.96 72.52 76.87 77.98 78.65 79.55 64.70
RVFLAE 61.30 57.28 70.83 61.48 63.33 66.33 58.55
RVFL 72.02 71.68 75.85 71.72 66.38 68.34 60.06
SVM 75.92 70.34 71.13 61.65 65.11 66.41 60.80
TBSVM (Linear) 74.49 72.89 78.84 69.80 70.68 72.06 66.97
TBSVM (Non-Linear) 76.44 76.79 78.36 79.25 78.56 75.86 69.46
TWSVM (Linear) 71.51 67.15 77.92 69.80 69.58 70.23 66.36
TWSVM (Non-Linear) 76.21 76.32 77.90 77.37 77.30 73.90 68.82
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Table S-11: Sensitivities for Combined Matter for 500 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 61.14 64.89 80.55 58.04 53.74 70.66 52.66
KNN 58.22 67.94 67.56 26.00 26.00 53.73 56.13
KRR (Linear) 71.35 65.93 70.08 59.34 60.77 71.70 62.32
KRR (Non-Linear) 66.47 65.38 55.99 50.60 54.95 65.70 56.52
LSTWSVM (Linear) 75.26 66.90 82.04 73.35 73.29 68.29 61.38
LSTWSVM (Non-Linear) 81.21 84.16 69.55 84.71 83.60 77.01 74.79
MPRaF-N 77.04 75.87 74.59 47.13 48.89 63.74 60.28
MPRaF-P 67.18 70.84 73.27 52.85 61.58 67.48 58.18
MPRaF-T 65.50 71.29 70.59 20.69 23.71 61.21 59.03
Neural 70.47 72.88 84.56 55.93 60.22 71.01 64.06
pinGTSVM 73.75 70.35 80.21 74.84 72.16 64.29 65.77
RaF-LDA 65.42 65.93 75.80 44.52 56.79 67.44 55.02
RaF-PCA 66.07 72.91 68.73 57.36 58.57 67.88 65.32
RaF 70.51 72.19 74.70 55.57 55.63 71.66 64.59
RELSTSVM (Linear) 71.94 71.16 84.34 73.92 77.40 70.08 72.46
RELSTSVM (Non-Linear) 77.45 80.12 82.78 80.76 80.76 73.56 74.79
RVFLAE 53.40 51.14 66.52 59.33 60.40 62.22 58.57
RVFL 66.80 62.32 75.80 64.62 60.65 67.04 57.45
SVM 70.68 63.85 69.18 52.37 65.02 65.64 59.19
TBSVM (Linear) 68.01 64.26 76.01 65.89 61.71 71.45 61.71
TBSVM (Non-Linear) 74.77 65.93 77.87 73.96 70.04 69.27 51.47
TWSVM (Linear) 66.23 61.15 75.62 65.89 63.65 69.71 65.53
TWSVM (Non-Linear) 74.96 70.86 73.35 70.21 70.21 65.58 63.67
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Table S-12: Specificity’s for Combined Matter for 500 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 83.19 81.53 82.45 80.65 74.12 76.58 75.50
KNN 79.33 75.91 77.49 93.85 93.85 76.80 82.38
KRR (Linear) 73.09 76.06 78.06 67.95 69.20 75.77 70.35
KRR (Non-Linear) 77.31 81.99 88.37 82.76 80.51 80.74 77.82
LSTWSVM (Linear) 74.46 64.95 79.68 71.10 71.17 67.50 63.50
LSTWSVM (Non-Linear) 79.17 80.32 73.93 80.24 78.04 73.64 69.01
MPRaF-N 69.30 68.34 72.10 84.38 79.08 72.00 65.90
MPRaF-P 73.42 79.20 79.79 70.12 72.80 73.96 79.10
MPRaF-T 80.55 76.99 78.81 89.25 87.53 75.34 78.86
Neural 81.73 82.32 87.21 67.54 68.51 73.54 68.25
pinGTSVM 64.76 63.91 71.63 40.62 41.34 54.36 62.84
RaF-LDA 83.19 78.10 86.60 68.02 74.80 70.67 77.14
RaF-PCA 80.83 74.91 74.58 75.54 78.01 73.66 73.32
RaF 72.41 68.90 77.12 73.87 74.88 78.80 76.43
RELSTSVM (Linear) 70.61 69.02 82.85 70.41 72.06 69.71 66.21
RELSTSVM (Non-Linear) 74.80 78.27 82.67 78.81 79.37 74.30 69.01
RVFLAE 69.20 63.42 75.13 63.63 66.25 70.43 58.52
RVFL 77.24 81.03 75.90 78.83 72.12 69.63 62.67
SVM 81.17 76.83 73.09 70.94 65.20 67.19 62.42
TBSVM (Linear) 80.96 81.52 81.66 73.71 79.65 72.67 72.22
TBSVM (Non-Linear) 78.12 87.66 78.85 84.54 87.08 82.45 87.46
TWSVM (Linear) 76.78 73.16 80.23 73.71 75.51 70.76 67.18
TWSVM (Non-Linear) 77.45 81.79 82.46 84.54 84.40 82.21 73.98
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Table S-13: Precisions for Combined Matter for 500 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 75.62 75.06 81.49 75.64 70.40 75.96 65.13
KNN 74.84 71.14 77.50 75.83 75.83 69.92 75.78
KRR (Linear) 69.43 72.86 76.24 64.59 66.25 72.92 63.96
KRR (Non-Linear) 73.21 79.03 86.25 77.51 75.37 78.31 71.71
LSTWSVM (Linear) 69.00 63.07 72.29 64.18 62.74 65.72 63.80
LSTWSVM (Non-Linear) 70.68 69.05 80.06 74.73 72.87 69.52 64.72
MPRaF-N 67.58 68.98 70.85 75.31 74.68 69.81 62.92
MPRaF-P 71.45 77.73 77.59 64.83 71.02 71.94 76.78
MPRaF-T 74.83 74.04 77.42 NaN NaN 70.17 75.12
Neural 80.20 80.61 87.24 63.92 63.95 74.52 65.20
pinGTSVM 66.27 64.56 72.88 55.76 53.73 58.57 61.69
RaF-LDA 76.31 74.96 84.23 60.50 72.53 67.73 72.27
RaF-PCA 75.44 75.47 72.06 70.89 72.67 69.89 69.25
RaF 69.23 69.02 76.00 68.88 69.63 75.95 76.56
RELSTSVM (Linear) 72.63 71.33 76.85 63.32 63.82 70.77 63.37
RELSTSVM (Non-Linear) 73.92 73.71 78.88 77.60 77.72 75.82 64.72
RVFLAE 66.69 58.72 72.63 61.13 63.67 68.33 53.98
RVFL 74.00 76.77 74.33 73.37 65.81 69.51 58.26
SVM 77.53 72.47 71.74 63.19 63.17 63.40 59.42
TBSVM (Linear) 74.73 75.41 81.32 71.95 74.37 70.58 66.27
TBSVM (Non-Linear) 75.90 84.48 79.25 81.45 82.14 78.49 83.50
TWSVM (Linear) 71.08 67.09 80.73 71.95 73.40 70.25 64.05
TWSVM (Non-Linear) 74.80 79.37 83.84 79.78 79.59 77.57 69.64
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Table S-14: F-Measures for Combined Matter for 500 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 66.34 68.04 80.07 62.25 56.58 71.36 55.72
KNN 64.40 67.92 69.98 NaN NaN 58.93 61.68
KRR (Linear) 69.55 67.96 71.66 59.90 61.44 70.89 61.19
KRR (Non-Linear) 68.76 69.24 65.33 58.08 60.13 69.29 61.39
LSTWSVM (Linear) 70.20 63.84 73.25 66.09 64.82 66.32 64.28
LSTWSVM (Non-Linear) 72.08 70.76 81.03 75.43 73.49 70.54 65.75
MPRaF-N 70.78 70.60 71.45 53.91 55.92 65.11 59.20
MPRaF-P 68.34 72.75 73.48 56.90 63.14 67.54 62.73
MPRaF-T 68.77 71.40 72.41 NaN NaN 64.09 63.23
Neural 73.34 74.86 85.18 57.01 60.31 70.10 63.85
pinGTSVM 68.20 66.16 75.04 63.13 61.03 59.21 62.01
RaF-LDA 69.06 68.77 78.27 47.85 59.60 66.50 58.34
RaF-PCA 69.84 72.78 69.43 61.02 63.47 66.49 65.46
RaF 68.91 68.87 73.43 59.07 60.50 72.37 66.94
RELSTSVM (Linear) 73.12 71.72 77.47 65.27 65.81 71.36 63.99
RELSTSVM (Non-Linear) 74.39 74.54 79.32 77.99 78.35 76.37 65.75
RVFLAE 57.65 52.59 67.52 58.46 60.51 63.50 NaN
RVFL 69.03 67.06 74.42 66.12 60.12 66.85 56.93
SVM 72.57 66.54 68.85 55.06 62.40 63.17 58.17
TBSVM (Linear) 70.14 67.61 77.60 65.61 64.10 69.67 62.57
TBSVM (Non-Linear) 73.79 71.56 77.72 76.87 74.78 71.58 59.38
TWSVM (Linear) 67.86 62.87 77.19 65.61 64.50 68.37 63.74
TWSVM (Non-Linear) 73.92 73.25 76.02 73.82 73.73 69.35 64.48
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Table S-15: G-Means for Combined Matter for 500 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 67.34 68.97 80.54 64.04 58.81 72.32 57.22
KNN 65.44 68.72 71.19 43.47 43.47 60.29 63.71
KRR (Linear) 69.97 68.66 72.39 60.90 62.44 71.59 62.10
KRR (Non-Linear) 69.29 70.67 68.05 60.54 62.13 70.60 62.71
LSTWSVM (Linear) 7.19 7.06 7.00 7.08 7.05 7.15 7.77
LSTWSVM (Non-Linear) 0.47 0.47 0.49 0.48 0.48 0.48 0.48
MPRaF-N 71.53 71.50 72.08 56.93 58.63 65.93 60.36
MPRaF-P 68.82 73.51 74.44 57.84 64.53 68.60 64.83
MPRaF-T 69.46 72.00 73.20 NaN NaN 64.88 65.06
Neural 74.31 75.78 85.54 58.43 61.17 71.37 64.24
pinGTSVM 69.09 66.80 75.79 64.19 61.98 60.27 62.86
RaF-LDA 69.93 69.59 79.12 49.95 61.98 67.03 60.58
RaF-PCA 70.29 73.48 69.91 62.54 64.51 67.66 66.34
RaF 69.39 69.73 74.37 60.45 61.53 73.08 68.68
RELSTSVM (Linear) 6.81 6.82 6.83 6.78 6.76 6.81 7.83
RELSTSVM (Non-Linear) 0.48 0.51 0.49 0.49 0.49 0.49 0.49
RVFLAE 58.81 53.72 68.52 59.33 61.26 64.37 55.20
RVFL 69.70 68.27 74.74 67.51 61.61 67.55 57.39
SVM 73.32 67.33 69.65 56.33 63.23 63.83 58.73
TBSVM (Linear) 70.75 68.68 78.13 67.20 65.95 70.33 63.25
TBSVM (Non-Linear) 74.55 73.29 78.14 77.28 75.42 72.71 63.02
TWSVM (Linear) 68.25 63.48 77.68 67.20 66.37 69.17 64.26
TWSVM (Non-Linear) 74.39 74.16 77.27 74.40 74.30 70.44 65.55
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Table S-16: AUCs for Grey Matter for 1200 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 63.57 60.49 76.64 71.23 74.30 70.01 69.46
KNN 59.69 58.61 73.18 63.71 65.26 68.16 66.20
KRR (Linear) 60.88 58.58 76.71 71.00 70.38 67.07 71.53
KRR (Non-Linear) 67.94 68.73 76.21 74.02 73.18 70.22 68.02
LSTWSVM (Linear) 58.44 62.63 75.85 66.52 63.27 65.87 65.50
LSTWSVM (Non-Linear) 55.74 54.45 73.97 81.13 81.55 66.29 70.75
MPRaF-N 62.84 63.68 73.53 70.02 75.02 66.76 73.31
MPRaF-P 64.85 63.73 69.86 72.28 71.48 68.73 70.09
MPRaF-T 67.25 65.25 75.63 69.30 69.36 64.28 72.80
Neural 62.17 60.91 73.95 62.13 65.98 61.62 66.88
pinGTSVM 58.55 55.26 70.95 68.45 70.85 63.23 68.67
RaF-LDA 65.27 56.57 78.28 69.44 64.79 67.44 66.61
RaF-PCA 66.48 57.90 77.62 69.02 74.14 67.57 61.75
RaF 65.94 63.39 71.93 71.34 71.25 67.53 68.16
RELSTSVM (Linear) 53.90 57.92 76.41 68.37 67.04 72.60 67.72
RELSTSVM (Non-Linear) 58.24 59.73 72.48 86.20 86.45 65.88 70.61
RVFLAE 55.24 53.33 70.27 58.89 62.45 59.08 65.41
RVFL 61.64 64.68 71.14 72.08 67.09 67.04 66.40
SVM 54.87 60.42 74.90 73.29 75.38 61.09 75.05
TBSVM (Linear) 63.44 64.76 79.26 71.93 73.88 69.20 73.29
TBSVM (Non-Linear) 70.55 69.18 77.47 82.89 83.30 70.93 77.88
TWSVM (Linear) 59.68 59.19 73.84 71.93 67.43 67.45 68.39
TWSVM (Non-Linear) 66.19 66.75 77.55 82.76 83.30 71.66 77.88
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Table S-17: Sensitivities for Grey Matter for 1200 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 54.57 55.64 72.07 66.58 69.92 63.90 60.97
KNN 46.15 46.00 66.23 34.75 37.84 59.15 37.56
KRR (Linear) 54.17 53.58 72.31 59.50 59.92 61.63 67.98
KRR (Non-Linear) 45.77 51.84 60.72 51.81 52.81 64.54 54.78
LSTWSVM (Linear) 60.56 53.87 74.67 74.08 76.50 70.01 73.63
LSTWSVM (Non-Linear) 73.31 75.38 82.35 80.67 83.46 75.95 81.84
MPRaF-N 62.53 54.53 73.58 58.56 65.58 59.18 67.86
MPRaF-P 54.90 56.56 66.52 67.19 62.08 65.07 60.62
MPRaF-T 55.46 59.91 67.25 55.56 53.38 52.21 63.33
Neural 59.89 61.77 71.55 62.11 65.88 63.29 61.83
pinGTSVM 57.42 56.69 70.28 79.02 82.95 72.44 80.06
RaF-LDA 54.70 49.90 72.98 64.33 63.84 60.62 56.18
RaF-PCA 66.02 54.49 74.26 67.53 76.08 63.46 56.39
RaF 56.63 51.54 71.80 65.96 61.84 63.77 63.75
RELSTSVM (Linear) 75.90 70.59 80.12 79.09 79.63 66.90 80.10
RELSTSVM (Non-Linear) 77.66 77.83 83.29 79.43 81.54 73.94 83.95
RVFLAE 54.48 48.60 63.29 57.81 59.99 57.09 56.64
RVFL 58.81 64.29 63.60 68.02 62.72 56.99 62.96
SVM 49.19 53.45 69.81 62.94 66.58 66.79 69.44
TBSVM (Linear) 51.40 61.98 76.41 71.20 63.01 67.63 64.94
TBSVM (Non-Linear) 50.36 51.79 79.26 85.48 82.80 64.97 68.61
TWSVM (Linear) 54.52 55.02 67.56 71.20 65.95 72.65 68.87
TWSVM (Non-Linear) 54.21 38.83 76.40 83.98 82.80 68.79 68.61
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Table S-18: Specificity’s for Grey Matter for 1200 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 72.56 65.33 81.21 75.88 78.69 76.12 77.95
KNN 73.24 71.21 80.13 92.68 92.68 77.17 94.83
KRR (Linear) 67.58 63.59 81.12 82.50 80.83 72.52 75.08
KRR (Non-Linear) 90.11 85.61 91.70 96.22 93.56 75.89 81.25
LSTWSVM (Linear) 58.87 56.62 75.17 72.00 73.86 66.39 72.68
LSTWSVM (Non-Linear) 65.85 70.20 80.73 80.21 83.99 77.89 79.83
MPRaF-N 63.15 72.82 73.48 81.48 84.46 74.34 78.75
MPRaF-P 74.81 70.89 73.20 77.37 80.89 72.39 79.57
MPRaF-T 79.03 70.60 84.02 83.03 85.33 76.34 82.27
Neural 64.46 60.05 76.34 62.15 66.08 59.94 71.94
pinGTSVM 59.67 53.84 71.62 57.88 58.74 54.02 57.27
RaF-LDA 75.83 63.24 83.58 74.55 65.74 74.25 77.03
RaF-PCA 66.95 61.31 80.98 70.50 72.20 71.69 67.12
RaF 75.25 75.25 72.05 76.71 80.67 71.30 72.58
RELSTSVM (Linear) 67.19 63.38 77.97 74.59 75.28 69.31 79.17
RELSTSVM (Non-Linear) 74.87 71.44 82.33 79.69 82.02 75.74 83.14
RVFLAE 56.01 58.05 77.25 59.98 64.91 61.08 74.19
RVFL 64.46 65.08 78.69 76.13 71.45 77.09 69.85
SVM 60.55 67.38 80.00 83.63 84.18 55.38 80.66
TBSVM (Linear) 75.49 67.54 82.12 72.66 84.74 70.77 81.63
TBSVM (Non-Linear) 90.75 86.58 75.69 80.29 83.79 76.89 87.15
TWSVM (Linear) 64.84 63.35 80.13 72.66 68.91 62.25 67.91
TWSVM (Non-Linear) 78.17 94.67 78.70 81.54 83.79 74.52 87.15
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Table S-19: Precisions for Grey Matter for 1200 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 68.39 62.74 77.72 72.17 76.19 72.81 74.44
KNN 70.13 66.25 77.86 83.83 83.50 69.95 88.00
KRR (Linear) 60.49 57.71 78.17 75.13 74.43 68.59 73.82
KRR (Non-Linear) 84.74 81.06 89.31 92.50 88.33 73.06 74.64
LSTWSVM (Linear) 56.76 57.24 74.15 67.33 65.93 NaN 66.24
LSTWSVM (Non-Linear) 59.57 59.09 76.17 79.34 80.65 67.14 73.47
MPRaF-N 63.22 68.62 74.17 76.95 84.38 74.10 74.70
MPRaF-P 69.63 66.87 74.38 76.87 79.38 71.84 73.93
MPRaF-T 76.52 68.12 83.14 79.22 84.13 70.22 78.05
Neural 63.63 60.39 75.83 60.07 67.48 59.73 69.13
pinGTSVM 58.06 54.13 71.21 63.91 65.47 60.11 65.58
RaF-LDA 71.08 62.04 81.30 75.15 65.41 68.06 72.95
RaF-PCA 67.06 58.78 79.53 69.92 72.59 65.48 64.94
RaF 69.84 68.88 72.76 75.18 77.33 68.42 69.46
RELSTSVM (Linear) 58.22 59.20 75.82 69.33 69.85 68.70 69.98
RELSTSVM (Non-Linear) 62.94 63.53 75.74 81.38 82.74 67.28 74.78
RVFLAE 55.19 56.17 74.26 57.52 62.43 56.67 68.43
RVFL 61.25 65.62 74.15 75.07 68.61 71.23 68.50
SVM 54.29 61.99 76.53 79.13 79.36 59.15 78.75
TBSVM (Linear) 66.49 63.43 80.25 71.45 77.54 69.51 79.71
TBSVM (Non-Linear) 88.17 84.69 77.06 80.80 84.21 73.06 84.50
TWSVM (Linear) 61.44 59.94 78.50 71.45 68.70 65.67 67.22
TWSVM (Non-Linear) 73.55 92.50 79.67 81.49 84.21 77.97 84.50
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Table S-20: F-Measures for Grey Matter for 1200 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 57.93 57.06 73.10 68.43 71.01 66.81 63.71
KNN 52.62 52.10 70.19 46.47 48.91 61.96 50.05
KRR (Linear) 55.32 53.49 73.79 64.42 64.66 62.90 67.68
KRR (Non-Linear) 58.07 61.82 69.89 65.41 65.34 66.59 61.71
LSTWSVM (Linear) 57.67 58.37 74.82 68.28 67.23 65.31 67.61
LSTWSVM (Non-Linear) 60.18 60.61 76.75 80.00 81.69 69.51 74.37
MPRaF-N 60.65 58.57 71.17 64.23 70.69 62.07 68.81
MPRaF-P 58.54 58.62 67.40 69.27 67.50 65.71 64.66
MPRaF-T 61.67 61.69 71.52 63.46 63.49 57.53 67.67
Neural 60.27 59.63 72.62 59.09 63.52 59.68 63.90
pinGTSVM 55.75 53.07 70.21 69.09 72.04 63.94 69.18
RaF-LDA 59.94 51.38 75.62 65.97 63.28 62.77 60.42
RaF-PCA 64.32 55.12 74.92 66.93 72.67 63.29 58.01
RaF 59.46 55.91 69.33 68.31 67.29 64.62 65.85
RELSTSVM (Linear) 59.36 59.92 76.50 70.39 70.50 69.81 71.65
RELSTSVM (Non-Linear) 64.66 64.53 76.56 82.15 83.48 68.97 75.81
RVFLAE 52.98 50.30 66.02 55.25 58.63 NaN 59.58
RVFL 59.24 64.13 67.25 69.60 63.64 61.61 63.13
SVM 50.86 56.61 71.76 67.44 70.09 60.93 71.42
TBSVM (Linear) 56.71 60.01 77.44 70.21 68.12 66.42 68.45
TBSVM (Non-Linear) 61.48 61.32 77.37 81.60 82.11 66.94 73.70
TWSVM (Linear) 56.00 56.19 71.48 70.21 65.76 66.83 65.19
TWSVM (Non-Linear) 61.12 53.27 76.69 81.35 82.11 68.34 73.70
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Table S-21: G-Means for Grey Matter for 1200 features.

Methods T-Test ROC Wilcoxon Entropy Bhattacharyya MRMR NCA
Het-RaF 59.63 58.10 73.98 68.90 72.02 67.57 65.64
KNN 55.02 53.96 71.11 52.11 54.07 63.22 55.86
KRR (Linear) 56.29 54.53 74.50 65.84 65.89 63.98 69.24
KRR (Non-Linear) 61.50 64.04 72.36 68.63 67.88 67.68 63.17
LSTWSVM (Linear) 10.42 10.49 10.41 10.56 10.49 10.56 10.55
LSTWSVM (Non-Linear) 0.54 0.55 0.53 0.55 0.56 0.55 0.54
MPRaF-N 61.72 60.03 72.50 65.95 72.75 64.08 70.02
MPRaF-P 60.30 60.12 68.86 70.61 69.08 67.01 65.94
MPRaF-T 63.74 62.81 73.28 65.38 66.02 59.31 69.15
Neural 61.01 60.35 73.15 60.08 65.05 60.58 64.68
pinGTSVM 56.71 54.19 70.48 70.25 73.10 65.08 70.95
RaF-LDA 61.38 53.38 76.37 67.77 63.95 63.55 62.40
RaF-PCA 65.39 55.86 75.89 67.82 73.48 63.87 59.25
RaF 61.24 57.93 70.78 69.42 68.41 65.34 66.22
RELSTSVM (Linear) 11.61 9.94 10.12 10.06 10.14 10.09 10.23
RELSTSVM (Non-Linear) 0.58 0.57 0.56 0.56 0.55 0.57 0.56
RVFLAE 53.88 51.31 67.38 56.43 59.88 56.21 61.01
RVFL 59.63 64.54 68.05 70.56 64.64 62.82 64.41
SVM 51.29 57.16 72.46 69.11 71.48 61.93 72.71
TBSVM (Linear) 57.80 61.31 77.88 70.77 69.18 67.48 70.33
TBSVM (Non-Linear) 64.98 64.41 77.76 82.36 82.80 67.94 75.10
TWSVM (Linear) 56.97 56.83 72.24 70.77 66.54 67.97 66.59
TWSVM (Non-Linear) 62.43 58.90 77.36 82.03 82.80 70.75 75.10
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