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Diagnosis of Three-Phase Electrical Machines Using
Multidimensional Demodulation Techniques

Vincent Choqueuse, Member, IEEE, Mohamed El Hachemi Benbouzid, Senior Member, IEEE,
Yassine Amirat, and Sylvie Turri

Abstract—This paper deals with the diagnosis of three-phase
electrical machines and focuses on failures that lead to sta-
tor-current modulation. To detect a failure, we propose a new
method based on stator-current demodulation. By exploiting the
configuration of three-phase machines, we demonstrate that the
demodulation can be efficiently performed with low-complexity
multidimensional transforms such as the Concordia transform
(CT) or the principal component analysis (PCA). From a practical
point of view, we also prove that PCA-based demodulation is
more attractive than CT. After demodulation, we propose two
statistical criteria aiming at measuring the failure severity from
the demodulated signals. Simulations and experimental results
highlight the good performance of the proposed approach for
condition monitoring.

Index Terms—Condition monitoring, electrical machines, prin-
cipal component analysis (PCA), signal processing.

I. INTRODUCTION

THREE-PHASE electrical machines such as induction mo-

tors or generators are used in a wide variety of applica-

tions. To increase the productivity and to reduce maintenance

costs of these systems, condition monitoring and diagnosis

are often desired. A wide variety of condition monitoring

techniques have been introduced over the last decade. Among

them, motor current signature analysis (MCSA) [1] has several

advantages since it is usually cheaper and easier to implement

than other techniques. In steady-state configurations, MCSA

based on stationary spectral analysis techniques is commonly

used (fast Fourier transform (FFT) and multiple-signal clas-

sification [2]). However, in practice, the steady-state assump-

tion is often violated due to nonconstant-supply-frequency or

adjustable-speed drives. In these situations, several authors

have investigated the use of nonstationary techniques such as

time–frequency representations [1], [3]–[6], time-scale analysis

[7]–[10], and polynomial-phase transform [11] (see [12] for a
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more complete review). The main drawback of these methods

relies on their computational complexity. Furthermore, these

representations usually suffer from poor resolution and/or ar-

tifact (cross terms, aliasing, etc.), which can lead to misleading

interpretations.

Other investigations on machine modeling have recently

demonstrated that many types of failure lead to stator-current

modulation with a modulation index which is directly pro-

portional to the failure severity [5], [13]–[17]. In particular,

it has been proved that load torque oscillations lead to stator-

current phase modulation (PM) [9], [13]–[15], whereas air-gap

eccentricity and rotor asymmetry lead to stator-current ampli-

tude modulation (AM) [5], [14]. Therefore, a straightforward

technique to monitor the behavior of an electrical machine is

based on stator-current demodulation.

Classical demodulation techniques include the square-law

demodulator, the Hilbert transform (HT) [18], the energy sep-

aration algorithm [19], and other approaches. Applications to

failure detection are available in [7], [14], and [20]–[27]. Inter-

estingly, for a balanced system, it has been shown in [14], [21],

[22], [24], and [28] that the Concordia transform (CT), which

has been used for failure detection purposes in [14], [21]–

[24], and [28]–[38], can also be interpreted as a demodulating

tool. As compared to classical demodulation tools, CT exhibits

interesting properties such as lower complexity and lack of end

effect problems or other artifacts [28]. However, in practice, this

approach can lead to poor performance since a real machine

usually presents a small degree of imbalance [22].

Once the demodulation has been performed, demodulated

signals must be further analyzed to measure failure severity.

In the literature, many criteria and/or techniques have been

proposed to perform this task. In [14], [21], [22], [24], [25],

and [29], failure severity is measured through statistical criteria.

However, these criteria require knowledge of the fault frequen-

cies, which also depend on other parameters (speed or slip

information). To overcome this problem, more sophisticated

approaches have been proposed for failure detection. These

include neural networks [31], [36], [39], Bayesian classifiers

[23], fuzzy logic classifiers [33], [36], genetic algorithms [38],

and other classifiers [34]. However, these approaches are com-

putationally demanding, and their performances highly depend

on the representativeness of the training set.

In this paper, we address the condition monitoring problem

from a signal processing point of view. As failure severity is

proportional to the modulation index, we propose to use the

modulation-index estimate as a failure severity indicator. The

proposed approach is composed of two steps: a stator-current

0278-0046/$26.00 © 2011 IEEE
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Fig. 1. Block diagram of the proposed technique. Symbols ik(t) (k =
1, 2, 3) correspond to the stator currents, |a(t)| and f(t) correspond to the

instantaneous amplitude and frequency, and m̂ corresponds to the modulation-
index estimate.

amplitude/frequency demodulation followed by a modulation-

index estimation. These steps are described in Fig. 1. To

perform demodulation, we propose to exploit the multidimen-

sional nature of three-phase systems through low-complexity

linear transforms. Then, we propose to estimate the modula-

tion indexes from the demodulated signals with two original

estimators.

This paper is organized as follows. Section II describes the

signal model of the stator current under healthy and faulty

conditions. Section III investigates the use of CT and princi-

pal component analysis (PCA) to perform multidimensional

current demodulation, and Section IV describes the proposed

failure severity criteria. Finally, Section V reports on the per-

formance of the proposed approach with synthetic and experi-

mental signals.

II. SIGNAL MODEL

In the presence of a fault, it has been shown in [5], [13],

[14], and [16] that the stator current is amplitude modulated

and/or phase modulated. For AM and/or PM, the instantaneous

amplitude a(t) and phase φ(t) can be expressed respectively as

a(t) = α (1 + ma cos(2πfat)) (1)

φ(t) = 2πf0t + mφ sin(2πfφt) (2)

where α is a scaling coefficient, f0 is the supply current

frequency, and fa (fφ) is the AM (PM) modulating frequency.

The scalars ma and mφ correspond to the AM and PM indexes,

respectively. For a faulty system, the modulation indexes are

directly proportional to the failure severity. In particular, with-

out any fault, the instantaneous amplitude and frequency do not

vary with time, i.e., ma = mφ = 0.

Let us consider a three-phase system. In the presence of a

fault, all three line currents i1(t), i2(t), and i3(t) are simulta-

neously modulated, and the currents can be expressed as

i1(t) = a(t) cos (φ(t)) (3a)

i2(t) = a(t) cos (φ(t) − 2π/3) (3b)

i3(t) = a(t) cos (φ(t) + 2π/3) . (3c)

In the literature, most studies assume a perfect balance

configuration. However, healthy electrical systems are rarely

perfectly balanced. Furthermore, the balance assumption usu-

ally does not hold when a failure introduces some asymmetry.

In this study, balanced and unbalanced three-phase systems are

considered. Let us denote s(t) = [s1(t), s2(t), s3(t)]
T the 3 ×

1 vector which contains the stator currents, where (·)T corre-

sponds to the matrix transposition. In this paper, we investigate

the two following systems.

1) A balanced three-phase system, where the stator currents

are given by

s(t) = i(t) = [i1(t), i2(t), i3(t)]
T . (4)

In particular, by using (3), one can easily verify that

s1(t) + s2(t) + s3(t) = 0.

2) A three-phase system with unbalanced currents, where

the stator currents are given by

s(t) = Di(t) = [α1i1(t), α2i2(t), α3i3(t)]
T

(5)

where D is a nonscalar 3 × 3 diagonal matrix which

contains the “nonequal” diagonal entries α1, α2, and α3.

Without loss of generality,1 we assume that the overall

energy of the system is conserved, i.e.,
∑3

k=1 α2
k = 3.

In this study, the modulation indexes are employed as failure

severity indicators. From a signal processing viewpoint, the

condition monitoring problem is therefore translated into an

estimation problem. One should note that the estimation of the

modulation indexes can be simplified by using a demodulation

preprocessing step. In the following, the demodulation is

performed by using a linear transformation of the stator

currents s(t).

III. AM/FM DEMODULATION USING

MULTIDIMENSIONAL TRANSFORM

In this section, we prove that the use of the three-phase

current can expedite the demodulation step. In particular, we

show that the CT and the PCA can be considered as low-

complexity techniques for current demodulation. Furthermore,

we demonstrate that the PCA has a larger domain of validity

than the CT.

A. CT

CT is a linear transform which converts the three-component

s(t) into a simplified system composed of two components.

By denoting y(c)(t) = [y
(c)
1 (t), y

(c)
2 (t)]

T
the two Concordia

components, CT can be expressed into a matrix form as

y(c)(t) =

[
y
(c)
1 (t)

y
(c)
2 (t)

]
=

√
2

3
Cs(t) (6)

where C is the 2 × 3 Concordia matrix which is equal to

C =

[ √
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

]
. (7)

One can verify that the Concordia matrix is an orthogonal

matrix since it satisfies CCT = I2, where I2 is a 2 × 2 identity

matrix.

1One should note that the overall energy can be absorbed into the coefficient
α in (1).
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By using (3), (4), and (6), it can be demonstrated that the

Concordia components of a balanced system are equal to

y
(c)
1 (t) = a(t) cos (φ(t)) a (8a)

y
(c)
2 (t) = a(t) sin (φ(t)) a. (8b)

These components y
(c)
1 (t) and y

(c)
2 (t) are called in-phase and

quadrature components in the signal processing community.

Let us define the complex signal z(c)(t) as

z(c)(t) = y
(c)
1 (t) + jy

(c)
2 (t). (9)

By using (8) and (9), one can verify that z(c)(t) is the ana-

lytical signal of s1(t), i.e., z(c)(t) = a(t)ejφ(t). Therefore, the

instantaneous amplitude and frequency can be obtained from

the modulus and the derivative of the argument of z(c)(t),
respectively, i.e.,

a(t) =
∣∣∣z(c)(t)

∣∣∣ (10a)

f(t) =
1

2π

d arg
[
z(c)(t)

]

dt
(10b)

where | · | and arg[·] correspond to the modulus and the argu-

ment, respectively. It is important to note that (10) only holds

for a balanced system, i.e., for s(t) = i(t).

B. PCA

PCA is a statistical tool that transforms a number of corre-

lated signals into a smaller number of principal components. In

[40], PCA is employed after a CT to detect a failure; however,

no mathematical analysis has been performed to give a physical

interpretation to the principal components. In [41], the PCA is

applied on the three-phase stator currents directly, but only two

principal components are extracted, without any mathematical

justification. In this section, we give a deep theoretical analy-

sis of PCA for balanced and (static) unbalanced three-phase

systems. We show why the PCA can be applied on the stator-

current signals directly. Furthermore, we demonstrate why the

PCA can only extract two principal components and why prin-

cipal components are strongly linked to in-phase and quadrature

components. Finally, as opposed to CT, we prove that the PCA

can be employed for signal demodulation whatever the balance

assumption.

Let us define the 3 × 3 covariance matrix as

Rs = E
[
s(t)sT(t)

]
(11)

where E[·] denotes the mathematical expectation. Using (3), one

can remark that i3(t)=−i1(t)−i2(t). Therefore, each compo-

nent of s(t) can be rewritten as a linear combination of the two

components i1(t) and i2(t) whatever the balance assumption.2

Using an eigenvalue decomposition, it follows that the 3 × 3

symmetric matrix Rx contains one zero eigenvalue. Therefore,

Rx can be decomposed under the following form:

Rs = UΛUT (12)

2For unbalanced systems, one can verify that s1(t) = α1i1(t), s2(t) =
α2i2(t), and s3(t) = −α3(i1(t) + i2(t)).

where U is a 3 × 2 orthogonal matrix (UTU = I2) containing

the two eigenvectors and Λ = diag(λ1, λ2) is a diagonal matrix

containing the two nonzero associated eigenvalues λ1 and λ2.

The two principal components of s(t), denoted y(p)(t) =

[y
(p)
1 (t), y

(p)
2 (t)]

T
, are given by

y(p)(t) =

[
y
(p)
1 (t)

y
(p)
2 (t)

]
= βsΛ

− 1

2 UTs(t) (13)

where βs is a scaling term which is equal to

βs =

√
trace[Rs]

3
(14)

with trace[·] being the sum of the diagonal elements. Using

(12) and (13), one can verify that the PCA components are

uncorrelated.

Under the assumptions that φ(t) is uniformly distributed in

[0 2π[3 and that a(t) and φ(t) are independent, it is demon-

strated in the Appendix that the PCA components are equal to

y
(p)
1 (t) = a(t) cos (φ(t) − θ) (15a)

y
(p)
2 (t) = a(t) sin (φ(t) − θ) (15b)

where θ ∈ Z whatever the balance assumption.

Let us define the complex signal z(p)(t) as

z(p)(t) = y
(p)
1 (t) + jy

(p)
2 (t). (16)

By using (15) and (16), one can verify that z(p)(t) is a ro-

tated version of the analytical signal of s1(t), i.e., z(p)(t) =
a(t)ejφ(t)−θ. Therefore, the instantaneous amplitude and fre-

quency can be obtained from the modulus and the derivative of

the argument of z(p)(t), respectively, i.e.,

a(t) =
∣∣∣z(p)(t)

∣∣∣ (17a)

f(t) =
1

2π

d arg
[
z(p)(t)

]

dt
. (17b)

As opposed to (10), it is interesting to note that (17) holds

whatever the balance assumption. Therefore, the PCA-based

demodulation is less restrictive than the Concordia one.

IV. MODULATION-INDEX ESTIMATION

After demodulation, the analytical signal and the instanta-

neous amplitude and/or frequency must be properly analyzed

to assess failure severity. Many papers propose to monitor the

deviation of the analytical signal z(t) from a circle in the com-

plex plane [29]–[32], [34]–[37], [40]. This solution is perfectly

valid if the failure leads to stator-current AM since the radius

|a(t)| varies with time. However, if the failure leads to PM,

this solution is no longer correct since the failure only affects

the rotational speed in the complex plane. In this section, we

propose to estimate the AM and PM indexes to assess the failure

severity. Using the demodulated signals, two original estimators

3From a decision viewpoint, the uniform probability density function (pdf)
for the phase represents the most ignorance that can be exhibited by the fault
detector. This is called the least favorable pdf for φ(t) [42].
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of the modulation indexes are provided. These estimators are

based on the method-of-moments (MoM) technique. Although

the MoM estimation technique has no optimal properties, it

produces an estimator that is easy to determine and simple to

implement [43].

A. Estimation of ma

Let us consider the AM signal model in (1). Under the

assumption that 2πfat(mod 2π) is uniformly distributed in

[0 2π[, it is demonstrated in the Appendix that the variance of

the instantaneous amplitude is given by

σ2
a = E

[
(a(t) − µa)2

]
=

µ2
am2

a

2
(18)

where µa = E[a(t)] is the statistical average of f(t). Therefore

ma =
σa

√
2

µa

. (19)

The corresponding MoM estimator, denoted m̂a, is obtained by

replacing the theoretical moments µa and σa by their natural

estimators.

B. Estimation of mφ

Let us consider the PM signal model in (2). Taking the

derivative of φ(t) leads to the instantaneous frequency, which

is equal to

f(t) =
1

2π

dφ(t)

dt
= f0 + mφfφ cos(2πfφt). (20)

Under the assumption that 2πfφt(mod 2π) is uniformly distrib-

uted in [0 2π[, it can be demonstrated that the variance of the in-

stantaneous frequency is (see the Appendix for a similar proof)

σ2
f = E

[
(f(t) − µf )2

]
=

m2
φf2

φ

2
(21)

where µf = E[f(t)] is the statistical average of f(t). Therefore

mφ =
σf

√
2

fφ

. (22)

The corresponding MoM estimator m̂φ is obtained by replacing

the theoretical moments by their natural estimators. One should

note that the criterion mφ depends on the modulating frequency

fφ. If this frequency is unknown, it can be replaced by its

estimate f̂φ. This estimate can be obtained, for example, by

maximizing the periodogram of f(t) [44], [45].

V. PERFORMANCES

This section reports on the performances of the proposed ap-

proaches. Experiments were performed with a supply frequency

equal to f0 = 50 Hz. Signals were sampled with a sampling

period of Ts = 10−4 s, and the proposed technique was ap-

plied offline in Matlab. For discrete signals, a straightforward

adaptation of the proposed techniques is given by Algorithms 1

and 2, respectively. As compared to the continuous case, s(t) is

replaced by its discrete counterpart s[n] = s(nTs), where Ts is

the sampling period and n = 0, 1, . . . , N − 1. Furthermore, the

instantaneous frequency is approximated by replacing the phase

derivative with a two-sample difference,4 and the statistical

moments are replaced by their natural estimators. In particular,

f(n), Rs, ma, mf , σ2
a, and σ2

f are respectively given by

f(n) =
arg [z(n)] − arg [z(n − 1)]

2πTs

(23)

R̂s =
1

N

N−1∑

n=0

s[n]sT[n] (24)

µ̂a =
1

N

N−1∑

n=0

a[n] (25)

µ̂f =
1

N

N−1∑

n=0

f [n] (26)

σ̂2
a =

1

N

N−1∑

n=0

(a[n] − µ̂a)2 (27)

σ̂2
f =

1

N

N−1∑

n=0

(f [n] − µ̂f )2 . (28)

The next sections present the performances of the proposed al-

gorithms with synthetic and experimental signals, respectively.

Algorithm 1 Concordia-based failure severity criteria

1) Extract N -data samples s[n].
2) Compute y(c)[n] with (6).

3) Compute the analytical signal z(c)[n] with (9).

4) Extract the AM demodulated signal a[n] with (10a).

5) Extract the FM demodulated signal f [n] with (23).

6) Compute m̂a with (19), (25), and (27).

7) Compute m̂φ with (22), (26), and (28).

Algorithm 2 PCA-based failure severity criteria

1) Extract N -data samples s[n].
2) Compute Rs with (24).

3) Perform eigenvalue decomposition of Rs as in (12).

4) Compute βs with (14).

5) Compute y(p)[n] with (13).

6) Compute the analytical signal z(p)[n] with (16).

7) Extract the AM demodulated signal a[n] with (17a).

8) Extract the FM demodulated signal f [n] with (23).

9) Compute m̂a with (19), (25), and (27).

10) Compute m̂φ with (22), (26), and (28).

A. Synthetic Signals

Synthetic signals s(n) were simulated by using the signal mod-

el in (3). Analysis of the algorithm performances with amplitude-

and phase-modulated signals is investigated independently.

4Before subtraction, a phase unwrapping operation must be applied to avoid
phase jumps between consecutive elements.
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Fig. 2. AM demodulated signals for a healthy (ma = 0) and a faulty (ma =
0.5) balanced system.

Fig. 3. AM demodulated signals for a healthy (ma = 0) and a faulty (ma =
0.5) unbalanced system.

1) AM: Let us consider a discrete AM signal a[n] with a

modulating frequency equal to fa = 10 Hz, i.e.,

a[n] = 1 + ma cos(20πnTs) (29)

where ma is the modulation index. Figs. 2 and 3 show the

demodulated signal â[n] obtained with the Concordia and the

PCA transform for balanced (αk = 1) and unbalanced sys-

tems (α1 = 1.323, α2 = 0.5, and α3 = 1), respectively. De-

modulated signals are displayed for ma = 0 and ma = 0.5. In

Fig. 2, one can note that both algorithms perform well since

demodulation is near perfect. However, for the unbalanced

system, PCA clearly outperforms CT since the latter exhibits

interference terms which can lead to misleading interpretations.

Table I presents the values of m̂a, m̂φ, and γ for ma = 0 and

ma = 0.5. As expected, one could observe that the CT-based

algorithm leads to a perfect modulation-index estimate for the

balanced system (m̂a = ma and m̂f = 0) but leads to incorrect

results for the unbalanced case (m̂a �= ma and m̂φ �= 0). As

opposed to the CT algorithm, the PCA algorithm leads to a

perfect estimation whatever the balance assumption.

TABLE I
FAULTY SYSTEM LEADING TO STATOR-CURRENT AM.

FAILURE SEVERITY CRITERIA m̂a AND m̂φ FOR

HEALTHY (ma = 0) AND FAULTY (ma = 0.5) SYSTEMS

Fig. 4. FM demodulated signals for a healthy (mφ = 0) and a faulty (mφ =
0.4) balanced system.

Fig. 5. FM demodulated signals for a healthy (mφ = 0) and a faulty (mφ =
0.4) unbalanced system.

2) PM: Let us consider a discrete PM signal φ[n], with a

modulating frequency equal to 10 Hz, i.e.,

φ[n] = 2πf0nTs + mφ sin(20πnTs) (30)

where mφ is the modulation index. Figs. 4 and 5 show the

instantaneous frequency f [n] extracted with the Concordia

and the PCA transform for healthy (mφ = 0) and faulty

(mφ = 0.4) systems. As expected, PCA-based demodulation

clearly outperforms the CT-based one since it gives perfect
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TABLE II
FAULTY SYSTEM LEADING TO STATOR-CURRENT PM.

FAILURE SEVERITY CRITERIA m̂a AND m̂φ FOR

HEALTHY (mφ = 0) AND FAULTY (mφ = 0.4) SYSTEMS

Fig. 6. Mechanical part of the experimental setup. Faulty machines are
simulated with artificially deteriorated bearings [36].

demodulation whatever the amount of current imbalance.

Table II presents the values of the modulation-index estimates.

For the balanced system, one can observe that the two

techniques give perfect results since m̂φ = 0.4. However, for

the unbalanced case, Table II shows that the CT-based approach

leads to incorrect results and makes the fault detection more

difficult.

B. Experimental Signals

The experimental setup is composed of a tachogenerator, a

three-phase squirrel-cage induction motor, and a car alternator

(see Fig. 6). The parameters of the induction motor are as fol-

lows: 0.75 kW, 220/380 V, 1.95/3.4 A, 2780 r/min, 50 Hz, and

two poles. The tested motor has two 6204.2ZR-type bearings.

The outside bearing diameter is 47 mm, and the inside one is

20 mm. Assuming the same thickness for the inner and the

outer races leads to a pitch diameter equal to DP = 31.85 mm.

The bearing has eight balls (N = 8) with a diameter equal to

DB = 12 mm. The experimental tests have been performed

with healthy and faulty bearings (inner race deterioration) under

different motor load conditions [36].

As the faulty bearing introduces PM [15], the instantaneous

frequency contains most of the information about the fault.

Fig. 7 shows f [n] for healthy and faulty machines at a 300-W

load condition. Additional processings show that the fault fre-

quency is equal to fφ = 300 Hz whatever the load condition.

Table III presents the values of the proposed criteria m̂a and m̂f

when the motor operates under different motor load conditions.

From Table III, one can observe that the faulty bearings both

increase m̂a and m̂φ. One can also note that m̂a �= 0 for the

healthy and faulty bearings. Indeed, signal s[n] is not perfectly

sinusoidal and is composed of a small amount of AM even for

the healthy bearing.

Comparing Algorithms 1 and 2, one can easily verify that

the PCA-based criteria outperform the Concordia-based ones

Fig. 7. FM demodulated signals for the healthy and faulty machines (bearing
fault) with 300-W load.

TABLE III
EXPERIMENTAL RESULTS WITH THE HEALTHY AND FAULTY BEARINGS.

DEMODULATION USING THE CONCORDIA OR THE PCA TRANSFORM

whatever the motor load. Indeed, in all experiments, healthy

and faulty bearings are easier to distinguish with the PCA-based

criteria. In particular, at a 200-W load motor condition, a faulty

bearing leads to an increase in m̂φ of 286% for Algorithm 1

and 340% for Algorithm 2. These results come from the fact

that experimental signals contain a small amount of current

imbalance, which makes PCA better suited than CT for current

demodulation.

To compare the proposed approach with a conventional

demodulation technique, Table IV presents the values of m̂a

and m̂φ obtained with an HT. The comparison of Table IV

with Table III shows that the bearing fault is easier to detect

with the criterion m̂φ presented in Table III. Therefore, in our

context, the multidimensional demodulation techniques seem to

be better suited than the conventional HT. The differences can

be explained by the intrinsic limitations of the HT: First, the do-

main of validity of this transform is restricted by the Bedrosian

theorem [28]; then, the instantaneous amplitude and frequency

obtained with HT can present overshoots at both ends [26].

Another advantage of the CT and PCA techniques over HT

lies in the computational complexity. CT and PCA are linear

transforms; therefore, they are simpler to implement than HT,

which involves FFT and inverse FFT computations.
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TABLE IV
EXPERIMENTAL RESULTS WITH HEALTHY AND FAULTY

BEARINGS. DEMODULATION USING HT

VI. DISCUSSION

A standard approach for signal demodulation is based on

the extraction of the analytical signal. An analytical signal is

usually extracted from the HT for a monodimensional signal. In

the case of balanced three-phase systems, the previous sections

have shown that the analytical signal can be efficiently extracted

with the CT or PCA. These transformations have several advan-

tages over HT: First, they are simpler to implement; then, they

are free from signal artifacts (overshoots).

The main drawback of CT relies on its domain of validity.

Indeed, for an unbalanced system, this transform cannot be

employed for current demodulation. On the contrary, the PCA

transform, which is a data-driven approach, is well suited for

an unbalanced system. Another interesting property of PCA

relies on the fact that it can easily measure the amount of static

imbalance. Indeed, (40) shows that the eigenvalues of Rs are

equal for balanced systems, i.e., λ1 = λ2. For unbalanced sys-

tems, this property does not hold, and λ1 �= λ2. Therefore, an

equality test can be employed to distinguish between balanced

and unbalanced systems. This strategy has been previously

employed to detect stator winding faults in [41], and an

ad hoc criterion has been proposed to perform the equality

test. Interestingly, this equality test is well known in the signal

processing community and refers to a “sphericity test” [46].

In the field of multidimensional signal processing, another

popular technique is the independent component analysis (ICA)

[47]. Whereas PCA focuses on correlation (i.e., second-order

statistics), the ICA focuses on statistical independence, a

stronger property, which is usually measured through higher

order statistics. Therefore, it can be tempting to use ICA to

improve the performance of the proposed method. However, in

our study, it can be proved that the ICA is useless. Indeed, most

of the ICA algorithms are composed of two steps: a PCA pre-

processing step followed by a demixing step. After the PCA, the

demixing step searches for an orthogonal matrix that maximizes

the statistical independence of the PCA components. Neverthe-

less, in our context,5 multiplying yp(t) with a 2 × 2 orthogonal

matrix only modifies the value of θ in (15). As θ does not affect

a[n] and f [n], the demixing step is useless, and the algorithm

can therefore be limited to a PCA transform for demodulation.

5The formal proof can be derived from (42) and (43).

VII. CONCLUSION

This paper has focused on condition monitoring of three-

phase electrical systems. A new method based on the amplitude

and phase demodulation of the three-phase stator current with

linear transforms has been proposed. The performances of two

linear transforms have been investigated: the CT and the PCA.

Based on a deep theoretical analysis, it has been proved that the

PCA has a larger domain of validity than CT since it can deal

with unbalanced currents.

Then, two original criteria have been described to assess

the failure severity from the demodulated current. The per-

formances of the proposed criteria have been corroborated by

means of simulations with synthetic and experimental signals.

In particular, the results have shown that the PCA-based de-

modulation outperforms the Concordia-based one since it can

be employed for unbalanced stator currents.

APPENDIX

Let us compute the correlation matrix Ri = E[i(t)iT(t)] for

a balanced system. Using (3) and under the assumption that a(t)
and φ(t) are independent variables, one gets for all u = 1, 2, 3
and v = 1, 2, 3

E [iu(t)iv(t)] = E
[
a2(t)

]
Euv (31)

where

Euv = E [cos (φ(t) + ψu) cos (φ(t) + ψv)] (32)

with ψ1 = 0, ψ2 = −2π/3, and ψ3 = 2π/3. Let us assume that

the random variable x = φ(t) is distributed in [0, 2π[ according

to a uniform pdf, i.e., f(x) = 1/2π if x ∈ [0, 2π[ and f(x) = 0
if elsewhere. It follows that

Euv =E [cos (φ(t) + ψu) cos (φ(t) + ψv)]

=

+∞∫

−∞

cos(x + ψu) cos(x + ψv)f(x) dx

=
1

2π

2π∫

0

cos(x + ψu) cos(x + ψv) dx. (33)

Using trigonometric identities and some simplifications, one

can verify that

Euv =
1

2
cos(ψu − ψv). (34)

Therefore, it follows that

E [iu(t)iv(t)] =

(
E

[
a2(t)

]

2

)
cos(ψu − ψv). (35)

Finally, one gets

Ri =
E

[
a2(t)

]

2




1 − 1

2 − 1
2

− 1
2 1 − 1

2

− 1
2 − 1

2 1



 . (36)

One can also verify that

β2
i = trace[Ri]/3 = E

[
a2(t)

]
/2. (37)
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Using these equations and the definition of the Concordia

matrix in (7), one can verify that

Ri =
3

2
β2

i C
TC. (38)

Next, using an eigenvalue decomposition, Ri can also be

decomposed as

Ri = UΛUT (39)

where U is a 3 × 2 orthogonal matrix (UTU = I2) containing

the two eigenvectors and Λ = diag(λ1, λ2) is a diagonal matrix

containing the two nonzero associated eigenvalues λ1 and λ2.

By identifying (38) and (39), one gets

U = (WC)T (40a)

Λ =
3β2

i

2
I2 (40b)

where W is a 2 × 2 orthogonal matrix, i.e., WTW =
WWT = I2. This orthogonal matrix comes from the fact that

the eigenvalue decomposition is not unique.

Using (40) in (13), one gets

y(p)(t) =βiΛ
− 1

2 UTi(t)

=W

(√
2

3
Ci(t)

)
= Wy(c)(t). (41)

As W is a 2 × 2 orthogonal matrix, W = {W1(θ),W2(θ)},

where θ ∈ R and

W1(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(42a)

W2(θ) =

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
. (42b)

As y(c)(t) = [a(t) cos(φ(t)), a(t) sin(φ(t))]T, it can be shown,

using trigonometric identities, that

W1(θ)y
(c)(t) =

[
a(t) cos (φ(t) + θ)

a(t) sin (φ(t) + θ)

]
(43a)

W2(θ)y
(c)(t) =

[
a(t) cos (φ(t) − θ)

a(t) sin (φ(t) − θ)

]
. (43b)

Therefore, without loss of generality, the PCA components can

be expressed as

y
(p)
2 (t) = a(t) cos (φ(t) − θ) (44a)

y
(p)
1 (t) = a(t) sin (φ(t) − θ) . (44b)

Let us consider an unbalanced system whose components are

given by s(t) = Di(t). Using an eigenvalue decomposition, the

covariance matrix, denoted Rs = E[s(t)sT(t)], can be decom-

posed as

Rs = E
[
s(t)sT(t)

]
= UdΛdU

T
d (45)

where Ud is a 3 × 2 orthogonal matrix and Λd is a 2 × 2 diag-

onal matrix. Using (5) and (39), Rs can also be expressed as

Rs =DRiD

=DUΛUTD (46)

where Ri = UΛUT is the covariance matrix for a balanced

system. By identifying (45) and (46), one gets

UdΛ
1

2

d = DUΛ
1

2 VT (47)

where V is a 2 × 2 orthogonal matrix. This matrix comes from

the fact that the equality UdΛdU
T
d = DUΛUTD is satisfied

for any orthogonal matrix V. Taking the inverse of the previous

equation leads to

Λ
− 1

2

d UT
d = VΛ− 1

2 UTD−1. (48)

Using these equations and (13), the PCA components of the

unbalanced system, denoted gd(t), can be expressed

y(p)(t) =βsΛ
− 1

2

d UT
d s(t) (49)

=βsVΛ− 1

2 UT
(
D−1s(t)

)
(50)

=V
(
βsΛ

− 1

2 UTi(t)
)

. (51)

Let us express βs with respect to βi. By using (5), (35), and the

normalization assumption (
∑3

k=1 α2
k = 3), one gets

βs = trace[Rs]/3

=
3∑

k=1

α2
kE

[
i2k(t)

]

3

=
E

[
a2(t)

]

2

(
1

3

3∑

k=1

α2
k

)
= βi. (52)

By using (41), (51), and (52), one can conclude that

y(p)(t) = V
(
βiΛ

− 1

2 UTi(t)
)

= VWy(c)(t). (53)

As V and W are orthogonal matrices, it follows that VW is

also an orthogonal matrix. Therefore,y(p)(t) can be expressed as

y(p)(t) = Wdy
(c)(t) (54)

where Wd = VW is a 2 × 2 orthogonal matrix. As (54) is sim-

ilar to (41), a similar development as in this Appendix leads to

y
(p)
2 (t) = a(t) cos (φ(t) − θ) (55a)

y
(p)
1 (t) = a(t) sin (φ(t) − θ) . (55b)

Let us consider the AM signal in (1). Let us also assume that

the random variable x = 2πfat(mod 2π) is distributed in [0 2π[
according to a uniform pdf, i.e., f(x) = 1/2π if x ∈ [0, 2π[ and

f(x) = 0 is elsewhere. Under this assumption, one gets

µa =E [a(t)]

=

2π∫

0

α (1 + ma cos(x)) f(x) dx

=α. (56)

Therefore, it follows that

σ2
a = E

[
(a(t) − µa)2

]
= µ2

am2
aE

[
cos2(x)

]
. (57)

Using (32) and (34), one gets E[cos2(x)] = 1/2. It follows that

σ2
a =

µ2
am2

a

2
. (58)
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