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Schizophrenia is a socially significant mental disorder resulting frequently in severe forms of disability. Diagnosis, choice of treatment 
tactics, and rehabilitation in clinical psychiatry are mainly based on the assessment of behavioral patterns, socio-demographic data, and 
other investigations such as clinical observations and neuropsychological testing including examination of patients by the psychiatrist, 
self-reports, and questionnaires. In many respects, these data are subjective and therefore a large number of works have appeared in recent 
years devoted to the search for objective characteristics (indices, biomarkers) of the processes going on in the human body and reflected in 
the behavioral and psychoneurological patterns of patients. Such biomarkers are based on the results of instrumental and laboratory studies 
(neuroimaging, electro-physiological, biochemical, immunological, genetic, and others) and are successfully being used in neurosciences 
for understanding the mechanisms of the emergence and development of nervous system pathologies.
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Presently, with the advent of new effective neuroimaging, laboratory, and other methods of investigation and also with the development 
of modern methods of data analysis, machine learning, and artificial intelligence, a great number of scientific and clinical studies is being 
conducted devoted to the search for the markers which have diagnostic and prognostic value and may be used in clinical practice to 
objectivize the processes of establishing and clarifying the diagnosis, choosing and optimizing treatment and rehabilitation tactics, predicting 
the course and outcome of the disease.

This review presents the analysis of the works which describe the correlates between the diagnosis of schizophrenia, established 
by health professionals, various manifestations of the psychiatric disorder (its subtype, variant of the course, severity degree, observed 
symptoms, etc.), and objectively measured characteristics/quantitative indicators (anatomical, functional, immunological, genetic, and 
others) obtained during instrumental and laboratory examinations of patients.

A considerable part of these works has been devoted to correlates/biomarkers of schizophrenia based on the data of structural and 
functional (at rest and under cognitive load) MRI, EEG, tractography, and immunological data. The found correlates/biomarkers reflect 
anatomic disorders in the specific brain regions, impairment of functional activity of brain regions and their interconnections, specific 
microstructure of the brain white matter and the levels of connectivity between the tracts of various structures, alterations of electrical 
activity in various parts of the brain in different EEG spectral ranges, as well as changes in the innate and adaptive links of immunity.

Current methods of data analysis and machine learning to search for schizophrenia biomarkers using the data of diverse modalities 
and their application during building and interpretation of predictive diagnostic models of schizophrenia have been considered in the 
present review.

Key words: MRI/fMRI in schizophrenia; EEG in schizophrenia; immunology in schizophrenia; biomarkers of schizophrenia; interpretable 
machine learning models; machine learning in diagnosing.
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Introduction

The World Health Organization considers schizo-
phrenia as a socially significant mental disorder 
leading, if not treated, to severe forms of disability. 
Schizophrenia affects about 1–4% of the population 
according to various data, and only 31.1% of them 
in the world receive specialized psychiatric care [1]. 
Difficulty of statistical assessments of morbidity rate in 
schizophrenia is due to inability to register subclinically 
running forms of this disease causing no disadaptation 
using official statistics. Differentiation of schizophrenia 
from the diseases with a similar clinical picture is also 
among the problems arising in the process of providing 
care to these patients.

Medicine of the XXI century is characterized by 
widening of the spectrum of instrumental and laboratory 
studies used at all stages of diagnosis, treatment, and 
rehabilitation of patients. For example, neuroimaging 
examinations entered firmly the clinical practice having 
revolutionized the approaches to the diagnosis of 
the diseases almost in all fields of medicine including 
neurology. Owing to MRI and CT, these approaches 
have acquired a unique experience of clinical and 
neuroimaging correlations.

In clinical practice, various biomarkers, identified by the 
results of instrumental and laboratory examinations, are 
used for a large number of nosologies in diagnosis and 
verification of the disease stage, choice of treatment 
and rehabilitation tactics, and making a long-term 
prognosis. During the transition to the era of personalized 

medicine, identification of neuroimaging-based and 
molecular biomarkers, especially related to molecule- 
genetic factors, is important.

The development of new mathematical methods 
of analyzing the results of instrumental and laboratory 
studies as well as the progress in the field of machine 
learning and artificial intelligence, have led to the rapid 
integration of computer programs and information 
systems into research projects and clinical practice. 
Machine learning algorithms represent mathematical 
models designed to study patterns in experimental data 
in order to make prognoses based on new information. 
The advantage of machine learning techniques is their 
ability to take into consideration spatial correlations in 
the data of one modality (which, for example, makes 
it possible to discover weak and spatially distributed 
effects in the brain according to MRI findings) and also 
to combine and analyze data of different modalities and 
latent dependencies in them. Frequently, the problem 
lies in the absence of data in one of the modalities in 
some part of a sample, making classical analysis of 
differences between the groups impossible. Therefore 
presently, methods which allow one to work with 
multimodal data having skips for separate modalities 
have been developed. Moreover, while the results 
of classical statistics explain the group differences, 
machine learning models allow one to draw statistical 
conclusions at the level of an individual, which can help 
in making individual diagnostic or predictive decisions.

However, implementation of these general medical 
trends into clinical psychiatric practice ran against 
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some objective difficulties. The attempts to supplement 
subjective results of the specialized psycho-pathologic 
examination of patients by psychiatrists with objective 
indicators of the patient’s condition obtained by 
instrumental and laboratory investigations are complicated 
by the fact that there is uncertainty in the understanding of 
pathophysiology of various mental disorders in psychiatry 
itself. The majority of biomarkers found by the present 
time, showing significant correlations with behavioral 
and other psychoneurological manifestations, are of low 
clinical value determined in terms of sensitivity, specificity, 
and prognostic significance. Identified cause-and-effect 
relations between biological markers and symptoms 
have not been yet established at the required level of 
evidence, and for these reasons application of biomarkers 
is not included into the existing clinical recommendations 
and treatment protocols. Lack of reliable “unimodal” 
biomarkers in psychiatry determines the importance 
of search for “multimodal” biomarkers based on 
consolidation of a wide spectrum of neuroimaging, 
electrophysiological, biochemical, immunological, 
genetic, and other data, although a large volume, a high 
dimensionality (hundreds of thousands and millions of 
variables), and heterogeneity of multimodal laboratory 
data make it difficult to integrate all available modalities 
within the frames of one investigation. Therefore, interest 
is growing in the clinician community to the modern 
methods of heterogeneous data integration using 
machine learning and deep learning techniques.

Materials and Methods
The aim of the present work is: 
to overview clinical tasks facing schizophrenia 

management which can be solved by finding appropriate 
biomarkers allowing objectivization of diagnosis 
establishment and clarification processes, choice and 
optimization of treatment and rehabilitation tactics, 
prediction of the disease course and outcome;

to overview the works devoted to finding the 
correlates between the results of clinical observations 
and neuropsychological testing and findings of the 
instrumental and laboratory studies performed;

to overview the current methods of machine learning, 
analysis, and consolidation of data allowing one to select 
diagnostically and prognostically significant biomarkers 
from the multimodal results of instrumental and 
laboratory studies for their application in clinical practice 
of schizophrenia treatment.

Structure of the article. Section 1 includes the review 
of the burning clinical goals of differential diagnosis of 
schizophrenia, the solution of which requires clinically 
valuable biomarkers permitting objectivization of medical 
decision-making process. The section also presents a 
brief overview of the instrumental and laboratory studies 
being carried out, the results of which are employed 
for the search for clinically significant biomarkers of 
schizophrenia.

Section 2 is the main part containing the overview 
of the methods and results obtained therewith in 
the way of searching for correlates between clinical 
manifestations of schizophrenia and the data of 
instrumental and laboratory studies. The results 
considered in this section are classified according to the 
types of the data used (structural and functional MRI, 
EEG, immunological data) and the data of the clinical 
picture of the mental disorder (etiology and pathogenesis 
of the mental disorder, the type and subtype of 
schizophrenia, observed symptoms), which may be 
subjectivized by means of the detected biomarkers.

Section 3 is devoted to the methods of data analysis 
and machine learning used in the task of searching 
for schizophrenia biomarkers including novel effective 
methods that have appeared in recent years and 
which allow consolidation of biomedical data of various 
modalities. The summary contains a list of currently 
important directions of investigations in the field of 
machine learning and data analysis, the solution 
of which is promising for implementation of the research 
findings into clinical practice of diagnosis, treatment, and 
post-treatment rehabilitation.

Section 1. The main tasks  
in schizophrenia diagnosis

The tasks in the diagnosis of schizophrenia may 
be divided into fundamental and practical (clinical, or 
routine).

The following is referred to the fundamental tasks:
establishing the causes and mechanisms of 

schizophrenia development or its syndromes and 
symptoms;

development of reliable methods of early diagnosis.
Clinical (routine) tasks include:
determining the risk for developing schizophrenia;
assessment of prognostic outcomes (favorable or 

unfavorable);
establishing personalized targets for prevention, 

therapy, and rehabilitation.
Presently, in addition to the analysis of the test and 

questionnaire results, these goals may be solved by 
instrumental and laboratory examinations (structural 
MRI of the brain in various modes showing its anatomy; 
functional MRI and EEG reflecting functional alterations), 
data derived from the investigations of parameters of 
innate and adaptive immunity, and other studies may 
also be used.

Solving the main problems of schizophrenia diagnosis 
is associated with some methodological aspects of 
studying this pathology. Let us consider some of them.

Agreement between diagnostic criteria  
of schizophrenia

Over a hundred years ago, Emil Kraepelin 
differentiated dementia praecox, later renamed 
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schizophrenia, from manic-depressive psychosis, 
called later bipolar disorder. This paradigm of 
nosologic (implying existence of two different diseases 
each having unique etiopathogenetic mechanisms, 
therapeutic approaches, and outcome prognoses) 
separation of schizophrenia from affective disorders is 
the basis of categorical approach to the classification of 
psychic disorders, realized in all variants of international 
classifications of the disease right up to the tenth 
revision ICD-10 (World Health Organization, 1993). 
Predominance of the Kraepelin’s paradigm favored the 
consensus in the process of differentiation of various 
psychic disorders. Based on the standard criteria 
for this disorder, the agreement of the diagnosis of 
schizophrenia made by two mental health professionals 
reaches 90% and remains unchanged in the majority 
of cases for several years of observation of the same 
patient [2].

However, the experience of fundamental inves ti ga-
tions in the XX century has demonstrated that the results 
of the works carried out on the basis of ICD criteria do 
not accept unambiguous conclusions or interpretations 
and are not verified in the attempt to replicate them. It 
is explained by two clinical-diagnostic dilemmas. For 
example, search for biomarkers is being carried out 
for the patients with schizophrenia whose condition 
matches the criteria of section F2 according to ICD-10, 
although clarification of specific features of these 
conditions is not conducted. Meanwhile, this section 
includes a wide spectrum of discrete pathologies varying 
in clinical-dynamic characteristics1.

There exists another diagnostic dilemma: 
K. Schneider’s first-rank symptoms of schizophrenia — 
echo of thoughts, thought alienation, and intraprojective 
auditory delusional perception — are always inherent for 
paranoid schizophrenia (F20.3) but are not encountered 
in simple pseudoneurotic and psychopathy-like 
schizophrenia (F20.6, F21.3, and F21.4, respectively).

In other words, the state of the same patient may 
correspond to the criteria of several disorders or not to 
meet the criteria of a specific disorder from the point of 
view of categorical approach. Consequently, orientation 
solely to the categorical approach, i.e. ICD criteria, when 
forming samples of patients with schizophrenia, may 
lead to the creation of a sample with very heterogeneous 
disorders.

These dilemmas become a starting point for initiative 
proposals to abolish the term “schizophrenia” excluding 
it from the list of diseases [3–5].

Some aspects of phenomenological similarity  
of schizophrenia symptoms

This problem can be analyzed using as an example 
similarity and difficulty in distinction between negative 
symptoms and cognitive disorders in schizophrenia, 
especially in the context of their decisive influence on the 
quality of everyday functioning, social and professional 
realization of patients. Thus, for example, reduction 
of performance capability due to growing inattention 
can be regarded as both negative symptoms and 
cognitive deficit, or may be considered as “through” or 
“continuous” manifestation of schizophrenia causing 
asociality [6]. On the other hand, asociality may 
be caused by the reduction of speech fluency (i.e. 
incapability of operatively retrieving information from 
memory) underlying paralogicality of thinking and 
decrease of social competence level [7]. Evidence of 
phenomenological intersections is also proved by the 
fact that almost all patients with schizophrenia have 
cognitive impairment but negative symptoms are not 
detected in all of them [8], and difficulties in performing 
diagnostic test tasks are caused by the will decline or 
aberrations of goal setting [9, 10]. Similar inferences are 
also appropriate when comparing negative symptoms 
and phenomena of conceptual disorganization [3] or 
cognitive impairment and signs of depression [11].

Continuum of symptoms and conventionality  
of boundaries between disorders

The aforementioned phenomenological intersections 
(similarity of manifestations) of symptoms of 
schizophrenia are complicated by the fact that each 
of them may be displayed with various degree of 
severity or intensity: from extremely severe forms up to 
persistence at the subsyndromal level [12–14], that, in 
a certain sense, “deletes the boundaries” between the 
categories of psychiatric disorders in general and, for 
example, between schizophrenia and bipolar disorder, in 
particular.

Dimensional approach, as an alternative to the 
categorical one, seems to be more accurate for solving 
both fundamental and practical issues of psychiatry. 
Based on factor analysis of the main manifestations of 
schizophrenia spectrum disorders, dimensions (domains) 
of their phenomenology or symptoms have been 
distinguished, which include positive disorders or distortion 
of reality perception (delusion and hallucinations), 
negative disorders or psychomotor impoverishment 
(currently divided into two domains: abulia/apatia including 
angedonia, asociality, and definitions of diminishing 
emotion intensity including stupefied affect and alogia 
[15, 16]), as well as disorganization including formal 
thinking disorders, inadequate affect, and disorganized 
behavior. Modern classifications, DSM-5 (American 
Psychiatric Association, 2003) and ICD-11, are based on 
the dimensional approach.

1Clear illustration of the contradictions between classifications 
is a controversial position of catatonia which is presented in 
the ICD-10 as a category of catatonic schizophrenia (F20.2) 
although the genesis of this syndrome includes specific 
pathological processes not intrinsic to schizophrenia. These 
remarks are also true for a wide spectrum of affective disorders 
which are found in section F20.4 — post-schizophrenic 
depression and F25 — schizoaffective disorder in the ICD-10.
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Symptoms of various dimensions may coexist 
in one and the same patient in different qualitative 
and/or quantitative combinations [15, 17–19]. Although 
discussions concerning the number of obligate 
dimensions are going on (two- [20], three- [21], five- [22], 
and multifactor [23] models of schizophrenia are meant), 
dimensional integration of symptoms seems to be most 
adequate for the assessment of multimodal data on 
possible biomarkers [24].

The work [25] may serve as an example of improving 
the quality of research conclusions and contribution to 
understanding etiopathogenesis of schizophrenia. The 
results of this work show alterations in fractional anisotropy 
in nine tracts of the brain white matter substantially 
correlating with separate domains of psychopathology. 
The same paradigm is also the basis for the RDoC 
project, in which the transition is implemented from the 
traditional nosological categories of schizophrenia to 
isolated phenomenological manifestations of symptom 
dimensions of this disorder [26] with clarification of stages 
of possible ways of psychopathology development: from 
genetic predisposition to physiological and behavioral 
manifestations [27].

Section 2. Biomarkers of schizophrenia

Concept of a biomarker

Delineating the concepts, it is necessary to make 
clear that a biological marker is a characteristic which 
is objectively measured and evaluated as an indicator 
of normal and pathological biological processes 
including responses to the therapeutic (pharmacological) 
intervention [28]. In other words, a biomarker may be 
employed as an indicator of the norm and pathology on 
the basis of changes of biological functions or serve as 
an indicator of alterations in the organism in the course 
of therapy2. Not only molecules (for example, receptors, 
nucleotides, or immunoglobulins) may be biomarkers, 
but electrophysiological indices or tomography findings 
as well.

In medical practice, biomarker validity is usually 
confirmed by the evaluation of its sensitivity, specificity, 
positive and negative prognostic value [29]. Sensitivity 
and specificity of biomarkers is the ability to identify 
patient’s condition based on the marker analysis. 
Positive prognostic value means the probability that 
subjects with a positive test really have the disease, 
while negative prognostic value is the probability that 
subjects with a negative test do not really have the 
disease. A significant level of evidence is a threshold 
satisfying all Bradford Hill criteria proposed in 1965: 
strength of association, consistency, specificity, 
temporality, biological plausibility/gradient, coherence, 

evidence agreement and experimental validation, 
analogous experience [30].

A diagnostic biomarker can identify only true positive 
cases rather than false negative, and this is the only way 
to determine the prevalence of some specific disease 
[31]. Besides, it must have sensitivity and specificity not 
less than 80% and positive prognostic value not less 
than 90%, moreover, it must be reliable, reproducible, 
non-invasive, inexpensive, and reproduced by at least 
two independent investigations [31].

General directions of search for biomarkers

In spite of the fact that biopsychosocial paradigm of 
studying schizophrenia remains vital, the discussions 
about which factor plays a key role are gradually giving 
place to considering the mechanisms of their interaction 
at the current stage. At the same time, the dichotomy of 
studying schizophrenia pathogenesis is preserved in two 
aspects: from the standpoint of neurodegeneration (due 
to the effect of endogenous and exogenous factors) and 
from the standpoint of neuroontogenesis abnormalities 
(as a predisposition to the disease).

A neurodegenerative hypothesis implies slowly but 
steadily progressing destruction of neural tissue as the 
disease develops [32, 33], associated with the changes 
in the functions of neurotransmitter systems and also 
with neuroimmune impairment arising due to oxidative 
stress at the stages of psychoses or unfavorable effect 
of antipsychotic preparations [34, 35]. In order to confirm 
this hypothesis, longitudinal studies of the markers 
are required which may endure long-term measurable 
changes.

According to the neuroontogenetic hypothesis of 
schizophrenia [36–38], abnormalities leading to mental 
disorders are genetically inherent and/or are formed 
in the pre-, perinatal period, i.e. long before the debut 
or manifestation of psychotic disorders [39–41], in the 
form of motor, neurological, and behavioral deviations 
displayed at early age in children who later become ill 
with schizophrenia [42, 43]. Therefore, in order to test 
the neuroontogenetic hypothesis, it is reasonable to 
use markers being laid down at the early stages of the 
development, minimally changeable, and not subject to 
the impact of the external factors throughout later life. 
By the present time, the neuroontogenetic hypothesis 
of schizophrenia has been expanded to the theory of 
neuroontogenetic continuum demonstrating various 
domains of impairment development in the ratio with 
severity of psychic syndromes and the degree of 
cognitive disturbances associated with them (from very 
adverse in congenital mental incapacity up to relatively 
mild in bipolar affective disorder) [44].

Several international consortiums, whose researches 
meet the highest level of evidence: prospective 
analysis of cohorts which include thousands of patients 
examined in several independent scientific centers, 
are involved in overcoming possible disagreements 

2For example, blood glucose level is a key point for diabetes 
diagnosis as its indices are used to establish diagnosis, make 
prognosis, develop the scheme of therapy.
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and search for common ways of neuroontogenesis and 
neurodegeneration in schizophrenia [45, 46].

Methods of positron emission tomography (PET), 
single-photon emission computed tomography 
(SPECT), and magnetic resonance spectroscopy 
(MRS) may be used to study alterations in the cells for 
detection of current state biomarkers, while diffusion 
tensor imaging (DTI), structural and functional magnetic 
resonance imaging (sMRI and fMRI, respectively) 
may examine anatomical and functional changes, 
respectively [47, 48] and are suitable for checking 
both hypotheses in the process of cross-sectional and 
prospective studies.

Present methods of analysis of large-volume 
heterogeneous datasets and machine learning 
allows not only effective work within one modality 
but consolidation of the data from various modalities 
(for example, reflecting the current state of the cells 
and anatomical changes of the large brain areas) to 
seek within them complex interconnections which 
may be potential biomarkers. This approach will 
make it possible to retreat in future from the existing 
dichotomy of schizophrenia pathogenesis and consider 
neuroontogenetic and neurodegenerative processes 
simultaneously.

Neuroimaging biomarkers of schizophrenia

Current studies of schizophrenia demand the 
development of criteria for objective complex 
assessment of structural and functional changes of 
the brain as a substrate of disease development. 
Lately, several complex investigations on the 
schizophrenic-type disorders (for example, [49, 50]) in 
order to find specific features of the disease and define 
the key zones involved in pathogenesis using MRI data, 
morphometry, tractography; brain activity by resting-state 
MRI findings and under cognitive load; metabolism by 
the data of PET, or concentration of neuromediators 
in gamma-aminobutyric acid (GABA) and glutamate 
obtained from the MRS data, and so on.

Neuroimaging examinations of patients with the 
diagnosis of schizophrenia with auditory hallucinations 
allowed one to achieve some understanding of the 
association of these psychopathological symptoms 
with the disturbances in specific brain areas and neural 
networks. Therefore, despite the diversity of symptoms 
and schizophrenia manifestations, in this section 
we will focus our attention on the topical studies of 
hallucinatory-paranoid syndrome of schizophrenia and 
highlight the mechanisms of its development. These 
studies have shown that auditory hallucinations are 
connected with functional and anatomical disturbances 
in the structures responsible for the areas of auditory 
perception, i.e. primary and secondary auditory cortex, 
and also in the structures responsible for speech 
production, i.e. opercular part and anterior insula of the 
inferior frontal gyrus. In addition to the alterations in 

the auditory and speech zones, changes in a number 
of other cortical and subcortical regions are also being 
discussed.

Biomarkers of voxel-based brain morphometry

Neuroimaging studies of the brain structures using 
voxel-based morphometry have shown that auditory 
hallucinations are associated with the reduction of the 
grey matter volume in the superior temporal gyrus [51] 
which sometimes includes primary auditory cortex of the 
left hemisphere, middle temporal gyrus, and, to the 
less extent, regions not belonging to the temporal lobe 
[52]. The reduction of the volume in the temporal 
lobe is confirmed in the meta-analysis of nine similar 
investigations in which disturbances in the grey matter 
were studied in schizophrenic patients with auditory 
hallucinations [53]. In the work [54], the intensity of 
auditory hallucinations has been shown to be connected 
with the reduction of the grey matter of the superior 
temporal gyrus of both hemispheres including primary 
auditory cortex. The left superior-temporal region is 
known to process information connected with speech 
perception, i.e. with the recognition of phonological and 
semantic speech characteristics. The right superior 
temporal gyrus has a subthreshold effect of auditory and 
verbal information perception and is also involved in the 
processing of this information, especially emotional and 
prosodic aspects of the speech stimuli.

Some authors find intensive disturbances related 
to auditory hallucinations in the nonsensory parts 
including insula, anterior cingulate, posterior cingulate, 
and internal frontal gyri, thalamus, cerebellum, and 
precuneus [52, 53]. In their study conducted on a large 
sample of patients (n=99) with auditory hallucinations, 
Nenadic et al. [55] have shown relations between the 
intensity of auditory hallucinations and grey matter 
reduction in the left postcentral and posterior cingulate 
gyri, i.e. in the regions responsible for the integration 
of personally significant stimuli [56]. Volume reduction 
in the regions of the parahippocampal gyrus [57] 
and tonsil [58] verifies the idea that abnormalities in 
the limbic structures important for the processes of 
emotional regulation, i.e. beyond the speech zones, 
are closely connected with the occurrence of auditory 
hallucinations [51]. These data should be taken into 
account when building neurocognitive models directed to 
the explanation of auditory hallucinations. Despite some 
differences between the described works, revealing the 
disturbances in the auditory cortex and parts of the brain 
connected with speech gives the most reproducible 
results [52].

Index of brain gyrification as a biomarker

In the meta-analysis [59], one can find a detailed 
overview of the current state of using gyrification 
index as a biomarker of schizophrenia. The analysis 
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of insular cortex surface in patients with first-episode 
schizophrenia not receiving medication therapy made it 
possible to find the correlation between the gyrification of 
the cortex and presence of delusion and hallucinations 
[60]. The study [61] using the same methods but a 
larger patient sample (225 patients with schizophrenia 
spectrum disorders) has shown that the intensity 
of auditory hallucinations was connected with the 
dimensions of the insula surface zone. A more frequent 
similarity of gyrification in the appropriate Heschl’s 
gyrus (the area in the right hemisphere) was detected in 
patients with hallucinations compared with those without 
hallucinations and the healthy [62]. Thus, specific 
impairment of primary auditory cortex morphogenesis is 
detected in patients with hallucinations already at early 
stages of schizophrenia.

Advancement of technologies allows one to perform 
automated examination of cortical gyri over the entire 
cortex surface and to improve the reliability of measuring 
their complexity, variability, and three-dimensional 
contours [63]. This approach helped detect a marked 
decrease of the area of the speech cortex gyri in 30 
patients resistant to medication therapy of auditory 
hallucinations in comparison with 28 healthy tested 
people [64]. Emergence of true or pseudohallucinations 
is related to the abnormalities in the morphology of the 
sulcus between the temporal and perietal regions of 
the right hemisphere manifested in the process of brain 
development [65].

Tracts of the brain as a biomarker

The most important of the neuroimaging investigation 
techniques is diffusion tensor imaging (DTI) which 
provides the opportunity to identify special features of 
the brain white matter (WM) microstructure and the 
level of connectivity of various structure tracts in norm 
and its impairment in schizophrenia [66]. Still at the 
end of the XX and the beginning of the XXI century, 
microstructural anatomical abnormalities were found in 
the neural connections, synaptic contacts, and density 
of oligodendroglia in the prefrontal areas, callosum, 
and caudate nucleus of the postmortem specimens of 
the brain tissue [67]. These studies served as a basis 
for further works on the investigation of white matter 
pathology in schizophrenia.

The main disturbances in schizophrenia are observed 
in the neural network consisting of the frontal area, 
thalamus, striate body, and cerebellum [68]. Davis 
et al. [69], using the voxel-based method of measuring 
white matter volumes, have demonstrated that in 
schizophrenia, myelinization of axons responsible for 
the pathology of this substance is significantly impaired. 
In patients ill with schizophrenia, there is observed a 
reduction of fractional anisotropy in the corticothalamic 
tract whose fibers are connected with dorsomedial 
thalamic nuclei as well as the right superior temporal 
area, auditory integration zone, and the right auditory 

association area [66]. Additionally, disruption of the 
connections has been shown to be between the frontal, 
temporal, and parietal parts and the reduction of the 
intervoxel coherence (IC) index in patients with auditory 
hallucinations in the following structures: hippocampus, 
posterior parts and genu of the corpus callosum. The IC 
index in patients with the first episode of schizophrenia 
was reduced in the frontal, parietal, and occipital cortical 
areas [70] and also in the stem and corpus callosum, 
arcuate fasciculus, cerebellar internal capsule, and 
peduncles [71]. Federspiel et al. [66] confirmed the IC 
reduction in the enumerated structures and was also 
found in the left posterior cingulate gyrus which is actively 
involved in cognitive functioning. Studying schizophrenic 
patients with delusions, Oestreich et al. [72] have 
found in them a lower level of fractional anisotropy in 
the callosum, superior longitudinal fasciculus, arcuate 
fasciculus, and in the fasciculi of axons projecting 
from the cingulate gyrus to entorhinal cortex. Referring 
to the existing data on anatomical damages detected 
in schizophrenia and functional disturbances of the 
white matter in various brain structures (longitudinal 
and arcuate fasciculi, entorhinal cortex). Zhou et al. [73] 
consider the disrupture of connections between these 
structures and prefrontal cortex, which causes the main 
productive (delusion and hallucinations) and cognitive 
symptoms, to be most important.

In the work [74], it has been shown that patients with 
chronic and therapy-resistant hallucinations demonstrate 
reduced fractional anisotropy in the arcuate fasciculus 
due to the increase of productive symptoms and 
“magnetization transfer coefficient” values designating 
the increase of free water concentration due to the 
diminishing integrity of axons or glial cells. Growth of 
the “magnetization transfer coefficient” in the arcuate 
fasciculus is also observed in chronic patients with 
“voices inside the head”, which indicates the presence 
of specific connection of this coefficient with auditory 
hallucinations to the greater extent than with other 
productive or negative symptoms [75].

Functional brain regions as a biomarker

There are several functional neuroimaging studies 
analyzing neuronal correlates of clinical characteristics 
of patients suffering from schizophrenia with auditory 
hallucinations. Vercammen et al. [76] investigated 
subjective physical characteristics (loudness and 
reality) of auditory hallucinations using metric 
assessment in the task defined as “reality discrimination 
task”, in which regions producing internal speech and 
perceptive parts were activated concurrently. The 
loudness of voices correlated with the activity reduction 
in the sulcus angularis of both hemispheres, anterior 
cingulate gyrus, left internal frontal gyrus and insula, 
and also in the left temporal cortex, while auditory 
hallucinations were associated with the reduced 
speech lateralization [76]. In the work of Raij et al. [77], 
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subjective reality of voices correlated with the activation 
related to hallucinations in the left internal frontal 
gyrus and in its connection with the frontal gyrus and 
other cortical and subcortical parts including anterior 
cingulate cortex.

Two works [78, 79] studied emotional dysfunction in 
patients with auditory hallucinations. When emotional 
auditory stimuli were presented, patients with and 
without auditory hallucinations demonstrated increased 
excitation in the parahippocampal gyrus and tonsil 
compared to the healthy controls [78]. In a similar work, 
patients with auditory hallucinations demonstrated 
decreased activation of the tonsil and hippocampus 
when listening to emotional sounds in contrast to the 
patients without auditory hallucinations [79].

Activation of the secondary cortical zone during 
auditory hallucinations is also a frequently repeated 
result and was confirmed in the meta-analysis devoted 
to hallucinatory syndrome [52]. This work has shown 
that in hallucinations there is increased likelihood 
of activation in vast lateral frontotemporal networks 
including Broca’s area, anterior insular zone, precentral 
gyrus, frontal operculum, middle and superior temporal 
gyri, internal parietal lobule, hippocampus, and 
parahippocampal region. The studies, investigating 
cortex activation preceding the emergence of auditory 
hallucinations, have detected the reduction of activation 
in parahippocampal cortex prior to symptom occurrence, 
which is opposed to the excitement at the moment 
of hallucinations [80]. Other researches have shown 
that disturbances in neural networks of the frontal and 
temporoparietal speech zones play a great role in the 
emergence of auditory hallucinations [81]. Patients with 
auditory hallucinations demonstrate weakened activation 
in the temporal, cingulate, premotor, cerebellar, and 
subcortical parts involved in the internal speech 
and verbal imagination.

The research by Diederen et al. [82] have identified 
numerous zones linked to auditory hallucinations 
including internal frontal gyrus, insula, superior 
temporal gyrus, supramarginal gyri, postcentral gyrus, 
left precentral gyrus, internal parietal lobule, superior 
temporal area, and right cerebellum in patients with 
psychosis receiving no medication therapy. Applying 
similar experimental conditions to patients without 
medication treatment, Linden et al. [83] have discovered 
increased activation in the areas of speech recognition 
i.e. superior temporal gyrus, frontotemporal speech 
regions, and supplementary motor area, during 
auditory hallucinations and performance of the auditory 
imagination tasks as well. Interestingly, this activation 
in the prefrontal and sensory zones in auditory 
hallucinations differed radically from that in imagination 
due to the lack of voluntary control in hallucinations. 
During visualization, the activity of the supplemental 
motor zone preceded the excitation of the auditory zone, 
while at the moment of hallucinations both processes 
were going on at the same time [83]. Investigations, 

where participants were asked to remember whether 
they pronounced the target words, have shown reduced 
activation of the medial prefrontal cortex in patients 
with schizophrenia [84]. This region is considered to 
be involved in the assessment of stimuli which are of 
personal importance, and is selectively engaged in the 
solution of the tasks with these stimuli [55]. In the work 
[84], patients with and without auditory hallucinations 
were not compared directly, therefore impairment of 
the medial prefrontal cortex function may the basis 
of such a characteristic as dissociative disturbances in 
schizophrenia.

Biomarkers of functional neural  
network connectivity

Functional connectivity between brain regions 
derived from the fMRI data is more and more often 
used to clarify disturbances in neural networks 
playing important role in the development of auditory 
hallucinations in schizophrenia. Functional connectivity 
reflects correlation between the dynamics of BOLD 
activity defined for two and more regions. In one of 
the first studies evaluating functional connectivity in the 
process of solving the tasks on sentence completion, 
the results showed its reduction between the left 
dorsolateral prefrontal cortex and temporal parts in 
patients with schizophrenia in comparison with the 
norm, and the correlation value had a feedback with 
the intensity of auditory hallucinations [85]. Mechelli 
et al. [86] investigated patients with and without auditory 
hallucinations using fMRI when they were performing the 
task on the assessment of the recorded speech (their 
own or someone else’s). Functional effect of one region 
on the other was assessed in compliance with stimulation 
conditions using the effective approach to connectivity 
calculation. In healthy and ill people without auditory 
hallucinations, the influence of the left superior temporal 
area on the activity of the anterior cingulate cortex 
was greater during perception of speech pronounced 
by others relative to their own speech. In patients with 
hallucinations, an opposite picture was observed. A later 
work [87] based on the task on speech identification 
(one’s own or someone else’s) demonstrates the same 
results, which, in authors’ opinion, proves the fact that 
functional connectivity between the medial prefrontal 
cortex (cortical regions along the central line responsible 
for the processes of self-observation) and the left 
superior temporal gyrus was impaired in schizophrenia 
in contrast to the norm. However, the difference between 
patients with and without hallucinations has not been 
assessed in this work.

There are works, in which the paradigm of implicit 
situation or resting-state has been employed. This 
approach provides the possibility of identifying 
spontaneous interaction of neural networks, resulting in 
auditory hallucinations as no specific task is being done 
at the time of data registration. Vercammen et al. [88] 
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have calculated functional connectivity under implicit 
conditions for a selected “region of interest” located in the 
right and left temporooccipital zones, comparing patients 
at the time when they were experiencing auditory 
hallucinations with healthy participants. The group of 
patients with schizophrenia has demonstrated impaired 
functional connectivity of the left temporal-occipital 
zone with the right hemisphere analog of Broca’s area. 
Patients with more intensive auditory hallucinations were 
noted to have reduced connectivity between the left 
temporoparietal zone, bilateral anterior cingulate parts, 
and the tonsil.

Gavrilescu et al. [89] have explored interhemispheric 
functional connectivity between the primary auditory cortex 
and secondary auditory cortical zones at a resting-state 
in patients suffering schizophrenia with auditory 
hallucinations. A similar study was conducted with patients 
without hallucinations and healthy subjects. Functional 
connectivity was assessed using a resting-state fMRI in 
the selected “regions of interest”, determined for each 
participant by the functional activation maps in response 
to word listening. Patients with hallucinations have 
demonstrated reduction of interhemispheric connectivity 
relative to the two other groups.

Hoffman et al. [90] compared patients with 
schizophrenia spectrum disorders with auditory 
hallucinations with patients having the same diagnosis 
without auditory hallucinations and with healthy people. 
Functional connectivity was detected in the Wernicke’s 
area and the corresponding area in the right hemisphere. 
It formed a loop integrating the Wernicke’s area and the 
“region of interest” in the inferior frontal gyrus, while 
the putamen of the lentiform nucleus was significantly 
enlarged in patients with hallucinations against patients 
without hallucinations and the norm. Patients with and 
without hallucinations had a lower functional connectivity 
than in the control group in the Wernicke’s area in 
comparison with the corresponding region in the right 
hemisphere and also between the Wernicke’s area and 
anterior cingulate gyrus.

Neurophysiological biomarkers  
of schizophrenia

The EEG technique has some advantage over 
MRI in greater accessibility and ease of use in clinics 
as well as in registration of “fast” changes of brain’s 
electrical activity. Components of evoked potential and 
functional connectivity, or coherence may serve as most 
specific electrophysiological indices for schizophrenia 
[91, 92]. Searching for and studying functions as well as 
interactions by the parameters of resting-state network 
connectivity, saliency, and executive control in patients 
with schizophrenia show similar features in the majority 
of works: perception impairment, selectivity of attention, 
selection of significant information in this pathology 
is linked to the reduction of interconnections of these 
networks [93].

In electrophysiology, perception disturbance like 
pseudohallucinations typical for clinical picture of 
schizophrenia finds its explanation in the theory 
of efference copy, according to which patients fail to 
assess stimuli to the inner and outer irritants. According 
to Ford [94], patients with schizophrenia do not have 
signs of efference copy during speech and internal 
speech characteristic of healthy people: there is no 
N1 wave of evoked potential, coherence between the 
motor and sensory speech centers is not available; 
this situation in its turn leads to the identification of the 
internal speech as external and is felt as “voices inside 
the head”.

Disturbance of the thinking process in the form 
of distortion of information selectivity or relevance is 
studied in detail on the fMRI findings. However, there 
are electrophysiological data on statistically significant 
differences in patterns of synchronization between 
patients from the target group and that of the control. 
Using the analysis of inter-frequency phase connectivity, 
the authors isolated functional frontotemporal networks 
with central and temporal components in theta and 
alpha frequency range which can reflect differences in 
relevance detection. Error in the assessment of stimulus 
significance in patients with schizophrenia is also 
confirmed in the theory of predictive coding.

Numerous works include analysis of differences 
at various stages of evoked activity in patients with 
schizophrenia and healthy subjects. Here we may 
distinguish researches directed to the study of 
disturbances of early components of evoked potential 
responsible for the analysis of stimulus sensory 
components and investigations devoted to the late 
stages of processing — semantic analysis, significance 
assessment. Despite the difficulties of isolating sensitive 
electrophysiological parameters using EEG and often 
contradictive research data, several basic features may be 
singled out which show persistent significant differences 
between normal groups and those with schizophrenia 
(see the Table). In clinical practice, there proved to be 
effective estimation of P300 component amplitude linked 
to the initial processing of stimulus significance, selective 
attention, and being essentially different in patients with 
schizophrenia and healthy controls.

Attempts were made to identify markers of 
schizophrenia by EEG based on machine learning. 
Thus, during informative features for machine learning 
selection, a phase-locking value method proved to be 
rather effective. The analysis, built on this method for 
various groups of mental diseases, has shown the main 
markers for schizophrenia in the frequency range of the 
alpha rhythm [95]. According to Kim et al. [96], machine 
learning can help define the main neurophysiological 
characteristics of patient with schizophrenia with a 
high and low score obtained by cognitive tests and 
with a high score in positive/negative symptomatology 
according to PANSS. The data obtained by these 
authors showed the link of the limbic system structures, 
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the insular cortex in particular, and also features of 
differences in the theta, alpha-1, alpha-2, and beta-2 
EEG rhythms in patients with different level of cognitive 
function preservation. Seven regions (connectivity 
centers) of phase-locking activity have been 
distinguished. The most precise classification of healthy 
people and patients with schizophrenia was shown by 
the values of frontal and parietal lobe connectivity, and 
then followed the connectivity of occipital regions, limbic 
system, temporal and parietal lobes in the descending 
order of significance.

Significant differences of connectivity values in the 
limbic system are also confirmed by other investigations 
without using machine learning [97]. When classifying 
patients with a high cognitive level and those with a low 
score, this index gave the highest accuracy inside the 
target group. The feature, which classified most precisely 
patients with positive and negative symptomatology 
predominance, is an indicator of connectivity of the 
frontal, temporal-occipital and parietal lobes, and insula. 
Upon the whole, functional connectivity in patients with 
the predominance of negative symptomatology and 
decline of cognitive functions is lower than in patients 
with predominance of positive symptomatology and safe 
cognitive functions.

As for the features isolated by the main EEG rhythms, 
power characteristics of theta and beta ranges were 
isolated most often from 11 frequency ranges when 
classifying the target and control groups with the help 
of machine learning algorithms. When intragroup 

classification of patients with schizophrenia according 
to the preservation of cognitive area was performed, the 
algorithm isolated the power of alpha rhythm as well as 
delta and (to the less degree) theta, beta, and gamma 
rhythms. Classifying by the intensity of predominance 
ofpositive or negative symptomatology, characteristics of 
alpha-rhythm band were selected most often, thereafter 
followed characteristics of delta, theta, beta, and gamma 
band rhythms in the descending order of significance. 
Connectivity of theta and beta ranges is described in 
detail for the healthy group in the process of solving 
cognitive tasks and perceiving emotionally significant 
information [98].

Researches, aimed at differentiating schizophrenia 
from depression by means of biomarkers derived from 
EEG, are interesting from the methodological point 
of view rather than practical [99], as the task of 
differentiating the diagnosis of schizophrenia and 
schizoaffective disorder from depression with a 
substantially different clinical picture, is usually more 
vital in the clinic. However, such investigations are also 
conducted. For example, the authors of the same work 
[99] obtained the markers discriminating schizophrenia 
from major depressive disorder by the parameters of 
cognitive evoked potentials, namely dipole sources, 
isolated by the LORET algorithm and related to both 
the intensity of positive symptomatology and the level 
of cognitive functioning. 28 features were selected 
for the sources, whereas 12 were selected for peak 
latency of evoked potentials N100 and P300a, and 

The main electrophysiological biomarkers obtained from EEG and their characteristics for patients  
with schizophrenia

Type of biomarker according to EEG data Characteristic of biomarkers in schizophrenia relative to the healthy group
Components  
of evoked potential

Early components — P50, N100 Amplitude reduction, latency increase
Peak inversion for emotionally significant stimuli

Middle components — P300 Amplitude reduction, latency increase for auditory evoked potentials
Late components — N400, P600 Latency elongation for complex stimuli
Contingent negative variation (CNV) Mismatch negativity (MMN) is smaller by amplitude for auditory evoked potentials

Functional 
connectivity

Coherence (evoked activity) Reduction of coherence in patients with schizophrenia with predominance  
of negative symptomatology and its elevation in patients with predominance of positive 
symptomatology in case of low interhemispheric connectivity, and greater (relative  
to the norm) connectivity of the frontal and parietal regions, occipital areas between  
the hemispheres, temporal and parietal areas

Inter-frequency connectivity Connectivity reduction of theta and beta ranges, alpha and beta ranges

Dipole sources  
of evoked  
potential

For the component of evoked 
potential

Reduction of P300 amplitudes of temporal-basal dipoles corresponding mainly to P3b 
dipole. Intensive productive symptomatology correlates positively with the activity  
of the temporal-basal P300 dipole, whereas negative symptoms correlate positively  
with the activity of superior temporal dipole

For MMN potential In schizophrenia, switching from involuntary processes of auditory perception to voluntary 
changes, which is reflected in the bias of temporal dipolar sources of MMN component  
in the debut of the disease on the sources in the left cingulate gyrus

For EEG rhythms Patients with schizophrenia have significantly more dipolar localizations of alpha rhythm 
sources in clusters localized in limbic cortex and hippocampus. For theta rhythm, increase 
of dipole moment of the source is noted in clusters located in the regions of temporal, 
frontal cortex and hippocampus
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only 8 features — for the power amplitudes according 
to the rhythm ranges. The authors have concluded 
that the analysis of dipole sources is more informative 
for schizophrenia identification than other methods. 
Vázquez et al. [100] distinguished the markers according 
to two parameters of functional connectivity. Such 
characteristic as “generalized partial directed coherence” 
(GPDC) in the alpha rhythm range for the connectivity 
of channels O1 and O2 and in the theta rhythm range 
for the same channels was used for general connectivity 
of the EEG channels. For interchannel connectivity, 
“direct directed transfer function” (dDTF), the connectivity 
of channels T3 and C3 in the gamma rhythm range, 
O1 and C3, T5 and O2 in the range of beta rhythm, and 
Fz and O2 in the range of theta rhythm was considered 
to be the feature.

The approach based on the preliminary classification 
of schizophrenia by the profile of disturbances in the 
basic psychic functions, and then, using machine 
learning algorithms, search for objective markers 
of the state, including EEG, seems to be rather 
promising. Search for biomarkers using multimodal 
data, i.e. by microbiota, immunological blood indices, 
and EEG, has been described in the article [101]. In 
this study, some combinations — biomarker profile — 
have been selected for the group of patients with 
schizophrenia as a result of processing a large number 
of the complex parameters. Using machine learning, 34 
parameters were selected as features. Several basic 
combinations were obtained from them. The most 
significant of them are listed below:

connectivity with the center in right parietal region 
(P4) in the range of alpha-2 rhythm (from 10 to 13 Hz) 
and the amount of monocytes;

clustering coefficient in the right temporal region (T6) 
in the range of EEG theta rhythms (from 4 to 8 Hz) and 
concentration of Ruminococcus in microbiota;

degree centrality in the range of beta-2 rhythms (from 
20 to 30 Hz) in the right frontal area (Fp2) and white 
blood cell count;

degree centrality in the range of beta-2 rhythms 
(from 20 to 30 Hz) in the right occipital area (O2) and 
neutrophil to lymphocyte ratio.

Tikka et al. [102] used high-resolution EEG 
(256 channels) isolating from it other features: 
maximum and minimum amplitude of spectrum 
power peaks in delta (0−4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz), beta (16–32 Hz), and gamma (32–64 Hz) 
ranges, and performing wavelet analysis in these 
rhythm ranges. The following regions of interest were 
selected: projection on the cortex of the left inferior 
frontal gyrus, dorsolateral prefrontal cortex (DLPFC) of 
the inferior parietal lobe (IPL), and superior temporal 
gyrus (STG). Using SVM method, the following features 
showing intergroup difference between patients 
with schizophrenia and healthy were distinguished: 
gamma-activity in the areas above the right IFG, left 
DLPFC, and right STG. The most accurate feature 

determining the subgroup with the predominance of 
positive symptomatology over the negative, according 
to the authors’ data, was the increase of delta rhythm 
power in the area of the left IFG.

Thus, we may conclude that EEG biomarkers may be 
distinguished by neurophysiological parameters such 
as functional connectivity characteristics, amplitude 
and latency of the evoked potential components, 
parameters of the rhythmic patterns, and dipole sources 
(see the Table).

Immunological biomarkers of schizophrenia

Molecular genetic studies of schizophrenia have 
shown that an essential role in the development and 
progression of this disease is played by the disturbances 
of the systemic immune response and immune 
processes in the CNS, i.e. chronic neuroinflammation. 
It has been proved by examinations of the post-mortem 
brain, clinical, and genome-wide studies [103–
107]. Association of immunological disorders with 
schizophrenia prognosis [108] and symptomatology 
character is being investigated. Thus, in exacerbation 
of the disease, increase in the blood levels of 
proinflammatory cytokines IL-8, TNF-α and acute-phase 
protein (C-reactive protein, CRP) is observed [105]. 
According to other authors, a high level of CRP is 
associated with a more severe course of psychosis 
in schizophrenia and subsequent decline of cognitive 
functions [105, 106].

Mechanisms of immune disorder impact on the 
pathogenesis of schizophrenia are being intensively 
explored (see, for example, the review by Malashenkova 
et al. [107]). The ways by which systemic immune 
disorders affect the immune processes in the CNS, 
stimulating neuroinflammation, have been described. 
They include active transport of cytokines across 
blood–brain barrier (BBB), activation of the vagus 
nerve endings in the inflammatory microenvironment, 
cytokines secretion by BBB endotheliocytes triggered 
by the inflammatory mediators in the periphery blood 
circulation, and others. Neuroinflammation contributes to 
the excessive activation of the complement component 
C4 in the CNS — one of the mediators of the reduction 
in the amount of synaptic connections in sick people. 
Besides, a disbalance of the immune processes in 
the CNS in neuroinflammation causes alteration of 
tryptophan metabolism in the direction of increasing 
synthesis of kynurenic acid (KYNA) acting as the main 
endogenic antagonist of glutamate NMDA receptors 
and promoting glutamatergic hypofunction in sick 
people. Interconnection between excessive activation 
of humoral immune response, serological signs of 
neurotropic infections, formation of autoantibodies to 
the brain proteins and schizophrenia are extensively 
being studied [104]. Suppositions on interrelation of 
neuroinflammation with structural brain alterations 
are presented in the literature [109]. At present time, 
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efficacy of anti-inflammatory therapy in schizophrenia is 
investigated, however, the results of these researches 
are controversial [110].

In spite of the fact that, according to current concepts, 
a significant role in the development and progression of 
schizophrenia belongs to the disturbances of systemic 
immune response and immune processes in the brain, 
only a small number of works is devoted to the study of 
the links between immune parameters and clinical data 
in schizophrenia, and methods of machine learning in 
this field have not been systematically utilized [103–
107]. According to the work [111], in which the analysis 
of the results obtained was conducted by the multiple 
regression method, the level of proinflammatory cytokine 
IL-6 has negative correlation with the cognitive function 
parameters in outpatients with schizophrenia (r=–0.395), 
whereas the levels of IL-2, IL-4, IL-10, IL-17A, TNF-α, 
IFN-γ are not associated with cognitive functioning.

The authors [112] have investigated interrelations of 
activation of the stress regulatory networks and immune 
response with cognitive disorders in schizophrenia 
using machine learning algorithms. The study included 
37 patients with chronic schizophrenia and 35 healthy 
volunteers. Serum levels of the immune activation 
markers and markers of sympathoadrenal axis activator 
(TNF-α, IL-2, IL-6, IL-8, cortisol) were assessed by 
the PANSS scale. The complex of indices of cortisol, 
TNF-α, and IL-8 allowed identification of patients with 
chronic schizophrenia with the greatest sensitivity (over 
90%) and specificity (over 90%). Besides, these values 
positively correlated with the intensity of cognitive 
symptoms according to the PANSS. The step-by-step 
linear regression analysis has shown that cognitive 
symptom intensity determined by PANSS correlated 
with the disease duration and indices of cortisol, TNF-α, 
and IL-8.

In the work [113], index reflecting disturbances of 
neuroimmune interactions was determined in 120 
patients with schizophrenia and cognitive deficit and 
54 healthy volunteers based on the blood level of 
immunological parameters (CCL-2, CCL-11, IL-1β, 
sIL-1RA, TNF-α, sTNFR1, sTNFR2) and the results of 
cognitive tests. Methods of partial least squares (PLS) 
and soft independent modelling by class analogy 
(SIMCA) were applied for statistical processing. 
Index obtained by PLS analysis explained 75% 
of psychotic symptom variability, aggressiveness, 
excitement, mannerism, and negative symptoms. 
The results of the SIMCA analysis, in the light of the 
authors’ interpretation, give reasons for distinguishing 
schizophrenia with neurocognitive deficit as a separate 
class of the disease.

A question of interconnection of immunological 
disturbances in schizophrenia with neurophysiological 
data is also insufficiently studied. In the world literature, 
only single researches on this topic are encountered. 
Thus, according to the paper [114], an increased level 
of IL-6 in outpatients with schizophrenia is associated 

with abnormal thickness of the grey matter in some 
regions of the cerebral cortex. The results were 
statistically processed by ANCOVA method (analysis 
of covariance). However, clinical interpretation of the 
results is difficult.

Of interest is the study [115], in which a model 
was created based on patients’ genotype predicting 
expression of complement components C4A and C4B 
participating in the pathogenesis of schizophrenia, and 
the result obtained was compared with the results of 
neuroimaging and cognitive tests. Negative associations 
were revealed between the predicted C4A expression 
and the results of some cognitive tests, as well as 
significant associations with the surface thickness and 
area of some cortical regions according to the MRI data.

The task of the work [116] was to find associations 
between the increase of the inflammatory marker level 
in blood plasma and inflammation subtype, cognitive 
disorders, and structural brain alterations in patients 
with psychoses. The study included patients with 
schizophrenia (n=50), schizoaffective disorder (n=29), 
bipolar I disorder with psychosis (n=61), and healthy 
volunteers (n=60). Blood serum level of inflammatory 
markers (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12/
IL-23p40, IL-12p70, IFN-γ, TNF-α, TNF-β, CRP, Flt-1, 
VEGF, VEGF-C, VEGF-D, TGFβ-1, C4A), neuroimaging 
parameters (cortex thickness, volume of subcortical 
matter), clinical indices (the score by PANSS, YMRS, 
MADRS, BACS, spatial addition subscale of the 
Wechsler Memory Scale, dot pattern expectancy 
task, ER-40 test) have been studied. A combination of 
exploratory factor analysis and hierarchical clustering 
was used to identify inflammation patterns. The authors 
have shown that the levels of IL-6, TNF-α, VEGF, 
and CRP were statistically significantly elevated in 
psychoses. They also have established that the levels 
of separate markers and patterns of inflammation are 
associated with the results of neuroimaging, cognitive 
disturbances, symptom intensity. A group of patients 
with intensive systemic inflammation (7 markers with 
increased level in 36% of the examined patients in 
the main group and in 20% of the control group) 
was identified. These patients were noted to have 
statistically significantly worse results of cognitive 
tests on visual-spatial working memory and delayed 
response, as well as enlarged volume of hippocampus, 
tonsil, putamen thalamus, signs of increased cortical 
thickness as compared to the patients without the 
elevation of the inflammatory marker levels. The 
results of such works show good perspectives of more 
extensive interdisciplinary researches devoted to the 
study of interconnections between clinical immunological 
disorders and neuroimaging data in schizophrenia and 
the importance of developing new approaches to the 
interpretation of data obtained in these investigations.

Thus, the analysis of schizophrenia biomarkers 
allows us to conclude that in conjunction with a large 
data volume acquired from brain neuroimaging and 
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immunological investigations and taking into account 
a complicated character of the clinical picture in 
schizophrenia described by numerous variables, 
application of machine learning methods in this field 
will give the opportunity to discover new scientific data 
on the mechanisms of the pathogenesis, disturbances 
of neuroimmune interactions of the disease, to 
gain an insight into the role of immunoinflammatory 
disorders and immunity disbalance in the multifactorial 
pathogenesis of schizophrenia. From a practical 
point of view, the results of data analysis performed 
by machine learning methods makes it possible to 
develop new panels of markers having diagnostic and 
prognostic value, design a prototype of the system 
supporting medical decision-making based on the 
selected features. To solve these tasks, it is important to 
establish interrelations between the factors influencing 
the pathogenic mechanisms (mediators and cells of the 
immune system), structural brain alterations (findings 
of neuroimaging), and clinical manifestations of the 
disease.

Section 3. Utilizing data analysis  
and machine learning methods for the task  
of biomarker searching

Specificity of data and their preprocessing

Nowadays, methods of machine learning and 
intelligence data analysis are utilized in medical 
researches for detecting diagnostic biomarkers and 
predicting the results of treatment using neuroimaging 
data, electrophysiological and immune data collected 
for target groups or healthy volunteers [117]. One of 
the problems of successful application of automated 
machine learning-based diagnosis in clinical 
environment is to provide the best possible quality of 
the original signal used for decision-making by the 
model. Data cleaning to remove the noise connected, 
for example, with scanning, is considered to be 
necessary, since the noise like this reduces sharply 
the effectiveness of recognition making impossible 
identification of neuroimaging markers of psychiatric 
disorders such as schizophrenia. In order to clean the 
data, it is necessary to use the reliable schemes of their 
preliminary processing which include a comprehensive 
testing of space-time constituents of the original signal 
and identification of the appropriate components of the 
desired signal as it is proposed in paper [118].

A small size and heterogeneity of samples of separate 
scientific groups is a serious problem. Currently, 
several projects of augmented open-source databases 
are being developed which contain not only verified 
clinical data and case histories but also neuroimaging 
data in a unified format and some modalities of data of 
“wet” biology (biochemical and immunological blood 
analysis, genotyping results) see, for example, http://
schizconnect.org/.

Feature extraction and classical models

Apart from the problem of data cleaning, there is 
one more important issue: analysis of multimodal brain 
data, which is connected with their large dimensionality. 
For example, when using MRI, standard dimensions 
of voxels are within 0.5−2.0 mm3 in case of structural 
imaging (which gives ~107 voxels for the entire brain 
volume). MR image consisting of a large number of 
small-size voxels has a higher spatial resolution and 
therefore larger dimensionality. The same is true for 
EEG records, which usually consist of tens of time-series 
(one for each channel) and thousands of measured 
values for each electrode. In order to avoid “the curse of 
dimensionality”, methods of machine learning are usually 
applied to the features of smaller dimensions extracted 
from the raw data with the help of feature extraction 
procedure. These procedures are often included into the 
preprocessing stage.

Examples of such low-dimensional features may 
be structural and morphometric parameters (volume, 
thickness, curvature) of the anatomical areas selected 
from MR image, which together form a feature vector. 
For instance, the FreeSurfer program for processing 
MR images divides them into the areas corresponding 
to the selected anatomical atlas, computes 7 volumetric 
characteristics for each cortical area and 9 geometric 
characteristics of subcortical regions.

A promising way to informative feature extraction for 
clinical neurology and psychiatry is the calculation of 
functional brain connectivity, i.e. some mathematical 
representation of the functional brain architecture, 
which is determined by a set of vertices and edges. 
Patterns of abnormal functional connectivity may serve 
as an indicator of some dysfunction. Some models of 
functional connectivity include probabilistic graphical 
models [119] and sparse low-rank functional brain 
networks (FBN) [120]. When presenting brain regions 
in the form of vertices based on some brain atlas, it is 
possible to build graphical representation of interactions 
between these regions. Once the graph is built, the main 
graphical descriptions (features) are extracted from it (for 
instance, degree of a node and global network efficiency) 
for further employment in the patient classification tasks. 
Some tasks show the efficiency of the approach in case 
of using high-quality data; this method may also provide 
interpretable results from the physiological point of view 
[121].

Models of deep learning

The abovementioned approach with the extraction of 
informative features possesses some disadvantages: 
apart from additional resources for data preprocessing, 
the researcher is required to understand what features 
are to be extracted. If some attributes were not extracted 
from the initial data, they will not be used in any way 
in building the models of machine learning, which may 
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have a negative effect on the precision and robustness 
of these models. Deep learning (DL) is an alternative to 
this approach where high-dimensional initial data may 
be fed to the model input without any preprocessing: 
full-size MR image, entire EEG record, or a complete set 
of immunological data.

Convolutional neuronal networks have shown good 
results of classification in the tasks related to a number 
of psychoneurological diseases [122]. Two different 
architecture of a three-dimensional convolutional network 
were proposed in this study for solving the problem 
of differentiation of patients with Alzheimer’s disease 
from healthy control on the basis of their structural MR 
images. The deep learning models proposed by the 
authors have demonstrated similar accuracy: 0.88 and 
0.87 ROC AUC, respectively, in the task of classifying 
patients with Alzheimer’s disease relative to those with 
a mild cognitive impairment and a healthy group. These 
results are comparable with earlier approaches using 
preliminarily extracted low-dimensional features. The 
result shows that convolutional networks may be applied 
directly to the raw neuroimaging data without much loss 
of classification performance, which makes it possible to 
omit the stage of preprocessing.

As applied to medical tasks, recurrent neural 
networks may be effectively employed for the analysis of 
temporal rows such as EEG data or fMRI. Dvornek et al. 
[123] used recurrent networks of LSTM type to search 
for biomarkers of autistic spectrum disorders by the 
resting-state fMRI data. The authors have demonstrated 
classification accuracy of about 0.69 in the task of 
classifying patients with this disorder and healthy people. 
Moreover, the authors made a comparison with earlier 
approaches on a large set of data available for autistic 
spectrum disorders, which showed that recurrent neural 
networks surpassed in accuracy the existing results by 
9%. However, the given recurrent network receives as 
input data temporal rows obtained from the regions of 
interest which must be pre-extracted from the raw fMRI 
data, which may be also considered, to some extent, 
feature extraction albeit highly dimensional.

Dakka et al. [124] have proposed the model combining 
the merits of recurrent and convolutional networks to 
classify patients with schizophrenia by initial fMRI data 
in the form of a sequence of three-dimensional MR 
images. The authors considered several configurations 
consisting of several convolutional blocks with 3D filters 
and two layers of LSTM network. The most successful of 
these models showed classification accuracy of 0.65 and 
significant improvement of performance as compared 
to the basic prediction methods such as support vector 
machines (SVM) and others.

Multimodal data integration

At present, numerous works are devoted to 
multimodal and multitask investigations in machine 
learning. Aggregation of multimodal data may provide 

machine learning models with a large volume of 
information about every subject from the sample as 
compared to unimodal data and will also allow the 
selection of cross-domain information and complex 
relations between various types of data unavailable in 
unimodal studies.

Different architectures are used for integration 
of multimodal data: deep confidence networks, 
convolutional, and recurrent neural networks. Recently, 
the so-called transformers became widely used: 
Transformers, Multimodal transformer (MMT) [125], 
LayoutLMv2 [126], DALL-E [127], Perceiver [128], 
Perceiver IO [129], OmniNet [130]. Deep neural 
networks of this kind enable identification and encoding 
of comprehensive interconnections between data and 
reduction of their dimensionality.

An example of the architecture, where multimodal 
data are integrated by means of deep confidence 
networks, is considered in the paper by Suk et al. [131] 
for solving the task of diagnosing Alzheimer’s disease. 
A neural network receives data from two modalities, MRI 
and PET, and thereafter its vector representation is built 
for each modality. Further, these representations are 
integrated and fed to the input of the next linear layer 
for building multimodal representation. The article [132] 
describes diagnosing of Alzheimer’s disease at its early 
stages using multimodal data (MRI, genetic, and clinical 
data). At the first stage of processing, intermediate 
compressed representations for each type of data are 
selected: 3D convolutional neural networks are used 
for MRI, autoencoders — for genetic and clinical data. 
Further, the intermediate features are transmitted to the 
linear layer for classification by the stages of Alzheimer’s 
disease.

The authors [133] believe that application of 
multimodal data in mental diseases may provide the 
research with more information on patients’ individual 
characteristics and give a clue to the understanding 
of missing links in psychiatric disorders. The article 
discusses an example of synergy from simultaneous 
analysis of data from different modalities. The authors 
consider features from several modalities: e.g. 
hippocampus volume and default mode network (DMN) 
using fMRI data. In this case, to calculate correlation of 
one modality (hippocampus volume) with the activity 
of all brain voxels in another modality and then to test 
the differences between the groups relative to these 
correlations is not the same that to separately estimate 
which volumes of the brain show group activity 
alterations and which regions in the DMN network 
demonstrate group differences. The first variant may 
be considered as data integration since both datasets 
are used for the assessment of the joint result. This 
approach improves in many cases the capability of 
differentiating patients and the control group.

In the articles [134, 135], it is reported that multimodal 
MRI data allow one to make some original conclusions 
on the key clinical aspects of schizophrenia. Many 
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psychopathological studies have already indicated that 
there is an interconnection between the structure and 
function of the brain in mental disorders. The authors 
[136], in particular, discovered three regions including 
thalamus, anterior cingulate, and inferior parietal gyri 
which showed how structural and functional disturbances 
are connected with attention in schizophrenia.

In the articles [137, 138], the authors describe 
integration of multimodal data to classify healthy 
subjects and patients with schizophrenia. In the first 
paper, for solving this task, functional and structural MRI 
are aggregated by the deep models and mechanism 
of attention which make it possible to identify complex 
interconnections between the features of various 
modalities. In the second work, a multimodal deep 
learning models which integrate genetic data (single 
nucleotide polymorphism), structural, and functional MRI 
are used. Data integration improves the model quality 
from the accuracy of 81% (which is inherent to the 
best unimodal fMRI model) to 88%, and that shows 
the efficiency of using this approach.

Apart from solving multimodal tasks, creation of 
the architectures capable of performing the tasks both 
on separate data modalities and multimodal data are 
recently being actively developed. OmniNet, Perceiver, 
Perceiver IO may be referred to these architectures. 
Perceiver and Perceiver IO may build representations for 
arbitrary information and arbitrary tasks. Perceiver is a 
transformer-based architecture using attention principles 
which may input any data such as images, video, audio, 
point clouds, and their multimodal combinations without 
any primary transformations. It uses the attention 
mechanism to collate input data from different types of 
modalities with a fixed-size latent space which is further 
processed by a deep network with full attention. This 
process makes the main part of the network processing 
independent of the dimension and modality of the input 
data, which permits its scaling up to the large and 
multimodal data.

Interpretability of machine learning models

In medical diagnosis, interpreting the prognosis for 
deep neural network models is an especially important 
and necessary part of learning and validation processes. 
It is explained by the requirement of model transparency 
for its practical use in health care: decisions taken by 
it must be clear to clinicians of various specialties. In 
particular, when interpreting medical images, there 
arises a difficulty between how well the method can 
create explanations and how well the explanation 
corresponds to the image areas being interpreted. 
Existing techniques are often capable of managing only 
one task.

Let us consider an example of interpreting model 
predictions on neuroimaging data. Multiple pertubations 
method is considered to be one of the classical methods 
of interpretation of model predictions [139]. This method 

is based on the detection of changes in the output data 
(predictions) in controlled perturbations in the output 
samples and creates, as a rule, blurred maps with low 
resolution. Explanations of the model construction based 
on the gradient (CAM [140], Grad-CAM [141], Guided 
Backpropagation, Deep Taylor [142], DeepLIFT [143], 
LRP [144]) ignore the features with a relatively low 
discriminative power and select only those possessing 
high significance, or vice versa, are restricted by 
assigning an estimator without large-scale spatial 
coherence to each separate pixel of the image. More 
state-of-the-art modifications, LIME [145], RISE [146], 
XRAI [147] employing “superpixels” (group of pixels, 
cognitive fragments) as a base for explanation, add 
flexibility, but are too expensive in terms of computation.

In recent time, approaches to simultaneous 
classification and feature attribution are being developed 
using a shared latent space of attributes with a 
classification layer: VA-GAN [148], ICAM [149]. These 
methods imply learning on the basis of generative 
networks being not always successful on a small 
data sample of medical tasks. Besides, generation of 
significance maps of brain pathology is not enough for 
clinical application, since the dynamics of the disease is 
very important for diagnosing (for example, which areas 
are affected by atrophy, how rapid it is developing, and 
so on) which is impossible to define from one temporal 
section, i.e. by static data.

Popularity of classical methods such as Grad-CAM or 
meaningful pertubations suggests that decisions based 
on the regions (distinguishing the object area) allow 
one to achieve a higher level of interpretability, i.e. give 
explanations which are easier for a man to understand. 
In case of neuroimaging data, it may be, for instance, a 
set of anatomical brain regions. However, it leads to the 
loss of spatial precision of explanation, which is reflected 
on the medical images, e.g. human brain or lungs, by 
the selection of too large zones, i.e. by low specificity 
and informativity for clinicians. Therefore, searching for 
a method capable of generating simultaneously precise 
and interpretable explanations and suitable for data 
specificity remains a burning problem to be solved for 
such tasks as diagnosis of schizophrenia.

Conclusion
Despite a wide spread and social importance of 

schizophrenia, decades of researches, and numerous 
publications of separate scientific groups, diagnosis 
and prognosis of the disease have been based 
mainly on observation and questioning, interpretation 
of which may be subjective. Several factors may 
explain this situation. From the point of view of clinical 
aspects, solution of fundamental and practical tasks in 
diagnosing schizophrenia is complicated by ambiguity 
in the agreement of diagnostic criteria of schizophrenia 
on the one hand: the state of the same patient may 
correspond to the criteria of several disorders or not 
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correspond to the criteria of a definite disorder in 
terms of the predominant categorical approach, and 
on the other hand, by phenomenological similarity 
of schizophrenia symptoms: it is often difficult to 
differentiate similar negative symptoms from cognitive 
disorders in this disease. Moreover, the similarity of 
symptoms manifestation is complicated by the fact 
that each of them may vary in severity and intensity. 
Presence of such dilemmas even leads to the proposals 
to abolish the term “schizophrenia” excluding it from the 
list of diseases. Some authors believe that only transition 
to the dimensional approach when, on the basis of factor 
analysis of the main manifestations of schizophrenia 
spectrum disorders, dimensions (domains) of their 
phenomenology or symptomatology are distinguished, 
may significantly improve the quality of solving both 
fundamental and practical tasks of psychiatry.

Each year, the number of works devoted to the search 
for biomarkers of schizophrenia by different modalities 
of laboratory investigations is growing. The described 
heterogeneity of the disease and frequent symptom 
similarity result in detection of a large number of weakly 
informative biomarkers with low clinical significance. For 
example, according to the neuroimaging data, even in 
the narrower selected paranoid-hallucinatory syndrome, 
multiple structural and functional disturbances in the 
cortical regions and subcortical structures have been 
found. Sometimes the results of the research groups 
contradict each other and are not reproduced. As 
mentioned above, this may be connected with the 
heterogeneity of the clinical picture, impact of some 
factors such as the age of the disease onset, course 
dynamics, medication therapy, concurrent development 
of negative symptoms. Besides, many investigations 
have shown that structural changes, for example, the 
volume of grey matter in the cerebellum, subcortical 
structures, cortical structures, as well as alterations 
in the functional connectivity of the resting-state 
neural networks may be biomarkers of schizophrenia. 
According to some findings, descriptions of the structural 
connections between the brain regions, or connectomes 
(structural connections acquired from the tractography 
(DTI) data and functional obtained from fMRI) appeared 
to be even more informative for the diagnosis than 
local characteristics of these regions. The described 
MRI biomarkers and specificity of changes in the EEG 
parameters may be input parameters for classification 
tasks in machine learning methods.

Despite existing evidence of availability of neuro - 
 inflammation and immune disorders in schizophrenia, 
their spectrum, causes, association with neuro- 
physiological alterations are insufficiently studied. 
Application of the data on the connection of immunity 
changes with the character of symptomatology and 
their impact on the prognosis in clinical practice remains 
rather limited for the present, and as a rule, criteria for 
interpreting the results of investigations with a large 
number of the examined parameters are not available 

to clinical specialists, which promotes publication of the 
papers devoted to the analysis of the results only for 
separate immunity indices not sufficiently reflecting the 
state of the immune system. It should be also noted 
that in general there are few interdisciplinary studies 
of schizophrenia with the analysis of data of clinical 
investigations and neuroimaging together with the results 
of immunological studies.

The state of immunity and inflammatory indices in 
schizophrenia are being intensively studied including the 
analysis of large datasets of interdisciplinary researches 
in order to identify prognostic markers for various 
variants of this disease. At the same time, the application 
of the results of these researches in clinical practice is 
a problem due to the lack of algorithms giving a clear 
interpretation of these results to clinicians. However, 
such algorithms are necessary taking into consideration 
differences in the approaches to the analysis and 
representation of the results in biomedical sciences and 
neurosciences and sometimes an abstract character 
of the results of mathematical processing of large 
data sets from the clinical standpoint. Their creation is 
significant for fundamental science since it will allow 
the achievement of a deeper understanding of the role 
of immunoinflammatory disorders in the multifactorial 
pathogenesis of schizophrenia and is also vital from 
the practical point of view for further development of 
criteria of the prognosis assessment, new personalized 
approaches to prevention and therapy based on clinical, 
neurophysiological, and immunological examination.

Finally, from the viewpoint of the data science, 
noisiness, heterogeneity, and large dimensionality of 
multimodal laboratory data and small sample sizes in the 
investigations of separate scientific groups do not always 
permit effective application of conventional methods of 
data analysis and machine learning in the diagnostic 
tasks and search for stable biomarkers. Presently, 
international consortiums create open supplemented 
databases of patients with various data modalities, 
although to repeat successes achieved by machine 
learning (especially deep learning) in other fields, it is 
necessary to evolve both methods and models built on 
the highly dimensional unimodal data and new ways of 
aggregating data of different modalities.

Implementation of the obtained models and methods 
into real clinical practice is very difficult without their 
interpretability for clinicians; therefore, a separate 
direction of researches in the field of artificial intelligence 
and machine learning may be the development of 
methods for interpreting sophisticated models built on 
multimodal data. Moreover, application of machine 
learning data synthesis techniques reflecting current 
state of the cells and anatomic alterations of the large 
brain regions will allow one to step away from the 
existing dichotomy of schizophrenia pathogenesis and 
to consider neuroontogenetic and neurodegenerative 
processes simultaneously which will be certainly a great 
step forward for psychiatry as a science.
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