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Abstract — Hypopnea syndrome is a chronic respiratory disease that is characterized by repetitive 
episodes of breathing disruptions during sleep. Hypopnea syndrome is a systemic disease that 
manifests respiratory problems, however, more than 80% of Hypopnea syndrome patients remain 
undiagnosed due to complicated polysomnography. Objective assessment of breathing patterns of 
an individual can provide useful insight into the respiratory function unearthing severity of 
Hypopnea syndrome. This paper explores a novel approach to detect incognito Hypopnea 
syndrome as well as provide a contactless alternative to traditional medical tests. The proposed 
method is based on S-Band sensing, peak detection algorithm and sine function fitting for the 
observation of breathing patterns and characterization of normal or disruptive breathing patterns 
for Hypopnea syndrome detection. The proposed system observes the human subject and changes 
in the channel frequency response caused by Hypopnea syndrome utilizing a wireless link between 
two monopole antennas, placed 3m apart. Accuracy of the proposed method is established through 
comparison with commercial respiratory sensor. The experimental results show that this technique 
has the potential to open up new clinical opportunities for contactless and accurate Hypopnea 
syndrome monitoring in a patient friendly and flexible environment. 
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I. INTRODUCTION1 

Sleep is an essential survival skill and has great significance to human health. Sleep not only affects 
the productivity and physical vitality of a person but is also related to many diseases including diabetes, 
depression, and even stroke and heart failure [1]. Therefore, sleep function monitoring has a high medical 
value. 

Hypopnea syndrome is a common illness that occurs when throat muscles intermittently relax and 
block the airway during sleep [2]. It is characterized by repetitive episodes of shallow or paused breathing 
during sleep and is usually associated with a reduction in blood oxygen saturation. These episodes of 
paused breathing typically last 20 to 40 seconds. Signs and symptoms of sleep apnea include excessive 
daytime sleepiness, loud snoring, breathing cessation during sleep, abrupt awakening due to respiratory 
disorders, such as hypopneas, apneas, and choking. Back in the days, Hypopnea syndrome was 
considered as a sleep habit accompanied by snoring, but it is now regarded as a serious clinical disorder. 
Several studies indicate that a high percentage of patients suffering from Hypopnea syndrome remain 
unidentified, which can greatly affect their routine life and might create severe health complications, 
such as reduced work performance. Furthermore, evidence suggest that Hypopnea syndrome is related 
to systemic diseases, such as cardiovascular diseases and glucometabolic impairments as well as various 
pediatric complications, such as psychological and behavioral disorders, nocturnal enuresis, and growth-
related disorders [3]. Greater association to Hypopnea syndrome not only brings cardiovascular problems 
and neurological disorders, it can also cause sudden death in case of severe breathing obstruction [4]. 
Timely detection of Hypopnea syndrome through observation of respiratory disorder episodes is 
therefore of vital importance in personal healthcare. 

Polysomnography is a standard method for the diagnosis of Hypopnea syndrome. It is based on a 
comprehensive recording of bio-physiological changes occuring during sleep. The test is typically a full 
night study performed on a patient in a laboratory environment by medical experts. The PSG monitors 
observe heart, lung and brain activity, breathing patterns, arm and leg movements, and blood oxygen 
levels in the form of electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG), 
electromyography (EMG), and oxygen saturation (SpO2). Though Hypopnea syndrome can be 
objectively assessed and monitored by these signals, the subjects are often uncomfortable by deploying 
electrodes and wearing bands on their bodies during this long procedure. Moreover, the data can only be 
obtained in institutions or hospitals equipped with dedicated devices [4].  

There are many reported attempts that have tried to utilize alternative physiological signals to 
overcome the drawbacks of polysomnography [5-7]. One of the examples includes spectral analysis of 
snoring sounds to detect Hypopnea syndrome [7]. However, accuracy and feasibility of such methods is 
always in question.  

With the recent developments, wireless sensing has opened the doors for sleep monitoring systems 
leveraging various sensors, such as audio, image, force and temperature [8-18]. Most of these wireless 
systems are contact-oriented require wearable sensors worn by the patient to acquire adequate precision 
levels in a clinical setting. Use of smartphones’ accelerometer and audio recordings to monitor sleep 
disorders is proposed in [8-10]. However, use of such systems in a clinical application is yet not 
established. Behar et al. have studied a wearable system composed of an armband sensor, a face-worn 
microphone and a wrist-worn oximeter connected to the smartphone for the sleep apnea detection [9]. 
Force sensors deployed under the mattress top have also been used to detect the heart rate, sleep pattern, 

                                                   

 



snoring, or respiration rate [11-15]. Martinez et al. have investigated a wireless sensor system to detect 
respiratory rate using received signal strength indicator [16]. However, this system requires 15 to 20 
sensor nodes to achieve high classification accuracy. Video recordings of sleep patterns through camera-
based optical approach is adopted to detect the breathing pattern via video recordings is discussed in [17] 
and [18]. Cost effective-ness of polysomnography technique using split-night sleep monitoring is 
considered in [19]. However, availability of the equipment at clinics restricts its wider availability and 
flexibility to the patient, as they have to spend the night in a hospital environment. Though wearable 
technologies have emerged as a potential solution to monitor the patients unobtrusively, outside clinical 
settings, they limits patients comfort due to requirement of a number of body-worn sensors. 

In this paper, we investigate a non-invasive system based on S-band sensing to monitor the sleep apnea. 
The novelty of this work lies in the development of an accurate and efficient monitoring technique that 
provides continuous, contactless and patient-friendly solution. Usability and accuracy of the proposed 
system is established through a comparative study with standard commercial respiratory sensors. 

 

II. SYSTEM DESIGN 

The proposed method primarily uses sensing technique that works at S-band. Details of the system 
architecture are discussed in this section. 

A. Basic System Architecture  

The proposed sensing system makes use of a wireless link between two antennas positioned at two 
sides of the human subject, as illustrated in Figure 1. The two antennas are placed around the chest and 
are visually in a straight line, enabling them to establish a Line-of-sight (LOS) link. The distance between 
the two antennas is kept at 3m to replicate a typical patient monitoring system in a wireless environment. 

This sensing platform is an in-house system and consists of a spectrum analyzer (E8600), vector 
network analyzer (Agilent E8363B), antennas, software-defined radio, RF generator, and desktop 
workstation equipped with network adaptor. This system can work at a number of frequencies depending 
on the operating band of the antennas. For our work, we have selected the S-band frequencies of 2.4GHz-
2.48GHz due to their wide usage in healthcare applications and added benefits discussed in the 
proceeding section. 

The system employs monopole antennas at the transmitting and receiving ends. This selection of the 
antennas is based on a two-fold approach; making the system universal by using widely available 
standard type of antennas and decreasing the antenna’s effect on the sensitivity of the system. Along with 
the antenna, the emitter includes RF generator, coaxial cable and connector.  

 



 

Figure 1–Experiment setup for detecting sleep apnea.  

 

The propagation mechanism of RF signals between the transmitter and receiver is complex and can 
take both Line-of-sight (LOS) and Non-line-of-sight (NLOS) paths, as shown in Figure 2. The LOS path 
refers to the signals propagating in a direct path with no blockade by the human subject. The walls of the 
room are covered with RF absorbing material to get rid of these scattered components. It not only 
simplifies the overall system model but also improves the accuracy through better detection of minute 
chest movements due to breathing and accompanying spatial changes in the channel response. 

 

 

Figure 2– Radio propagation modes for sleep apnea detection. 
 

B. Wireless Channel Information at S-Band  

The proposed system observes the wireless channel between the transmitter and receiver and note 
down any sudden variations as a result of change in breathing pattern to detect the sleep apnea episodes. 
A group of 30 OFDM subcarriers carrying the channel information is used and can be exported to the 
user. Each of the exported data packets contains both the amplitude and phase information for a particular 
subcarrier:  
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H describes the phase response.  

The rationale behind using the S-band sensing is based on the argument that the wireless channel 

information retrieved using S-Band sensing technique is a superior metric as compared to other 

techniques, such as received signal strength indicator as it presents a fine-grained information of the 

wireless channel and is more efficient for small-scale multipath fading [20]. The core idea of using 

wireless channel information is to monitor the breathing pattern of the human subject and identify sleep 

apnea episodes by keeping track of any minute changes in the channel response. S-band sensing is 

sensitive enough to record these small changes but the received signal strength indicator only provides 

the received power levels and fails to note down the effects induced by small chest movements caused 

by breathing irregularities. Moreover, reflections and scattering of the radio frequency (RF) signal caused 

by the chest movements affect different subcarriers differently. S-band sensing technique enables 

examination of each of the subcarriers while the conventional received signal strength indicator only 

presents average power that can potentially overlook these small changes.  

From each wireless channel information (WCI) packet, a 30  1 matrix in the form of channel 
frequency response (CFR) can be extracted. Each row of the WCI matrix describes one subcarrier. If 
CFRm represents the channel frequency response of mth packet received, then:  

 

CFRm=⟦h1(m),h2(m),h3(m),…,h30(m)⟧,                      (2) 
 

where hi(m) denotes the CFR of the subcarrier i, at time m. To examine the time history of CFRm, total 
number of CFRm recorded at various time intervals are combined and expressed as: 
 

CFR=⟦CFR1,CFR2,CFR3,… ,CFRk,⟧.                        (3) 
 

Here, CFR is a 30  k matrix, where k describes the total number of packets received using network 
adapter and represents the change in the wireless channel over the observed time duration.  

C. Experimental Workflow 

The usability of the proposed system is established through performance comparison with a standard 
respiratory sensor. Thus, the experimental workflow has two main components: 

 

1. Normal breath detection using both the S-band sensing technique and an invasive breathing sensor. 

2. Hypopnea syndrome detection through wireless channel information and an invasive breathing 

sensor.  

The respiratory sensor also helps to identify the specific frequency that should be chosen, which is a 
key step in sleep apnea detection.  

 



 

Figure 3– Experimental work-flow. 
 

Raw wireless channel information recorded by S-band sensing technique is first calibrated and filtered, 
as shown in Figure 3. The wireless channel information measurements are then examined for changes 
that occurred due to small chest movements associated with varying breathing pattern. If any changes 
are recorded, all of the 30 subcarriers are analyzed to look for any abnormalities in the breathing pattern. 
In case of no sudden disturbances in the breathing pattern due to chest movements, the wireless channel 
information data would remain constant for the period of observation, inferring an absence of sleep apnea. 
A comparison between the two data sets would result in the detection of the Hypopnea syndrome.  

 

III. RESULTS AND DISCUSSION 

A. Benchmark Study 

A benchmark study is carried out first to establish the usability of S-band technique for breathing 
pattern monitoring. Figure 4 shows the raw amplitude data obtained using S-band sensing technique for 
30 subcarriers over a period of 60 seconds when the subject was breathing normally. The measurements 
were taken when the patient was lying straight, facing upwards. Clear variances and some wave-like 
pattern can be observed in the observed data. 
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Figure 4 – 3-D illustration of the raw data obtained for normal breathing. 
 

To examine the breathing pattern, further processing of the CFR amplitude data is needed. The first 
step is to perform filtering. Figure 5(a) shows the raw amplitude of all the 30 subcarriers in 2-D. It can 
be seen that there are some abrupt changes in all the subcarriers. To track clear breathing behavior, these 
abrupt change points must be eliminated. 
 

 

(a) Raw CFR from all the 30 subcarriers.  

(b) CFR data after applying selective weight median filtering. 
Figure 5 – Variances of 30 sequences of normal breathing.  
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The selective weight median filter is used to remove the abrupt change points. The choice of this filter 
is based on the fact that it is a highly effective elimination method for the impulse noise [21], appearing 
in Figure 5(a). The conventional filters like Chebyshev or Butterworth, are not appropriate to remove 
such high-frequency noise as they blur the rising and falling edges of the signal which are critical for 
identifying the sleep apnea episodes in this study. Figure 5(b) shows a much cleaner CFR data for the 30 
subcarriers after using the selective weight median filtering.  

We will now discuss the process of characterizing normal and abnormal breathing. 
From Figure 5(b), we can see that most of the 30 subcarriers have conspicuous periodic oscillatory 

patterns correlated with breathing, whereas the rest are messy. The channel giving most clear information 
of breathing pattern with most obvious wave-like pattern after the filtering process is considered as the 
most ‘suitable’ for the detection of the Hypopnea syndrome. Based on this, we selected the time history 
of the 26th subcarrier as shown in Figure 6.  

 

 

Figure 6 – Time history of the 26th subcarrier and corresponding filtered data for 60 seconds duration. 
 

The data for the chosen individual subcarrier is analyzed for a sample of 60 seconds. Figure 6(a) shows 
the normal breathing of a person lying in a straight position. Signs of breathing are clearly evident due 
to fluctuations in amplitude information. Figure 6(b) shows the CFR values after applying the median 
filter.  

 

0 10 20 30 40 50 60
22

23

24

25
the Original CFR

(a)  Time(s)

[d
B

]

 

 
Subcarrier # 26

0 10 20 30 40 50 60
22

23

24

25
After Median Filtering

(b)  Time(s)

[d
B

]



 
Figure 7–Normal breathing obtained using breathing sensor 

 

Figure 7 presents a comparison of the filtered breathing pattern obtained using S-band sensing 
technique with that recorded using a breathing sensor. The filtered breathing patterns shown in Figures 
6(b) and 7(b) indicate that over the period of 60 seconds, a total number of 10 breathing cycles were 
obtained. This comparison also helps to select the specific frequency for detection. It establishes the 
ability of S-band sensing to successfully record a clear breathing pattern. 

To analyze the accuracy of S-band sensing technique, the Sine function fitting algorithm is used to 
compare the results of the two detecting methods in Fig. 8. The S-band sensing technique has observed 
10 complete breathing cycles. Value of ω is 4.989e-05 for S-band technique, which is equal to b1. 
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(a) Normal breathing obtained using S-band sensing technique.  

(b) Normal breathing obtained using breathing sensor. 
Figure 8–Sine function fitting for normal breathing.  

 

 

Sine function fitting results for the respiratory sensor in Figure 8(b) also have 10 complete breathing 
cycles with ω = 5.032e-05, which is equal to b1. Comparing the two observations, regardless of intuitive 
or calculated results, the observations of detecting normal breathing have close agreement. This show 
that S-band sensing technique and the designed measurement system has a good ability to detect 
breathing patterns. 

B. Sleep Apnea Detection 

Acquisition of the data is in-line with the benchmark study for this part of the experiment. Raw 
wireless channel information is obtained with the human subject lying straight. The subject first breathes 
normally, then stops breathing for a while to mimic sleep apnea episode and then starts breathing 
normally again. Figure 9 illustrates the raw data for this experiment in 3-D.  
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Figure 9–Raw data recorded for Hypopnea syndrome. 
 

Figure 10 shows the breathing pattern observations taken through the respiratory sensor for 120 
seconds duration. The results indicate that the subject is breathing normally from 0 to 52 seconds. A 
constant level in amplitude for the next 26 seconds (from 52nd second to 78th second) reflects that the 
subject is experiencing a sleep apnea episode. A normal breathing pattern can be observed from the 78th 
second onward as the apnea episode is over.  

 

 

Figure 10–Sleep apnea detection using breathing sensor. 
 

S-band sensing results are then analyzed for the sleep apnea measurements. Response for all of the 30 
subcarriers is analyzed as shown in Figure 9. Figure 11(a) shows the raw variances of amplitude 
information for subcarrier # 30 over a period of 120 seconds. The fluctuation of wireless channel 
information data from 0 dB to 8 dB indicates the breathing pattern but a sleep apnea episode is not present 
as clearly as shown in Figure 10. To reduce the impulse noise, the median filter is applied obtaining a 
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clear sleep apnea episode from 52nd second to 78th second. This close agreement between the output of 
the respiratory sensor and S-band sensing further establishes the working of the proposed method as an 
efficient alternative.   

 

 
Figure 11 – Variances of amplitude for sleep apnea episode at subcarrier 30. 

 

As shown in Figure 10, the breathing waveform can be approximated as a periodic sinusoidal wave. 
Hence, the number of the peaks of these sinusoidal waves determines their periodicity and their peak 
locations ascertain sleep apnea. Thus, we choose peak detection to monitor occurrence of the sleep apnea. 

Standard peak detection algorithm is that the maximum is labeled as a peak for every set of three points. 
For sleep apnea detection, we introduced used two changes. First is to set a threshold on the minimum 
distance between two consecutive peaks. Since the maximal breathing frequency in an adult human is 18 
breaths/min, we set a conservative threshold of 3.3 seconds. Second is to set a threshold on the minimum 
amplitude at which a peak is detected. 
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(a)Breathing pattern obtained using S-band sensing technique.  

(b)Breathing pattern obtained using breathing sensor. 
Figure 12 – Sleep apnea detection using peak detection algorithm. 

Figure 12 shows that peak detection algorithm identifies correct peaks and the pause times. There are 
14 peaks and one apnea in breathing pattern obtained using the S-band sensing technique. Also, the pause 
times are more than 10 seconds. The results agree excellently with that obtained using the respiratory 
sensor. 
 

IV. CONCLUSION 

A novel contactless monitoring system for breathing pattern observation and sleep apnea detection is 
presented in this paper. The proposed technique is based on S-band sensing system in an indoor 
environment and makes use of wireless channel information to observe breathing patterns and identify 
small changes in the channel response due to the chest movements caused by breathing abnormalities. 
The proposed system utilizes the median filtering to eliminate impulse noise in the observed data. A 
detailed measurement campaign is carried out to obtain the breathing pattern of a normal breathing 
human subject using S-band sensing technique and a standard respiratory sensor simultaneously to 
compare and establish the working of the proposed technique in benchmark study. Sine function fitting 
algorithm is used to analyze the detected results. A close agreement between the two results has 
established the accuracy of the proposed method. The proposed technique is then used to detect 
Hypopnea syndrome successfully. Similar peaks and pause times using peak detection algorithm 
observed for the S-band sensing and respiratory sensor for sleep apnea has further established the ability 
and accuracy of the proposed technique for Hypopnea syndrome detection. The experimental have shown 
that the proposed S-band sensing is an efficient alternative to traditional Hypopnea syndrome detection 
methods with added features of contactless, and patient friendly system exhibiting sufficiently high 
precision with good potential of early-warning Hypopnea syndrome detection for both clinical and home 
settings. 
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