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Abstract 

Animal tuberculosis (TB) is a multi-host disease caused by members of the Mycobacterium tuberculosis complex (MTC). 
Due to its impact on economy, sanitary standards of milk and meat industry, public health and conservation, TB con-
trol is an actively ongoing research subject. Several wildlife species are involved in the maintenance and transmission 
of TB, so that new approaches to wildlife TB diagnosis have gained relevance in recent years. Diagnosis is a paramount 
step for screening, epidemiological investigation, as well as for ensuring the success of control strategies such as 
vaccination trials. This is the first review that systematically addresses data available for the diagnosis of TB in wildlife 
following the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The article 
also gives an overview of the factors related to host, environment, sampling, and diagnostic techniques which can 
affect test performance. After three screenings, 124 articles were considered for systematic review. Literature indicates 
that post-mortem examination and culture are useful methods for disease surveillance, but immunological diagnos-
tic tests based on cellular and humoral immune response detection are gaining importance in wildlife TB diagnosis. 
Among them, serological tests are especially useful in wildlife because they are relatively inexpensive and easy to 
perform, facilitate large-scale surveillance and can be used both ante- and post-mortem. Currently available stud-
ies assessed test performance mostly in cervids, European badgers, wild suids and wild bovids. Research to improve 
diagnostic tests for wildlife TB diagnosis is still needed in order to reach accurate, rapid and cost-effective diagnostic 
techniques adequate to a broad range of target species and consistent over space and time to allow proper disease 
monitoring.
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Introduction
Overview and importance of wild hosts

Animal tuberculosis (TB) is a globally distributed disease 

caused by members of the Mycobacterium tuberculosis 

complex (MTC), which can infect humans and a broad 

range of domestic and wild mammals [1]. TB is a highly 

relevant zoonosis, causing risk to public health and finan-

cial loss due to decreased production, obligatory slaugh-

ter of test-positive animals as well as cost of preventive 

measures. Moreover, it causes threat to conservation 

strategies in and around protected natural areas [1, 2]. 

Several wildlife species act as maintenance host, spill over 

host or host with unknown reservoir status depending 

on the region. In Europe, Eurasian wild boar (Sus scrofa) 

(Iberian Peninsula), red deer (Cervus elaphus) (Iberian 

Peninsula, Western Austria), fallow deer (Dama dama) 

(Iberian Peninsula) and European badger (Meles meles) 

(British Isles and Atlantic Spain) are regarded as main 

wildlife MTC reservoir hosts [2–5]. In Africa, wildlife 

reservoir hosts include common warthog (Phacochoe-

rus africanus) (South Africa), African buffalo (Syncerus 

caffer) (South Africa), lechwe antelope (Kobus leche) 

(South Africa) and Eurasian wild boar (North Africa) 

[6–8]. In addition, wild meerkats (Suricata suricatta) 

(South Africa), African elephant (Loxodonta africana) 

(South Africa), white rhinoceros (Ceratotheriumsimum) 

(South Africa), Nyala (Tragelaphus angasii) (South 

Africa), African lion (Panthera leo) (South Africa) and 

banded mongooses (Mungos mungo) (South Africa) are 

frequently affected with TB [9–13]. In North America, 

white-tailed deer (Odocoileus virginianus) (Michigan, 

Minnesota, Mexico), wood bison (Bison bison) (Canada) 

and elk (Cervus canadensis) (Canada) are the major wild-

life hosts identified [14]. In South America, the informa-

tion with regard to wildlife TB is scarce, even though 

there are some implications that Brazilian wild boar (Sus 

scrofa) (Brazil) plays a role as disease reservoir [15]. In 
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New Zealand, the Australian brushtail possum (Trichosu-

rus vulpecula) acts as primary wildlife reservoir host [16]. 

In Asia, the disease has been reported in many wild ani-

mal species, but there is considerable research gap on this 

area regarding the role of wildlife in MTC epidemiology. 

Generally, the above-mentioned species are the potential 

reservoir hosts in different continents. However, in some 

regions, disease is on the verge of eradication or infection 

rate has been considerably reduced due to the intensive 

diagnosis and prevention protocols [17].

Relevance of diagnosis in wildlife

Diagnosis in wildlife is (i) a prime step in disease con-

trol and management [18], but is also essential (ii) in the 

evaluation of surveillance strategies, (iii) in pathogenesis, 

epidemiological and transmission studies as well as (iv) in 

the assessment of the efficacy of vaccination trials [18–

20]. However, diagnosis in wildlife is challenging due to 

the wide taxonomic diversity, the capture and restraint 

difficulties inherent to wildlife collection of samples, fre-

quent lack of gold standard diagnostic techniques, lack 

of knowledge about the true infection status, difficulty in 

interpretation and conducting experimental studies, as 

well as limited financial resources [18]. Nevertheless, TB 

in wildlife is an active area of research.

Many studies have been carried out in order to overcome 

the problems associated with TB testing and surveillance 

in wildlife. �e lines of investigations include development 

of new diagnostic techniques like rapid tests [STAT PAK 

assay or Dual Path Platform (DPP) tests] [10, 21] or the 

modification of existing ones [21–25] in order to improve 

the diagnostic efficiency and accuracy in wildlife while 

remaining practical. Some reviews have addressed TB 

diagnosis in domestic animals and wildlife, underlining TB 

diagnostic techniques in the context of disease control and 

eradication [26–30], identifying some research gaps as well 

as the need of more reliable approaches for TB diagnosis 

in wildlife. �e present work is the first review that sum-

marizes data available from the currently applicable tech-

niques for TB diagnosis in wildlife, especially highlighting 

the immunological methods, by means of a systematic sys-

tem following the Preferred Reporting Items of Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines. We find 

that, while culture remains as the gold standard method 

despite its limited sensitivity (Se), there has been consider-

able progress in cellular and humoral immunological diag-

nostic tests for wildlife TB diagnosis. Serological tests are 

especially useful in wildlife because they are economically 

attractive, technically easy, enable large-scale surveillance 

and can be applied both in live or dead animals and, in the 

latter, in combination with pathology. In farmed wildlife, 

combinations of cellular and humoral tests could enhance 

diagnostic accuracy.
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Methods
�is study followed the PRISMA recommendations for 

systematic review reporting [31]. �e research question 

was: which are the studies available for diagnosis of TB 

in wild mammals, the influence of confounding factors 

on diagnostic accuracy as well as the attempts made with 

respect to the improvement in diagnosis?

Studies were ascertained through a systematic search 

including four electronic databases (SCOPUS, PubMed, 

Google Scholar, Google search) available until March 15, 

2020. We considered studies in wild mammals in which 

TB has been reported and we collected data using key 

elements. Search terms and key elements were combined 

with the Boolean operators (AND, OR, NOT), resulting 

in search algorithms which are shown in Additional file 1. 

�e reports obtained for this systematic review were sub-

jected to three screening phases as shown in Figure 1.

Results and discussion
A total of 336 articles were retrieved through search 

engines (196 by Scopus, 87 by Google scholar, 42 by Pub-

med and 11 by Google search). Seventy-four articles were 

removed in first screening and 47 articles were eliminated 

in second screening. Finally, 124 articles were considered 

for systematic review after third screening (Figure  1). 
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Figure 1 PRISMA (Preferred Reporting Items for Systematic review and Meta-Analysis) �owchart diagram showing identi�cation and 

records selection process of studies for the systematic review  (Adapted from Moher et al. [31]).
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lesions (TBL) (macroscopic or microscopic), identifi-

cation of the microorganism (microscopy/culture and 

isolation/molecular methods) and immunological meth-

ods (cell-mediated immune (CMI) and antibody-based 

tests). Different tests used for TB diagnosis are schemati-

cally represented in  Figure  2. �e tests can also easily 

be divided into two groups: tests detecting the pathogen 

(culture, molecular methods and microscopy) or tests 

focusing on host response (necropsy, histopathology and 

immunological methods). Major confounding factors are 

host, environment, habitat, management factors, prior 

sensitization, history of vaccination and other infections, 

sampling factors and technical factors related to diag-

nosis. �e strategies for improving diagnosis comprise 

selection of appropriate test, proper implementation and 

interpretation of the test as well as combination of differ-

ent tests for interpreting the results.

Principal methods of TB diagnosis

Ideally, a diagnostic test should need a small sample vol-

ume with simplicity in its collection and storage before 

performing the tests and it should be easy to carry out 

and interpret. It should also be relatively inexpensive, and 

with high Se and specificity (Sp). An overview of all diag-

nostic tests is shown in Additional file 2.

TB like lesions (TBL)

Presence of TBL is indicative of TB infection and is 

observed either macroscopically during post-mortem 

examination or microscopically during histopathological 

examination.

Post-mortem examination Post-mortem examination 

is the primary, sensitive and cost-effective method of dis-

ease surveillance [32]. �is examination can be performed 

on hunted/dead animals by macroscopic examination of 

lymph nodes (LNs), and thoracic and abdominal organs, 

especially lungs to assess the TBL [33]. TBL includes nod-

ular off-white lesions containing caseous material, which 

may be mineralized in the center and encapsulated by 

fibrous tissue [23, 34]. �e type, severity and place of the 

lesions can vary depending on the host, route of infection, 

stage of the disease as well as host–pathogen interaction 

[35, 36]. Hence, the severity of lesions is negatively associ-

ated with protection against disease, which is helpful in 

the studies related to the efficacy of vaccine experiments 

[35]. In general, the gross pathological lesions are “notice-

able” towards the advanced stages of the disease [23]. 

However, MTC infection can cause “latent” non-visible 

lesions in many wild animals, which result in a difficult 

diagnosis by post-mortem [31, 37]. In Eurasian badger, the 

majority of infections are latent and hence gross patho-

TB-like lesions
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Figure 2 Principal methods for diagnosis of wildlife tuberculosis. TB: tuberculosis; CMI: cell-mediated immunity; PCR: polymerase 
chain reaction; IGRA: interferongamma release assay; IP-10 assay: interferon gamma-inducible protein 10; LST: lymphocyte stimulation test; 
qRT-PCR:quantitative reverse-transcription polymerase chain reaction assay; ELISA: enzyme-linked immunosorbent assay; FPA:fluorescence 
polarization assay; MAPIA: multiantigen print immunoassay; IB: immunoblotting.
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logical examination provides limited diagnostic Se in this 

species [34]. Moreover, lesions sometimes are limited to 

non-classical sites like prescapular or popliteal LNs as 

a result of MTC transmission by bite wound [38]. �e 

gross TBL cannot be used as a confirmatory TB diagnosis 

because other non-tuberculous mycobacteria and patho-

gens other than mycobacteria (i.e. Corynebacterium pseu-

dotuberculosis) may cause indistinguishable macroscopic 

lesions [39]. Hence, post-mortem findings in combination 

with other diagnostic techniques would be more effective 

in detecting the disease [40].

Histopathological examination �e histological diag-

nosis involves pathological observation of the “classi-

cal tuberculous granuloma”, which consists of a circular 

lesion formed by cells of inflammatory nature such as 

macrophages, epithelioid cells, lymphocytes and in some 

species, Langhans multinucleated giant cells surround-

ing a central region of developing necrosis (“caseating 

tubercles”), although non-necrotizing granulomatous 

encapsulation may also be present [34, 37, 41]. Granu-

lomatous encapsulation with a fibrotic ring and mineral-

ized necrosis in the center is considered as a key factor for 

containing TB infection [42]. Histopathological examina-

tion is not 100% specific for detecting MTC infection due 

to the detection of similar lesions in other non-tubercu-

lous mycobacteria infections, therefore it requires com-

plementary techniques for confirmation [43]. Despite of 

that it has many advantages; among them are that focal/

latent lesions can be detected as well as different histo-

pathological studies have helped to discern target organs 

for sampling, i.e. tonsils and submandibular LNs in wild 

boar, mesenteric LNs in red deer or hepatic LNs in badg-

ers [34, 37].

Identi�cation of the microorganism

Identification of MTC organisms is a confirmatory 

method in TB diagnosis that can be performed by 

direct microscopy, culture or molecular methods for 

identification.

Microscopy Ziehl–Neelsen (ZN) staining is used to 

identify acid-fast bacteria, mainly mycobacteria, and can 

increase the reliability of TB diagnosis [44]. �is is a sim-

ple, rapid and economical method for the detection of 

mycobacteria, but it is not 100% specific due to the detec-

tion of other non-tuberculous mycobacteria [42]. Sam-

ples can be collected from a slaughtered/hunted animal 

or a live animal (samples of tracheobronchial washes). ZN 

staining is commonly used in histological sections which 

improves the diagnostic Se.

Immunofluorescence and immunohistochemistry 

include the staining of mycobacteria using monoclonal 

or polyclonal antibodies. �ese techniques provide more 

accurate results than acid fast staining [43], but they are 

laborious and less economical, along with the fact that 

sometimes polyclonal antibodies can give non-specific 

results due to cross-reactions with other non-tubercu-

lous mycobacteria [45].

Microbiological culture Culture of microorganism 

and identification are considered as the gold standard 

method for the diagnosis of TB in all wild animals [46]. 

It is employed as a post-mortem diagnostic method by 

collecting the samples especially from organs with TBL 

[19, 36] or pooled LN samples in case of non-visible TBL 

[28]. Culture from bronchoalveolar lavage (BAL)/tracheal 

washing can be used for ante-mortem diagnosis in some 

wild animals like lion [13], badger [43] and wild meerkat 

[9]. However, Se can be variable due to the lack of active 

shedding of the microorganism from infected animals and 

hence the absence of mycobacteria in the collected sample 

[47]. In addition, the decontamination step prior to MTC 

culture can adversely affect the viability of mycobacteria, 

especially when the number of viable microorganisms is 

low, and it may, therefore, lead to false negative results in 

the culture [24]. In elephants, trunk wash culture is the 

officially recommended ante-mortem diagnostic test in 

USA [10], but the contamination by other pathogens is a 

major problem [48]. �e Se of culture and isolation varies 

depending on the stage of the disease (latent or notice-

able), the number and selection of tissues processed 

and on the sample quality [49]. Culture is expensive, 

time-consuming and requires biosafety level 3 labora-

tories [49]. However, live sampling is highly relevant, as 

it is important to detect the excretion of pathogens and 

thereby determine the possibility of transmission (con-

tinuous studies are possible with re-sampling). It is also 

important for determining the infection rate before and 

after applying control methods like vaccination as well as 

to detect the safety of vaccine [19, 30]. Identification of 

the microorganism after cultural isolation can be done by 

colony characteristics, biochemical tests or nucleic acid 

recognition methods [50]. Moreover, culture is performed 

on specific medium which supports the confirmation that 

the bacteria is from the MTC.

Molecular identification Nucleic acid recognition meth-

ods can be applied using DNA extracted directly from tis-

sue or clinical samples (not blood) or from the growing 

colonies. DNA extraction from growing colonies is more 

efficient since growing colonies usually contain higher 

bacterial load (approximately more than 50 colony form-

ing units (CFU)/g) and are also usually less contaminated 

than tissues or clinical samples, which facilitates the 

extraction. �e diagnosis of MTC by direct polymerase 
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chain reaction (PCR) is fast and highly sensitive, show-

ing great value in epidemiological studies [51] and, it is 

highly useful to reach immediate treatment decisions in 

some species [48]. �e test has variable Se due to absence 

of organism in collected sample, which in turn depends 

on many factors like stage of disease, intensity of infection 

etc. Sample quality is a major factor regarding test result 

because presence of DNAases can degrade DNA result-

ing in false negative result. Moreover PCR requires costly 

reagents and equipment [48, 51].

Another nucleic acid recognition method is genotyp-

ing, which comprises spoligotyping, deep sequencing, 

Restriction Fragment Length Polymorphism (RFLP) and 

Mycobacterial Interspersed Repetitive Units-Variable 

Number of Tandem Repeats (MIRU-VNTR) analysis 

[52]. Genotyping can also be used to discriminate dif-

ferent members and strains of MTC species, to elucidate 

transmission patterns, to perform large-scale molecular 

epidemiological studies [53] or to detect outbreaks and 

their sources by MIRU-VNTR [54].

Tests based on immune response

�e immunological TB diagnosis is based on CMI and 

humoral mediated diagnostic tests using different anti-

gens. �e main antigen used in diagnostics is bovine 

tuberculin or bovine purified protein derivative (bPPD), 

which is a combination of proteins extracted from M. 

bovis. Another antigen used in diagnostics is lipoara-

binomannan (LAM), which is a glycolipid as well as a 

virulence factor associated with MTC [55]. �e specific 

antigens used in TB diagnosis include proteins from M. 

bovis MPB83 and MPB70, which are homologous pro-

teins within MTC members, but have difference in elec-

trophoretic mobility and isoelectric point [56], early 

secretory antigenic target-6  kDa (ESAT-6) and culture 

filtrate protein-10  kDa (CFP-10), which are virulence 

proteins of MTC absent in most of the non-tuberculous 

mycobacteria and M. bovis Bacillus Calmette Guerin 

(BCG) [57], and cell wall proteins like Rv3615c and 

Rv3020c, absent in most of the non-tuberculous myco-

bacteria and M. bovis BCG [58]. �e antigen (Ag) 85A 

is a secretory protein of M. tuberculosis and BCG, but it 

does not have much relevance in diagnosis of animal TB 

[20]. �e P22 antigen is a recently immunopurified pro-

tein complex from bPPD comprising mainly the proteins 

MPB70, MPB83, ESAT-6 and CFP-10 [59]. �e details in 

immunological techniques used for TB diagnosis of wild-

life are listed in Tables 1, 2, 3, 4, 5, 6, 7 and 8.

CMI based diagnostics Cell mediated immunity based 

diagnostic tests are based on the type IV or delayed hyper-

sensitivity in which sensitized T cells produce cytokines, 

mainly interferon gamma (IFNγ), interleukin-2 (IL-2) and 

IL-16, as well as chemokines resulting in mast cell degran-

ulation and production of histamine [60]. �ey are mainly 

used to detect initial stages of the disease.

Skin test

Skin test is an ante-mortem TB diagnostic test that is 

not usually applicable to wildlife due to the need to han-

dle animals twice over a 2–3  day interval [61]; however 

it can be used in some captive wildlife and zoo animals. 

Generally, the test involves the intradermal inoculation 

of tuberculous antigen (mostly bPPD) and measuring 

the skin thickness after 72 h, which is called single intra-

dermal tuberculin skin test (SIT). Another type of skin 

test is single comparative intradermal tuberculin skin 

test (SCITT) in which avian purified protein derivative 

(aPPD) is also used in addition to bPPD in order to avoid 

non-specific reaction of Mycobacterium avium complex 

(MAC) [22]. �e optimum time for second reading of 

skin test is 72 h [21]. Skin testing is relatively less expen-

sive, but it does not support differentiation of infected 

and vaccinated animals (DIVA) testing. Skin test has 

been tested in different wild animal species with varying 

level of diagnostic accuracy. Sites of inoculation also dif-

fer depending on the species assayed, like neck region in 

deer [21], lion [62], nyala [12] and African buffalo [63]; 

chest wall over the posterior rib cage in badger [64]; 

caudal fold (caudal fold test-CFT) in elephant [65] and 

African buffalo [66]; inguinal region in wild boar [22]; or 

caudal part of the ear in warthog and pygmy hippopota-

mus [8, 67]. In cattle, the interpretation of SIT is based 

on the scoring of reactions higher than 4 mm as standard 

reactor, higher than 2 mm and less than 4 mm as incon-

clusive reactor and less than 2 mm as negative reactor. In 

SCITT, any animal with a skin fold increase greater than 

2 mm to bPPD and bPPD > aPPD (at least 1 mm) is con-

sidered as TB reactor [13, 68].

�is method is the official ante-mortem test in farmed 

deer as approved by Office international des epizooties 

(OIE) [69]. In wild bovid species like African buffalo or 

Kafue lechwe, skin test is routinely used for diagnosis 

of TB as well as in test and slaughter programs [70, 71]. 

Even so, in many other species, this technique is less 

reliable or has less diagnostic accuracy or rather limited 

information is available. Black skin of many species of 

swine restricts the implementation of skin test [72]. �e 

test is not practical in pachyderm animals like elephant 

and rhinoceros [73]. In possum and badger, the test is not 

reliable due to the weak responses produced [74]. Gen-

erally, tuberculin skin test has some drawbacks including 

the need to handle the animals twice in a 72-h period and 

stress associated with this double handling which can 

influence the results [75], technical variability [76], low 

Sp [77] and reduced Se towards later stages of the disease 
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Table 1 Details of immunological diagnosis in Cervidae. 

Assay test Species N/E nSe + nSp Antigens Se (%) Sp (%) References

Skin test (SCITT) Red deer N + E 60 + 1157 bPPD, aPPD 91.4 98.7 [144]

Red deer N 218 bPPD, aPPD NE 46.9 [126]

Elk N 7 + 3 bPPD, aPPD 100 100 [145]

Reindeer E 13 + 4 bPPD, aPPD 92 25 [146]

White tailed deer N + E 60 + 56 bPPD, aPPD 97 81 [61]

Fallow deer N 21 bPPD, aPPD 80.1 NE [21]

IGRA White tailed deer E 91 + 44 bPPD, aPPD 74 98 [83]

Elk N 51 bPPD, aPPD NE 90a,  78b [79]

ESAT-6/CFP-10 NE 100c

96d

Reindeer N 106 bPPD, aPPD NE 91a  83b

ESAT-6/CFP-10 NE 94c, 87.5d

White tailed deer N 95 bPPD NE 98a,  92b

ESAT-6/CFP-10 NE 97c,  95d

Red deer E 15 bPPD 92.8e,  100f,  75g 100 [23]

P22 92.8e,  100f, 87.5g 100

ESAT-6/CFP-10 92.3e,  100f,  75g 100

Rv3615c 40e, 26.6f, 37.5g 100

Rv3020c 66.6e,  100f, 87.5g 100

LST Elk N 66 + 324 bPPD 70 74 [147]

Elk N 33 + 450 bPPD 83 64 [104]

Red deer N 39 + 16 bPPD 95 44 [68]

MPB70 72 50

Red deer-elk hybrid E 10 + 15 bPPD 65.7 92.5 [84]

qRT-PCR of cytokines 
expression

Red deer-elk hybrid E 10 + 15 bPPD 78.6 97.5 [84]

ELISA Red deer N 104 + 56 bPPD
MPB70

88
80

52
79

[68]

Red deer N 94 + 217 bPPD, MPB70, aPPD 45.7 100 [126]

Red deer E 15 + 15 Ethanol Extract of M. bovis 86.7 93.3 [102]

Red deer N 221 + 204 bPPD
P22

70.1
70.1

91.6
99

[24]

Elk N 108 + 48 MPB83 49.1 97.9 [138]

Fallowdeer N 73 + 157 bPPD 51 96 [120]

White tailed deer N 12 + 329 LAM enriched antigen 66.7h, 58.3i 95.1h

97.3i
[113]

Reindeer E 11 + 4 LAM 100 50 [55]

BTB Red deer N 87 + 200 bPPD, aPPD 90.8 98 [126]

FPA Red deer and elk N 16 MPB70 81 NE [91]

Elk N 33 + 450 MPB70 40 81 [104]

Red deer-elk hybrid E 10 MPB70 33.33 NE [75]

RT White tailed deer N/E 28 + 435 ESAT-6, CFP-10, MPB83 75 98.9 [109]

Cervid TB STAT-PAK Elk N 31 + 842 ESAT-6, CFP-10, MPB83 87.1 98.3 [148]

Elk N 33 + 450 ESAT-6, CFP-10, MPB83 62 87 [104]

Elk
Fallow deer

N 34 + 141
32 + 107

ESAT-6, CFP-10, MPB83 82
91

93
91

[107]

Fallow deer N 21 ESAT-6, CFP-10, MPB83 80.1 NE [21]

Red deer-elk hybrid E 10 ESAT-6, CFP-10, MPB83 72.5 NE [75]

White tailed deer N 22 + 724 ESAT-6, CFP-10, MPB83 54.5 98.1 [113]

Red deer N/E 52 + 105 ESAT-6, CFP-10, MPB83 86.5 83.8 [119]

Mixed Deer sp. N 7 + 425 ESAT-6, CFP-10, MPB83 85.7j 94.8j [119]
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[78]. Moreover, the possibility of acute stress in tested 

animals could induce high levels of cortisol, resulting in 

reduced IFNγ response [66, 79].

Whole blood interferon gamma release assay (IGRA)

�e IGRA is used as an alternative or supplementary 

assay to the skin test. �e test involves the measure-

ment of CMI response in  vitro by an assay that detects 

the IFNγ produced by peripheral blood mononuclear 

cells (PBMCs) exposed to bPPD (or specific antigens like 

ESAT-6/CFP-10, P22, Rv3615c or Rv3020c) and aPPD 

antigens. �e assay has been tested in deer [23], African 

buffalo [63], badger [80], elephant [73], white rhinoceros 

[11] and wild boar [36]. Briefly, the assay consists of two 

stages. First, heparinized whole blood is incubated with 

antigens (i.e., PPDs, specific MTC antigens along with 

positive controls as mitogens or superantigens (poke-

weed mitogen, phytohemagluttinin or staphylococcal 

enterotoxin B) and negative controls as phosphate buff-

ered saline (PBS) or Roswell Park Memorial Institute 

(RPMI) Medium) for 18–24 h to induce production and 

release of IFNγ predominantly by T lymphocytes. Sec-

ondly, IFNγ present in the plasma supernatants is quan-

tified in a sandwich ELISA using two species specific 

antibodies against IFNγ (capture and detection antibody) 

[23, 63, 80]. Usually, the difference in the optical density 

(OD) of antigens with negative control and aPPD is taken 

into consideration for interpreting the results. �e inter-

pretation of the test varies with many factors like species, 

type of antigen/antibody used, preferred Se/Sp, as well as 

purpose of the test [23, 81].

IGRA has many practical advantages over the skin test 

in wildlife, as the test avoids the stimulation of live ani-

mal with mycobacterial antigens, as well as it needs only 

a single sample collection and less technical variability 

compared to skin test [23, 81]. Moreover, IGRA can be 

applied sequentially to get a conclusive result if there is 

a doubt or inconclusive result in the skin test, as well as 

Table 1 (continued)

Assay test Species N/E nSe + nSp Antigens Se (%) Sp (%) References

DPP
Vet TB

Elk
Fallow deer

N 34 + 141
32 + 107

ESAT-6, CFP-10, MPB83 79
91

98
99

[107]

Fallow deer N 73 + 157 ESAT-6, CFP-10, MPB83 71 88 [120]

Red deer N/E 52 + 105 ESAT-6, CFP-10, MPB83 84.6 91.4 [119]

White tailed deer N/E 63 + 903 ESAT-6, CFP-10, MPB83 65.1 97.8 [121]

MAPIA Elk
Fallow deer

N 34
32

M. bovis  antigensk 82
97

NE
NE

[107]

Red deer-elk hybrid E 10 M. bovis  antigensk 76.7 NE [75]

White tailed deer N 22 + 727 M. bovis  antigensk 68.2 97.1 [113]

Reindeer E 11 + 23 M. bovis  antigensk 100 85 [55]

IB White tailed deer N 20 + 671
13 + 333

MPB83
Whole cell sonicate

55
46.2

99.3
92.5

[113]

Reindeer E 11 + 4 Whole cell sonicate 90.9 50 [55]

N/E: natural or experimental infection;  nSe: number of TB positive animals used for evaluation of Se;  nSp: number of TB negative animals used for evaluation of Sp; Se: 

sensitivity; Sp: speci�city; SCITT: single comparative intradermal tuberculin skin test; LST: lymphocyte stimulation test; qRT-PCR: quantitative reverse-transcription 

polymerase chain reaction assay; IGRA: interferon gamma release assay; ELISA: enzyme linked immunosorbent assay; BTB: blood tuberculosis test; FPA: �uorescent 

polarization assay; MAPIA: multiantigenimmunoprint assay; Cervid TB STAT-PAK and DPP Vet TB: lateral �ow tests (Chembio Diagnostic Systems, Inc., USA); RT: lateral 

�ow rapid test (name not mentioned-Chembio Diagnostic Systems, Inc., USA); NE: not estimated; IB: immunoblotting

a  Cut o�: OD of bPPD–aPPD and bPPD–PBS > 0.1.

b  Cut o�: OD of bPPD–aPPD and bPPD–PBS > 0.05.

c  Cut o�: OD of ESAT-6:CFP-10–PBS > 0.1.

d  Cut o�: OD of ESAT-6:CFP10–PBS > 0.05.

e  Se of experimentally infected animals at 15 days post-infection (dpi).

f  Se of experimentally infected animals at 30 dpi.

g  Se of experimentally infected animals at 60 dpi (cut o� for e, f, g: for bPPD and P22, OD of bPPD–aPPD and bPPD–PBS > 0.05, for speci�c antigens like ESAT-6:CFP10, 

Rv3615c and Rv3020c, OD of speci�c antigen–PBS > 0.05).

h  Cut o�: OD ≥ 0.25.

i  Cut o�: OD ≥ 0.3.

j  Se and Sp were evaluated based on mixed species of deer consisting of fallow deer, roe deer and red deer.

k  ESAT-6, CFP-10, MPB59, MPB64, MPB70, MPB83, 16-kDa protein, 38-kDa protein, CFP-10/ESAT-6 and 16 kDa protein/MPB83, and two native antigens, bovine PPD 

and M. bovis culture �ltrate.



Page 9 of 23Thomas et al. Vet Res           (2021) 52:31  

in association with other antibody mediated diagnostic 

measures to improve the Se and Sp [23]. However, the 

test involves logistical constraints such as strict labora-

tory conditions and the need for fast processing of sam-

ples [82].

In wild bovids, like African buffalo and nyala, the 

commercial IGRA test usually used is Bovigam assay 

with bPPD (Prionics, Zurich, Switzerland) [12]. Cer-

vigam assay (Pfizer Animal Health, New York, USA) 

was the commercial IGRA test developed for use in deer 

[83, 84]. However, Cervigam assay is not commercially 

available nowadays, since a lack of adequate response 

to mycobacterial antigens has been reported in infected 

white-tailed deer, elk and fallow deer [79]. Offering the 

greatest potential for the improvement of Sp, the use 

of specific antigens like ESAT-6, CFP-10, P22, TB-7, 

Rv3615c or Rv3020c in IGRA has been carried out in 

many wild animal species like African buffalo [63], 

badger [80] and red deer [23]. In African buffalo, the 

commercially available Bovigam PC-EC assay, based on 

ESAT-6:CFP-10 proteins, and Bovigam PC-HP assay, 

based on ESAT-6/CFP-10 proteins, peptides simulating 

Rv3615c and three additional mycobacterial antigens, 

are promising diagnostic approaches [85–87]. In red 

deer, IGRA with antigens bPPD, P22 and the combina-

tion of ESAT-6/CFP-10 and Rv3020c was able to detect 

the infection as early as 15 days post-experimental chal-

lenge [23]. Moreover, IGRA based on ESAT-6/CFP-10 

is able to differentiate between BCG vaccinated and 

infected animals [20, 23, 36]. On the other hand, the 

use of specific or purified antigens can result in lack of 

suitable Se in badger [80]. Nevertheless, there are some 

strategies focusing on new antigen stimulating plat-

forms in order to counteract this loss of Se. �us, modi-

fied  QuantiFERON® TB Gold In-Tube (mQFT) system 

is an IGRA which utilizes peptides simulating ESAT-6 

and CFP-10 antigens, as well as TB7 in three blood col-

lection tubes for the stimulation of PBMCs to produce 

IFNγ, and it provided better Sp without losing Se in 

Table 2 Details of immunological diagnosis in wild suids. 

N/E: natural or experimental infection; Se: sensitivity; Sp: speci�city;  nSe: number of TB positive animals used for evaluation of Se;  nSp: number of TB negative animals 

used for evaluation of Sp; a range of values due to the di�erence in reading criteria; SIT: single intradermal tuberculin test; SCITT: single comparative intradermal 

tuberculin skin test; IGRA: interferon gamma assay; ELISA: enzyme linked immunosorbent assay; ELISA TB-VK: Commercial ELISA kit (Vacunek, Spain); ELISA- INgezim 

TB porcine and INgezim Tuberculosis DR: Commercial ELISA kit (INGENASA, Spain); RT: lateral �ow rapid test (name not mentioned-Chembio Diagnostic Systems, Inc., 

USA); DPP VetTB: rapid lateral �ow kit (Chembio Diagnostic Systems, Inc., USA), INgezim TB-CROM: rapid lateral �ow kit (INGENASA S.L., Spain).

Assay test Species N/E nSe +  nSp Antigen Se (%) Sp (%) References

Skin test (SCITT) Eurasian wild boar E 4 + 31 bPPD, aPPD 77-100a 48.4–77.4a [22]

Common warthog N 16 + 18 bPPD, aPPD 81 100 [8]

Skin test (SIT) Common warthog N 16 + 18 bPPD, aPPD 69 100

ELISA- protein G Eurasian wild boar N 96 + 104 bPPD 79.2 100 [133]

ELISA- IgG Eurasian wild boar, domestic pig N 277 + 366 bPPD
P22

77.3
84.1

97.3
98.4

[25]

Eurasian wild boar N
E

30 + 25
51 + 9

P22
P22

96.7
84.3

100
100

[125]

ELISA- protein A&G Eurasian wild boar N 22 + 43 MPB83 86 100 [149]

Common warthog N 16 + 19 bPPD 88 89 [97]

Common warthog N 25 bPPD 92 NE [150]

ELISA TB-VK Eurasian wild boar N 73 + 112 bPPD 72.6 96.4 [137]

Common warthog N 16 + 19 bPPD 88 79 [97]

Common warthog N 25 bPPD 86 NE [150]

ELISA-INgezim TB porcine Eurasian wild boar N
E

30 + 25
51 + 9

MPB70, MPB83 100
92.1

100
100

[126]

INgezim
Tuberculosis DR

Eurasian wild boar N
E

30 + 25
51 + 9

MPB83 93.3
86.2

100
100

[125]

RT Eurasian wild boar N 64 + 113 ESAT-6, CFP-10, MPB83 76.6 97.3 [109]

DPP VetTB Warthog Eurasian wild boar N 23 + 35
56 + 30

ESAT-6, CFP-10, MPB83 82.6
80.4

91.4
96.7

[110]

Eurasian wild boar N 96 + 104 ESAT-6, CFP-10, MPB83 89.6 90.4 [133]

Common warthog N 16 + 19 ESAT-6, CFP-10, MPB83 75 89 [97]

INgezim TB-CROM Eurasian wild boar N
E

30 + 25
51 + 9

MPB83 93.3
90.2

96
100

[125]
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African buffalo [63, 71, 88], warthog [89] and white rhi-

noceros [11].

IGRA enzyme-linked immunospot assay (ELISPOT)

A direct ELISPOT assay has also been conducted in some 

studies in badgers with a high diagnostic value [20, 52]. 

�e assay is usually based on net bPPD response and the 

use of the other antigens only aims to increase Sp. �e 

assay detects IFNγ produced by PBMCs stimulated with 

bPPD and aPPD, CFP-10/ESAT-6, Ag85, P22 or mitogen 

Concanavalin A as positive control, all diluted in RPMI 

complete medium for 16–20  h in wells pre-coated with 

monoclonal antibody against IFNγ. �e IFNγ producing 

Table 3 Details of immunological diagnosis in European badger. 

N/E: natural or experimental infection;  nSe: number of TB positive animals used for evaluation of Se;  nSp: number of TB negative animals used for evaluation of Sp; Se: 

sensitivity; Sp: speci�city; IGRA: interferon gamma release assay; ELISA: enzyme linked immunosorbent assay; LTA: comparative lymphocyte transformation assay; qRT-

PCR: quantitative reverse-transcription polymerase chain reaction assay; MAPIA: multiantigenimmunoprint assay; NT: new tuberculin; Brock TB STAT-PAK: lateral �ow 

rapid test (Chembio Diagnostic Systems, Inc., USA); RT: rapid test (name not mentioned).

a Se and Sp based on rabbit monoclonal antiserum (mEIA) instead of polyclonal pair (pEIA) of antibodies in other studies; ND: not de�ned, Se and Sp are calculated 

based on Bayesian analysis; NM: not mentioned in the article; NE: not estimated.

b Se or Sp in adults.

c Se or Sp in cubs.

d Indirect ELISA.

e Competitive ELISA.

f Recombinant antigens only i.e., ESAT-6, CFP-10,MPB59, MPB64, MPB70, MPB83, 16-kDa protein, 38-kDa protein, CFP-10/ESAT-6 and 16 kDa protein/MPB83.

g Recombinant antigens and M. bovis culture �ltrate.

Assay test N/E nSe +nSp Antigen Se (%) Sp (%) References

Skin test N 10 + 37 bPPD, NT, whole killed bovine 
tubercle bacilli

70 73 [64]

IGRA N 46 + 185 bPPD, aPPD 74.5
80.9a

93.6
93.6a

[80]

ESAT-6/CFP-10 60.9
60.9 a

94.6
94.6 a

N ND bPPD, aPPD 79.9 95 [143]

N 39 + 147 bPPD, aPPD 84.6b 92.5b [96]

7 + 40 57.1c 97.5c

N ND bPPD, aPPD 52 97 [142]

LTA N 8 + 13 bPPD, aPPD 87.5 84.6 [92]

qRT-PCR of cytokines 
expression

N 53 + 194 bPPD, ESAT-6/CFP-10 64.2 93.3 [93]

ELISA N 25 + 28 P22 80d,  76e 85.7d, 85.7e [99]

E 34 + 36 82d,79e 80.56d, 83.3e

Brock test N 8 + 13 MPB83 62.5 100 [92]

N 41 + 33 MPB83 46 82 [95]

N 340 + 817 MPB83 54.7b 93b [96]

39 + 238 53.9c 96.6c

N 51 + 193 MPB83 52.9 90.7 [93]

N 78 + 100 MPB83 47.4 89 [101]

Dachs TB ELISA N 41 + 33 MPB83 61 82 [95]

MAPIA N 78 + 100 M. bovis  antigensf

M. bovis  antigensg
48.7
59

88
84

[101]

BrockTB STAT-PAK N 340 + 817
39 + 238

ESAT-6, CFP-10, MPB83 49.7b

56.4c
92.5b

96.2c
[96]

N ND ESAT-6, CFP-10, MPB83 50.4 96.9 [143]

N NM ESAT-6, CFP-10, MPB83 59.09 66.67 [139]

N ND ESAT-6, CFP-10, MPB83 58 97 [142]

DPP Vet TB N 38 + 418 ESAT-6, CFP-10, MPB83 50 95 [123]

RT N 454 + 1078 ESAT-6, CFP-10, MPB83 50.7 93.1 [109]

N 78 + 100 MPB83, TBF 10 52.6 95 [101]
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cells are detected with biotinylated monoclonal antibody 

and the ELISPOT results are expressed as number of spot 

forming units/million cells. �e main limitations of this 

technique are economical and technical as the samples 

must be collected in live anesthetized badgers and must 

be processed immediately.

IFNγ-inducible protein 10 (IP-10) assay

IFNγ-inducible protein 10 (IP-10) is a chemokine 

induced by IFNγ which plays a role in type IV hyper-

sensitivity reactions. The assay protocol is the same 

as that of IGRA, involving the stimulation of whole 

blood with mycobacterial antigens and the quantifi-

cation of IP-10 by a sandwich ELISA. IP-10 is found 

to be a biomarker for the diagnosis of TB in African 

buffalo [85–87], warthog [89] and wild meerkat [90]. 

Most of the studies were conducted in African buffalo 

using bovine IP-10 antibodies (capture and detection 

antibody) either by a conventional ELISA (using bPPD 

or PC-EC or PC-HP) or by mQFT system (ESAT-6, 

CFP-10, TB7). The test has an excellent agreement 

with IGRA and it is reported to provide more diagnos-

tic accuracy in comparison to conventional IGRA in 

African buffalo [86, 88]. In addition, it has high ther-

mal stability that would facilitate the heat-inactivation 

of plasma pathogens and for the safe transport of 

diagnostic samples [87]. Preliminary studies in wart-

hog and wild meerkat show IP-10 assay as a promising 

method, but the Se was low in warthog [89, 90].

Lymphocyte stimulation test (LST)

�is test measures the reactivity of blood lymphocytes 

to mycobacterial antigens. �e PBMCs are stimulated 

by mycobacterial antigens along with controls (Con-

canavalin A as positive control and fetal bovine serum 

or unstimulated medium as negative control) followed 

Table 4 Details of immunological diagnosis in wild bovids. 

N/E: natural or experimental infection;  nSe: number of TB positive animals used for evaluation of Se;  nSp: number of TB negative animals used for evaluation of Sp; Se: 

sensitivity; Sp: speci�city; CFT: caudal fold test; SCITT: single comparative intradermal tuberculin skin test; IGRA: interferon gamma release assay; IP-10: interferon 

gamma-inducible protein 10; PC-EC: contains ESAT-6- and CFP-10-derived peptides; PC-HP contains ESAT-6- and CFP-10-derived peptides and 4 mycobacterial 

antigens (including Rv3615); MAPIA: multiantigenimmunoprint assay; FPA: �uorescent polarization assay; ELISA: enzyme linked immunosorbent assay; Idexx ELISA: 

commercial ELISA (Idexx Laboratories, Inc., Westbrook, ME, USA); Bovid TB STAT-PAK and DPP Vet TB: lateral �ow tests (Chembio Diagnostic Systems, Inc., USA);  RT1: 

rapid test (Anigen, Animal Genetics, Inc., South Korea-name of the test not mentioned);  RT2: lateral �ow rapid test (Chembio Diagnostic Systems, Inc., USA); NE: not 

estimated; NM: not mentioned; ND: not de�ned, Se and Sp estimated based on Bayesian analysis (absence of gold standard).

a  ESAT-6, CFP-10, MPB59, MPB64, MPB70, MPB83, the16-kDa protein, the 38-kDa protein, two fusion proteins comprising CFP-10/ESAT-6 and the 16 kDa protein/

MPB83, and two native antigens, bovine PPD and M. bovis culture �ltrate.

Assay test Species N/E nSe + nSp Antigens Se (%) Sp (%) References

Skin test (CFT) Wild bison N ND bPPD 57.6 80.3 [105]

Wild bison N 2 + 24 bPPD 50 88 [111]

Skin test (SCITT) African buffalo N 51 bPPD, aPPD 86.3 NE [88]

IGRA African buffalo N + E 149 + 344 bPPD, aPPD 92.1 68.3 [81]

African buffalo N 8 bPPD, aPPD 100 NE [7]

PC-HP, PC-EC 75 NE

African buffalo N 44 ESAT-6, CFP-10, TB-7.7 71 NE [86]

PC-EC 91 NE

PC-HP 95 NE

African buffalo N 51 + 70 ESAT-6, CFP-10, TB-7.7 80.4 100 [88]

IP-10 assay African buffalo N 44 + 40 PC-HP 93.2 90 [86]

PC-EC 81.8 92.5

ESAT-6, CFP-10, TB-7.7 86.4 92.5

African buffalo N 32 + 39 ESAT-6, CFP-10, TB-7.7 94 92 [87]

African buffalo N 51 + 70 ESAT-6, CFP-10, TB-7.7 88.2 100 [88]

MAPIA Wild bison N 12 + 70 M. bovis  antigensa 92 97 [111]

FPA Wild bison N ND MPB70 4.4 83.2 [105]

Wild bison N 9 + 57 MPB70 67 34 [111]

Idexx ELISA African buffalo N 8 bPPD 37.5 NE [7]

BovidTB STAT-PAK African buffalo N 100 + 100 ESAT-6, CFP-10, MPB83 33 90 [114]

VetTB STAT-PAK Wild bison N ND ESAT-6, CFP-10, MPB83 12.7 98.4 [105]

RT1 African buffalo N 100 + 100 NM 23 94 [114]

RT2 Wild bison N 12 + 70 ESAT-6, CFP-10, MPB83 67 99 [111]
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Table 5 Details of immunological diagnosis in elephants. 

N/E: natural or experimental infection;  nSe: number of TB positive animals used for evaluation of Se;  nSp: number of TB negative animals used for evaluation of Sp; 

Se: sensitivity; Sp: speci�city; ELISA: enzyme linked immunosorbent assay; Elephant TB Stat-Pak and DPP VetTB assay: lateral �ow rapid tests (Chembio Diagnostic 

Systems, Inc., USA); MAPIA: multiantigenimmunoprint assay; CF: M. bovis AN5 culture �ltrate; ERD: lipoarabinomannan antigen Erdman strain of M. tuberculosis; RA: 

lipoarabinomannan antigen H37 Ra strain of M. tuberculosis; LAM: lipoarabinomannans; BTB: blood tuberculosis test.

a  Se and Sp are determined excluding the weak responses.

b  Single intradermal tuberculin test, caudal fold test as well as single comparative intradermal tuberculin skin test depending on the herd.

c  ESAT-6, CFP-10, MPB59, MPB64, MPB70, MPB83, the16-kDa protein, the 38-kDa protein, CFP-10/ESAT-6 and the 16 kDa protein/MPB83, bovine PPD and M. bovis 

culture �ltrate.

Assay test Species N/E nSe + nSp Antigens Se (%) Sp (%) References

Skin  testb Asian elephant N 6 + 31 bPPD alone or with aPPD 16.7 74.2 [65]

Elephant TB Stat-Pak African/Asian elephant N 26 + 147 ESAT-6, CFP-10, MPB83 100 95.2 [10]

African/Asian elephant N 14 ESAT-6, CFP-10, MPB83 100 NE [122]

MAPIA African/Asian elephant N 26 + 147 M. bovis  antigensc 100 100 [13]

DPP VetTB assay African/Asian elephant N 26 + 147 ESAT-6, CFP-10, MPB83 100 100 [10]

African/Asian elephant N 14 ESAT-6, CFP-10, MPB83 100 NE [122]

ELISA African/Asian elephant N 7 + 40 CF 100 95 [98]

bPPD 85.7 97.5

MPB70 28.6 97.5

ERD 71.4 85

RA 57.1 90

Asian elephant N 8 + 41 RA, CF, bPPD MPB70, ERD, aPPD 100a 87.8a [65]

3 + 25 CF, LAM, aPPD 33.3a 100a

8 + 55 N-lauryl-sarcosyl extract of M. bovis, 
bPPD, aPPD, and M. intracellulare PPD

87.5a 83.6a

BTB Asian elephant N 6 + 31 bPPD, aPPD 83.3 51.6 [65]

Table 6 Details of immunological diagnosis in African lion. 

N/E: natural or experimental infection;  nSe: number of TB positive animals used for evaluation of Se;  nSp: number of TB negative animals used for evaluation of Sp; Se: 

sensitivity; Sp: speci�city; SIT: single intradermal cervical test; SCITT: single comparative intradermal tuberculin skin test: NE: not estimated; Elephant TB Stat-Pak and 

DPP Vet TB are lateral �ow rapid tests (Chembio Diagnostic Systems, Inc., USA).

a  Sp of the test when 44 samples from uninfected population are considered and only 11 of which are tested negative by culture.

Assay test N/E nSe + nSp Antigens Se (%) Sp (%) References

SIT N 52 + 32
44

bPPD 86.5
NE

81.2
100a

[62]

SCITT N 52 + 32
44

bPPD, aPPD 80.8
NE

81.2
100a

[62]

N 8 bPPD, aPPD 63 NE [115]

Elephant
TB
Stat-Pak

N 11 ESAT-6, CFP-10, MPB83 64 NE [115]

DPP Vet TB N 10 ESAT-6, CFP-10, MPB83 70 NE [115]

Table 7 Details of immunological diagnosis in possum. 

N/E: natural or experimental infection;  nSe: number of TB positive animals used for evaluation of Se;  nSp: number of TB negative animals used for evaluation of Sp; Se: 

sensitivity; Sp: speci�city; ELISA: enzyme linked immunosorbent assay; RT: lateral �ow rapid test (name not mentioned- Chembio Diagnostic Systems, Inc., USA).

a  Se or Sp of ELISA where blocking antibody against MBP70 is not used.

b  Se or Sp of blocking ELISA where a monoclonal antibody against MPB70 is used.

Assay test N/E nSe + nSp Antigens Se (%) Sp (%) References

ELISA N 29 + 100 M. bovis culture filtrate MBP70 45a

21a

28b

96a

98a

99b

[100]

RT N 38 + 91 ESAT-6, CFP-10, MPB83 44.7 85.7 [109]
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by the addition of  [3H]-thymidine and incubation for 

4 days. Lymphocyte stimulation is assessed by the uptake 

of  [3H]-thymidine and data are expressed in counts per 

minute (cpm). Usually, the difference in the OD of anti-

gens with negative control and aPPD is taken into con-

sideration for interpreting the results. �e test has been 

performed in deer [68, 91], badger [92], possum [16] and 

elephant [65]. �e use of MPB70 in red deer resulted 

in improved Sp, but low Se compared to LST using 

bPPD [68]. In badger, Se of LST was high, but Sp was 

low in comparison to ELISA [92]. Lymphocyte stimula-

tion responses were detected in 93% of experimentally 

infected possums [16]. �is method is complicated to 

perform in field conditions for screening large number 

of samples because of the time requirement and logistics. 

Hence, nowadays, it is not usually used for diagnostic 

purpose.

Quantitative reverse-transcription PCR assay (qRT-PCR)

�e production of cytokines can be detected by measur-

ing the relative level of gene expression using qRT-PCR. 

�e assay includes reverse transcription of mRNA of 

cytokines of interest (IL-2, IL-4, IL-10, IL-12p40, IFN-γ, 

TNF-α) into cDNA, followed by real-time PCR using spe-

cies specific or cross reactive primers. �e relative gene 

expression of IFNγ in response to bPPD and specific anti-

gens was found to be high in infected red deer, elk [84] or 

badger [93]. qRT-PCR can be used as an alternative to the 

current serological methods of diagnosis like the brock 

test in badger [93]. In red deer and elk, qRT-PCR is found 

to be superior to LST and Cervigam assay [84]. �e assay 

can be exploited as a major diagnostic platform for use in 

wildlife, since primers are easier to develop as well as it is 

a simple, rapid, and sensitive measure of antigen-specific 

CMI and it does not need double handling of animals as 

in the case of skin test. �e demerits include the need of 

quick processing of samples and requirement of costly 

reagents [84, 93].

Antibody based tests Antibody assays are convenient 

to perform as samples can be stored for prolonged time 

before processing. �ey ensure large scale screening of 

samples obtained ante-mortem and post-mortem and 

are able to diagnose the progressive disease [94]. In this 

regard, the Se increases in advanced stages of the dis-

ease.

Enzyme-linked immunosorbent assay (ELISA)

ELISA is the serodiagnostic technique most extensively 

used in wildlife. It detects circulating antibodies against 

MTC, and it is well suitable for large scale screening of 

the disease, both ante-mortem and post-mortem. �ere 

are reports of many in house ELISAs (indirect ELISA 

of bPPD/P22/LAM/M. bovis culture filtrate (MBCF)/

MPB83 and MPB70 in red deer, wild boar, warthog, 

African buffalo, elephant, possum and badger) or com-

mercial ELISA kits (ELISA TB-VK, ELISA-INgezim TB 

porcine and INgezim Tuberculosis DR in wild boar and 

warthog and Idexx ELISA in wild bovids) using species 

specific anti-IgG antibodies or cross reactive antibodies 

like protein G (as conjugate) available for use in wildlife 

with varying levels of diagnostic accuracy [24, 25, 95–98] 

(see Tables 1, 2, 3, 4, 5, 6, 7 and 8). Among them, ELISA 

is the prime choice for TB diagnosis in swine [25], being 

bPPD the most common antigen used [24, 25, 68, 97, 98], 

but with low Sp due to cross reactivity with other non-

tuberculous mycobacteria. Serum diluted in skimmed 

milk supplemented with aPPD (competitive ELISA) was 

found to have more Sp in badger compared to the sim-

ple indirect ELISA [99]. Many other specific or purified 

antigens (LAM, MPB83, MPB70, ESAT-6 and CFP-10, 

and P22) have been tested to improve the Sp in wild boar 

[25], red deer [24, 68], wild bovids [7], badger [99] and 

possum [100]. However, consequently, in some stud-

ies the Se is compromised [80]. Brock test is an indirect 

ELISA based on MPB83 used for TB diagnosis in badger, 

which provided high Sp, but low Se [92, 96, 101]. Dachs 

TB-ELISA, also based on MPB83, has high Se, similar Sp 

and high predictive values compared to Brock test [95]. 

Nevertheless, in some other reports, similar or even high 

Se was achieved with specific or purified antigens in red 

deer and wild boar [24, 25]. �e use of antigenic cock-

tails (MPB70, MPB83), ethanol extract of M. bovis anti-

gen (EVELISA) and prior pre-absorption of M. avium 

Table 8 Details of immunological diagnosis in wild meerkat. 

MAPIA: multiantigenimmunoprint assay; BovidTB STAT-PAK: lateral �ow test (Chembio Diagnostic Systems, Inc., USA); N/E: natural or experimental infection;  nSe: 

number of TB positive animals used for evaluation of Se;  nSp: number of TB negative animals used for evaluation of Sp; Se: sensitivity; Sp: speci�city; ND: not de�ned, 

Se and Sp were estimated based on Bayesian analysis (absence of gold standard).

a ESAT-6, CFP-10, MPB59, MPB64, MPB70, MPB83, the16-kDa protein, the 38-kDa protein, CFP-10/ESAT-6 and the 16 kDa protein/MPB83, bovine PPD and M. bovis 

culture �ltrate.

Assay test N/E nSe + nSp Antigens Se (%) Sp (%) References

MAPIA N ND M. bovis  antigens* 90 48 [9]

BovidTB STAT-PAK N ND ESAT-6, CFP-10, MPB83 43 85 [9]
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subspecies paratuberculosis antibodies or antibodies 

to other environmental mycobacteria as M. phlei have 

also proven promising results in red deer [102]. In wild 

bovids, Se was low in Idexx ELISA which might be due 

to the limited sample size used. Moreover, TB is a slow 

and progressive chronic disease so that antibodies might 

be detected in the terminal stages only (i.e. buffaloes) 

[7]. In elephants, substantial humoral immune response 

was detected in positive animals which could help in dif-

ferentiating positive and negative animals [65, 98]. In 

possum, low Se was observed in antibody mediated diag-

nosis, possibly due to the fact that very few possums with 

sub-clinical M. bovis infection produce positive antibody 

responses [100].

Fluorescence polarization assay (FPA)

�is test comprises the use of the target antigen MPB70 

with a fluorescent molecule bound to it, in order to 

detect antibodies in serum. �is assay was first described 

by Surujballi et al. (2002) in cattle [103], and later it has 

been validated in red deer [91], elk [104] and wild bison 

[105], but with comparatively low diagnostic value in 

wild bison and cervids when the test is used alone [104, 

105]. �e Se is very low in early stages of infection [75].

Multiantigen print immunoassay (MAPIA)

�e MAPIA uses a panel of 12 mycobacterial antigens 

including eight purified recombinant proteins (ESAT-6, 

CFP-10, MPB64, MPB59, MPB70, MPB83, Acr1, and the 

38  kDa protein), two protein fusions (CFP-10/ESAT-6 

and Acr1/MPB83), and two native antigens, such as 

bPPD and MBCF [106]. �e assay enables the qualitative 

identification of species-specific immunodominant pro-

teins as well as the reactivity patterns over the course of 

the disease which, in turn, helps in the selection of anti-

gens for other diagnostic tests [106]. �e MPB83 alone 

or in combination with the protein Acr1 was found to 

be the most serodominant antigen followed by ESAT-6/

CFP-10 in elk and fallow deer [107, 108], red deer-elk 

hybrids [75], white-tailed deer [108, 109] and possum 

[109]. MPB83 is also the most serodominant antigen in 

wild boar and warthogs [109, 110]. In badger, MPB83 

and MBCF are the most serodominant antigens [101, 

109] followed by MPB70 [101] or CFP-10/ESAT-6 [109]. 

ESAT-6 alone is the most serodominant protein in wild 

bison [111], while ESAT-6 and CFP-10 are in elephant 

[10, 108] and black rhinoceros [112]. �e MAPIA gave 

almost equal or even high Se and Sp in comparison to 

other rapid tests, ELISA or immunoblot, but there is a 

practical difficulty to implement this assay for screening 

large number of samples [55, 101].

Immunoblotting (IB)

Electrophoresis and immunoblot are qualitative assays, 

usually performed using whole cell sonicate antigen in 

reindeer [55], white-tailed deer [113] and elephant [48], 

but it is not routinely used for diagnosis in any species. 

Instead, the test is used to confirm that the real antibod-

ies are detected in other serodiagnostic tests like ELISA/

MAPIA/immunochromatographic test.

Lateral flow tests

�ese tests are based on the immunochromatography. 

Lateral flow test kits have great practical applicability in 

wildlife because of its easiness to perform and immediate 

test results, although their Se is limited. Most of the lat-

eral flow tests are qualitative except DPP test. �e main 

lateral flow diagnostic tests are listed below:

• TB STAT-PAK (Chembio Diagnostic Systems, Inc., 

Medford, NY). �is test employs a unique cocktail of 

MPB83, ESAT-6 and CFP10 antigens, with a single-

strip bead-based signal detection system [75]. �e 

use of this test has been reported in multiple spe-

cies, i.e. Cervid TB STAT PAK in deer [75], Brock TB 

STAT-PAK in badger [96], Bovid TB STAT PAK in 

African buffalo [114] and wild meerkat [9], TB STAT 

PAK in pygmy hippopotamus [68] and elephant TB 

STAT PAK in elephant [10], lion [115], black rhinoc-

eros [112] and banded mangoose [116]. Its advan-

tages include easiness to perform in field with a small 

volume of blood, serum or plasma, and possibility to 

detect immunoglobulin (Ig) A (IgA), IgM and IgG 

antibodies to MTC [117]. �e test has also legitimate 

diagnostic accuracy in most of the species tested. 

However, the performance of test was poor in Afri-

can buffalo as in the case of ELISA [114] and showed 

poor Se in wild meerkat when the test was used alone 

[9]. In comparison to DPP test, false positive results 

can occur due to the presence of non-tuberculous 

mycobacteria or inflammatory conditions in elephant 

[118], as well as false negative results may happen 

due to the limited Se [52].

• DPP tests (Chembio Diagnostic Systems, Inc., Med-

ford, NY). �is assay has two test antigen bands 

on the membrane strip, T1 (MPB83 protein) and 

T2 (CFP-10/ESAT-6 fusion), for differential IgG 

antibody detection by colloidal gold particles cou-

pled with hybrid protein A/G, in contrast to the 
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single-strip format used in the TB STAT-PAK 

test [10]. One of the DPP tests is DPP Vet TB in 

which the presence and intensity of either of the 

two separate test lines (MPB83 antigen and CFP-

10/ESAT-6 fusion protein) are evaluated visually 

and by a DPP optical reader [10]. �e DPP Vet 

TB has been employed in multiple species of deer 

[119–121], wild suids [110], elephant [10, 122] and 

badger [123]. �e DPP Vet TB has higher Sp than 

STAT PAK in elephant [10] and deer [119]. �e 

DPP VetTB assay is approved by the United States 

Department of Agriculture (USDA) Bovine TB 

Eradication Program for testing several species 

of captive cervids [108, 121] and it is considered 

appropriate for use in a badger bovine TB con-

trol campaign in Northern Ireland [123]. Another 

test based on DPP technology is DPP WTB which 

makes use of two antigens in separate test lines 

(MPB83 and MPB70). �is assay is mainly focused 

for diagnosis in suidae, since MPB70 antigen is 

more serodominant than CFP-10/ESAT-6 in suids 

and it is found to be more sensitive than DPP Vet 

TB in wild boar [124]. �e DPP bovid TB is another 

kind of test based on CFP-10/ESAT-6 and MPB70/

MPB83 chimeric antigens, but it had low Se in wild 

bovids which is consistent with reports of other 

serological assays in wild bovids.

• INgezim TB-CROM Ab (INGENASA S.A., Madrid, 

Spain). �is is a recently developed test in which 

INgezim TB-CROM Ab uses MPB83 antigen. In wild 

boar, test acquired high diagnostic value, as well as 

concordance with ELISA (in house ELISA, commer-

cial ELISAs- INgezim TB porcine, INgezim Tubercu-

losis DR) so that INgezim TB-CROM Ab can be used 

as a first approach for the surveillance of TB in this 

species [125].

Other tests Blood tuberculosis test (BTB) is a composite 

test, comprising of ELISA reactivity towards mycobacte-

rial antigens as well as lymphocyte stimulation [65]. �e 

test has been employed in red deer [126] and elephant 

[65]. However, this test is no longer in use because of its 

complexity to perform, especially in elephants, in which 

multiple tests can delay the treatment protocol [65]. 

Another biomarker, monocyte chemoattractant protein 

(MCP)-1, could also be a sensitive marker for TB diagno-

sis in African buffalo [85]. Gene expression assay of the 

chemokine (C-XC motif ) ligand 9 (CXCL9) is a useful 

tool for the determination of M. bovis status in free-rang-

ing lions [127]. Analysis of volatile organic compounds 

(VOCs) obtained from breath and feces by electronic nose 

or gas chromatography–mass spectrometry (GC–MS) is a 

promising tool for noninvasive detection of TB in badger 

[128], white-tailed deer [129] and wild boar [130].

Confounding factors

�ere are many factors related to host, environment, 

sampling and diagnosis technique which can affect the 

performance of the TB diagnostic test:

Host

Reports are available about the effect of age and sex 

on diagnostic accuracy in some species. �ere are no 

evident age-related differences in red deer and fallow 

deer in the responsiveness to skin test [21]. Males had 

greater response than females in skin test in cervids 

and this gender based difference was more evident with 

increasing age [21]. �is difference could be due to the 

differences in reproductive effort and energy expendi-

ture [131]. Moreover, males tend to have a thicker skin 

than females, so skin fold increase is related to the 

thickness of the skin in red deer [132] and fallow deer 

[21]. In wild boar, an increase in skin responsiveness 

with age was noticed, but there was no sex by age inter-

action [22]. Serodiagnostic techniques in white-tailed 

deer showed no age or sex related differences (Immu-

noblot, MAPIA, ELISA, CervidTB STAT-PAK) [113]. 

In wild boar, infected piglets had lower Se in ELISA and 

DPP tests, as compared to yearling, juvenile or adult 

wild boar [124, 125]. Gender-based variation was not 

significant in serodiagnostic tests like ELISA and DPP 

test in wild boar [133]. In badger, Se of IGRA was low 

in cubs compared to adults, but Sp of IGRA, Brock 

test and Brock TB STAT-PAK was high in cubs com-

pared to adults [96]. �e immunological status of the 

host needs to be considered, as anergic animals do not 

respond to diagnostic tests [23].

Environment, habitat and management

Skin responsiveness to mitogen in winter was found to 

be significantly higher compared to the response in sum-

mer and the difference was more prominent in adult 

red deer [132]. �is may be due to seasonal presence 

of non-tuberculous mycobacteria, which is a main con-

founding factor in TB diagnosis in all species, especially 

in ruminants like deer [77] and wild bovids [134]. Sp of 

the serological assays varied between badger popula-

tions/countries of origin (higher Sp in badgers of Spain 

i.e. 96.88–100% compared to those of Republic of Ireland 

i.e. 85.7%) possibly as a result of variable exposure to dif-

ferent environmental mycobacteria species [99]. Also, the 

type of management practices which determine the expo-

sure to non-tuberculous mycobacteria could be another 
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factor resulting in the variation of Sp (high Sp in inten-

sive management compared with extensive management 

in suids) [25].

Prior sensitization, history and other infections

�e preliminary skin testing for TB can also lead to 

the diagnosis of false positive animals with other diag-

nostic techniques [126]. Se of ELISA was considerably 

increased in red deer 10 days after skin test compared to 

the Se before skin test (45.7% to 85.3% in ELISA) [126]. In 

experimental infection in white-tailed deer, reindeer, red 

deer and black rhinoceros, an elevated antibody response 

(in ELISA, immunoblot analysis, MAPIA and rapid tests) 

could be detected shortly after skin testing [55, 75, 112, 

119]. However, assays of repeated comparative skin 

testing in red deer at 6  months interval confirmed that 

it did not affect serological results [78] and lower IFNγ 

response was detected in TB positive African buffalo after 

skin test [66]. On the other hand, past exposure to MTC/

BCG vaccination can result in false positive reactions in 

red deer [135], whereas cross reactions with other non-

tuberculous mycobacteria could be a factor affecting the 

Sp of both cell mediated and humoral tests in several spe-

cies [24, 77].

Sample and sampling related factors

�e in  vitro production of IFNγ in IGRA and IGRA 

ELISPOT is influenced by the blood storage temperature 

and duration of storage until processing (recommended 

storage at room temperature and maximum time for 

processing is 8 h), as well as by the type of anticoagulant 

used (optimal response with heparin) [52, 72, 80]. CMI 

based tests require fast processing of the sample, while 

appropriately stored samples can be used in antibody 

based diagnosis. CMI response measured in vitro is sig-

nificantly reduced in blood taken immediately after death 

of the animal [80]. However, overnight stored blood 

samples had improved Sp in LST in badger without any 

change in Se (Sp 100% in samples stored overnight and 

84.6% in fresh samples) [92]. Incubation of plasma at 

65 °C for 20 min or plasma stored on Protein Saver Cards 

for 2 and 8 weeks did not cause any considerable loss of 

IP-10 concentration in IP-10 assay which allows the short 

term storage and transport of samples [87]. In a similar 

way there was no change in the IFNγ production in sam-

ples in which maintenance media (RPMI-1640 medium 

containing fetal calf serum -glutamine and penicil-

lin–streptomycin) was added and stored at 4  °C [72]. 

For humoral-based tests, the antibody responses varied 

between the type of the sample, i.e. serum, plasma, fresh 

whole blood, diaphragm fluid and aqueous humor [109, 

123]. �e source of the sample can also cause variation in 

diagnostic results, observing that serological test results 

for hunter or veterinarian harvested blood samples had 

higher level of agreement with culture results than sam-

ples from carcasses with TBL [113]. Repeated freeze-

thawing cycles, delay in shipping and occurrence of 

haemolysis could possibly affect the results of these 

serological tests [48]. �us, high levels of haemolysis 

decreased the Se of antibody tests, being more evident 

for the bPPD ELISA, but not affecting the results of rapid 

tests [113], which are designed not only for serum, but 

also for whole blood.

Diagnostic technique related factors

In all methodologies of TB diagnosis, the Se and Sp 

greatly depends on the type of antigen used, improv-

ing the diagnostic accuracy through the use of specific 

or purified antigens (see Tables 1, 2, 3, 4, 5, 6, 7 and 8). 

In skin test, there can be technical variation in results 

depending on the site of inoculation, dose and potency 

of tuberculin administered and reproducibility between 

operators [76]. �ere can be variation in Se depending 

on the type of assay used to measure the IFNγ released 

(ELISA/ELISPOT) [136] or the use of monoclonal pairs 

(mEIA) or polyclonal antiserum (pEIA) against IFNγ 

(80.9% Se for mEIA, 74.5% for pEIA) [80]. In the humoral 

diagnostic tests, the conjugate used could also influ-

ence Se, obtaining better performance in ELISA with 

species-specific conjugate (anti-IgG pig- 46.2% Se) than 

with protein G conjugate (23.1% Se) in wild boar [124]. 

In quantitative tests, their interpretation depends on the 

selected cut off value which, in turn, depends on the pre-

ferred outcome of the test (better Se or Sp or better com-

promise between Se and Sp) because Se increases at the 

expense of Sp and vice versa [81, 137].

Overall, reference tests used have a major influence 

on the validated diagnostic tests. �e gold standard test, 

mycobacterial culture, has been widely used in valida-

tion; however, it can have variable Se and heavy reliance 

on the number and quality of tissues examined at nec-

ropsy [104, 133]. In some studies, skin test or presence of 

TBL or IGRA or STAT PAK or histopathology were used 

alone or in combination as reference standards for deer 

[68, 120, 138], badger [139] and wood bison [111]. In case 

of wildlife, culture of samples has little practical applica-

bility as far as the difficulty in collection and processing 

are concerned. Hence, now culture has been considered 

as an imperfect gold standard for validation of new diag-

nostic tests in wildlife, as it may underestimate the Se and 

Sp of newer diagnostic tests being validated [9, 104]. In 

this regard, Bayesian analytical technique is proved to be 

a good alternative for estimating the diagnostic accuracy 

of tests [104, 105].
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Improved diagnosis

Selection of the appropriate test

�e selection of an appropriate test is based on many 

factors like species being tested, stage of the disease, 

diagnostic accuracy of the test, economic feasibility, 

ease of performing the test, as well as purpose of diag-

nosis. Skin test is usually employed in deer and wild 

bovids [63, 68], but it has limited application in other 

species like suidae, elephant, badger, possum or lion 

[22, 62, 65, 74]. �e stage of the disease progression is 

a major factor involved in the selection of a test, being 

CMI-based tests more accurate in identifying the early 

stages of infection in contrast to antibody-based tests 

which are more useful in later stages than in early ones 

[23, 24]. Moreover, in the antibody tests, the antigen 

MPB83 is detected early in the course of experimen-

tal MTC infections [55], unlike MPB70, which elicits 

a humoral response to MTC in the later stages of the 

disease [140]. On the other hand, CMI tests, especially 

skin test, IGRA and IGRA ELISPOT can only be applied 

for the diagnosis of live animals, while antibody-based 

can be applied to both live and dead animals [25]. 

Among the latter, the ELISA techniques are useful for 

evaluating a large number of samples [25] whereas 

rapid tests are easy to perform (also in field conditions) 

and give rapid results compared to any other test [119]. 

However, rapid tests are not economically viable for 

screening large number of field samples. In addition to 

all, it is important to consider the objective intended to 

choose a diagnostic test for the detection of TB, so a 

test with high Se is required when the diagnosis is per-

formed for detection of the maximum number of posi-

tive animals [104], while a high Sp is the major factor 

when the test is done for test and slaughter procedures 

in order to avoid false positive reactors and thereby a 

huge economic loss [77].

Proper implementation and interpretation of the test

Proper implementation of the test procedure is espe-

cially important to minimize the diagnostic errors and 

for better results. �e Se and Sp are the major factors 

evaluated for assessing the test result, being a highly 

sensitive test usually related to a low Sp and vice versa 

[137]. �us, a higher cut off value minimizes the chance 

of false positives, but lower cut off values enable the 

maximum identification of infected animals [99, 137]. 

In addition, predictive values, likelihood ratio and diag-

nostic odds ratio have importance in interpreting the 

results [70]. �e prevalence of disease must be taken 

into account for interpreting the result, since a higher 

prevalence tends to lead to an increased positive pre-

dictive value (PPV) and a decreased negative predictive 

value (NPV), whilst a lower prevalence tends to lead to 

an increased NPV and a decreased PPV [141].

Combination of di�erent diagnostic tests or di�erent 

antigens

Combination of two diagnostic test results in paral-

lel [40, 71, 104, 142] or in series [21, 142] can enhance 
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Figure 3 Sensitivity (Se) and speci�city (Sp) of immunological tests used in wildlife tuberculosis diagnosis in cervids (n = 108 

evaluations), European badger (n = 59), wild suids (n = 48), wild bovids (n = 39), elephants (n = 28), lion (n = 9), brushtail possum (n = 8) 

and meerkat (n = 4). Details can be consulted in Tables 1, 2, 3, 4, 5, 6, 7 and 8. CMI: diagnostic methods based on cell-mediated immunity.
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the diagnostic accuracy. Parallel testing is a method in 

which two screening tests are performed at the same 

time and the results are subsequently combined, result-

ing in higher Se but lower Sp. Serial testing means that 

both techniques can be performed sequentially; if the 

result of the first screening test is positive (serial testing), 

the second screening test will be performed to avoid false 

positive results [104]. Usually, CMI-based tests are inter-

preted in parallel to antibody-based tests resulting in very 

high Se which aids to detect a maximum number of ani-

mals in different stages of the disease, thereby facilitat-

ing test and removal strategies for the disease control in 

wildlife. �us, the combination of Bovigam assay (bPPD 

antigen) and SCITT/IGRA/Idexx ELISA or Bovigam 

assay (bPPD, PC-EC, PC-HP) yielded 100% Se in paral-

lel interpretation in African buffalo, while the second 

Bovigam assay alone offered a Se of 75% [7]. Similarly, 

the parallel use of SCITT with Bovigam assay or IP-10 

assay was also able to identify all the infected animals in 

African buffalo [71]. In the same way, parallel interpre-

tation of SCITT and Cervid TB STAT-PAK allowed the 

detection of all M. bovis confirmed by culture in fallow 

deer [21], and the parallel use of FPA, LST and Cervid TB 

STAT-PAK identified all the infected elk [104]. Pathologi-

cal lesions and culture results were interpreted in series 

to determine true infection status in fallow deer for mini-

mizing the number of false positives [104]. Combination 

of Brock TB STAT PAK with IGRA and culture allowed a 

diagnosis to be made for individual animals with an esti-

mated overall accuracy of 93% in badger [142, 143].

�e use of multiple antigens in the same diagnostic test 

(IGRA, ELISA or rapid tests) and its further interpreta-

tion improved the diagnostic accuracy. In red deer, the 

evaluation in parallel of ESAT-6/CFP-10 with Rv3615c 

and Rv3020c antigens increased the Se of the technique 

when compared to the separate use of these antigens 

[23]. Moreover, multi-antigen ELISA also enhanced Se of 

TB diagnosis in badger [95] and elephant [65, 98].

Conclusions
Culture and identification of MTC remain as the gold 

standard method in wildlife TB diagnosis, even so lim-

ited Se and little practical application exists as far as the 

difficulty in collection and processing of samples are 

concerned. In this regard, pathological studies can help 

to increase the culture Se. In recent years there has been 

considerable progress in wildlife TB diagnosis, where 

cellular and humoral immunological diagnostic tests 

are gaining importance, mainly in cervids, badgers, wild 

bovids and wild suids (Figure 3). Regarding cellular based 

diagnostic techniques, SIT is the official ante-mortem 

test in many species, especially in cervids; however, the 

development of IGRA offers an improvement in the 

diagnostic accuracy not only in cervids, but also in Afri-

can buffalo or badgers. Serological tests are especially 

useful in wildlife because they are economically attrac-

tive, technically easy, the large-scale surveillance is pos-

sible in a short period of time and tests can be applied 

either in live or dead animals. Lateral flow tests are very 

convenient for use in wildlife since they are effortless to 

perform and give rapid results; however, Se and Sp of 

these tests must be still improved. Variability in the Se 

and Sp of the same technique has been observed accord-

ing to the target species (i.e. SIT in cervids and badgers) 

and, therefore, the testing strategy should be also adapted 

to the target species, as well as to the logistic and budget 

constraints. According to the information collected, sero-

logical tests for MTC-antibody detection are especially 

important in wildlife, since the possibility of being used 

together with the post-mortem examination supposes 

a sensitive and cost-effective means of disease surveil-

lance that should be maintained or implemented; while 

tests based on CMI are still relevant in wild ruminants. In 

farmed or easily handled wild animals, it is important to 

highlight that combinations of cellular and humoral tests 

could enhance the diagnostic accuracy, since animals in 

different stages of the disease would be detected. Future 

studies are still needed in the area of wildlife TB diagno-

sis in order to reach an accurate, rapid and cost-effective 

diagnosis in target species. Moreover, testing must be 

consistent over space and time to allow proper disease 

monitoring.
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Mycobacterium tuberculosis complex; NPV: Negative predictive value; OD: 
Optical density; OIE: Office international des epizooties; PBMC: Peripheral 
blood mononuclear cells; PBS: Phosphate buffered saline; PCR: Polymerase 
chain reaction; PPV: Positive predictive value; PRISMA: Preferred reporting 
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items of systematic reviews and meta-analyses; qRT-PCR: Quantitative reverse-
transcription polymerase chain reaction assay; RPMI: Roswell Park Memorial 
Institute medium; SCITT: Comparative intradermal tuberculin skin test; Se: 
Sensitivity; SIT: Single intradermal tuberculin skin test; Sp: Specificity; TB: Tuber-
culosis; TBL: TB like lesions.
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