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T
he novel coronavirus disease, COVID-19, has rapidly 

and abruptly changed the world as we knew it in 2020. It 

has become the most unprecedented challenge to analyt-

ic epidemiology (AE) in general and signal processing 

(SP) theories specifically. In this regard, medical imaging 

plays an important role for the management of COVID-19. SP 

and deep learning (DL) models can assist in the development 

of robust radiomics solutions for the diagnosis/prognosis, 

severity assessment, treatment response, and monitoring of 

COVID-19 patients. 

We intend to present not only an overview of the cur-

rent state, challenges, and opportunities of developing SP/

DL-empowered models for the diagnosis/prognosis of

COVID-19 but also the latest developments in the theoreti-

cal framework of AE and hypersignal processing (HP) for

COVID-19 from the points of view of both SP and medi-

cal/pandemic control professionals. The imaging modali-

ties and radiological characteristics of COVID-19 are then

discussed. SL/DL-based radiomic models specific to the

analysis of COVID-19 infection are described covering four

domains, which encompass the segmentation of COVID-19

lesions, models for outcome prediction, severity assessment, 

and diagnosis/classification models. This work leads to the

identification of significant open problems and opportunities
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that challenge the state of the art of COVID-19 pandemic 

methodologies and solutions.

Introduction
We are facing an abruptly changed world because of the 

novel coronavirus outbreak identified as a pandemic by the 

World Health Organization (WHO). Given its high-contin-

gency nature; relatively unknown behavior; systemic compli-

cations; and adverse effects, ranging from human fatalities to 

economic recessions across the world, it is of importance to 

develop efficient processing/learning models to help over-

come this pandemic and be prepared for potential future ones. 

The reverse-transcription polymerase chain reaction (RT-

PCR) is the standard testing approach for the early diagno-

sis of suspected cases of COVID-19. The unavailability of 

enough RT-PCR testing kits, particularly in areas severely 

affected by the pandemic, and the test’s relatively high and 

variable false-negative rate [i.e., highest during the first five 

days (up to 67%) and lowest on day 8 (21%) [1]] resulted in 

focusing on medical image radiomics [2] as a complementary 

source for diagnosis/prognosis. 

Recent studies [3]–[5] have shown that chest computed 

tomography (CT) scans and chest radiography (CXR) reveal 

informative features of COVID-19 that can assist in the mon-

itoring, severity assessment, and treatment of COVID-19 [6], 

[7]. According to the guidelines provided by the WHO, the 

use of chest imaging as a complementary source of data is 

recommended in different scenarios and stages of COVID-19 

to help radiologists and physicians detect and evaluate the 

disease more accurately.

CT and CXR can decrease the false-negative rate at both 

the admission and discharge times. It is worth mentioning 

that chest CT has a key role for the diagnosis of COVID-19 

in the very early stages of the infection and also to set up 

a prognosis. Comparisons between CT and RT-PCR at the 

early stages of COVID-19 infection show that CT abnormali-

ties may appear before PCR positivity. In other words, CT 

has a greater sensitivity during the early stages of the infec-

tion. In addition, false negatives in RT-PCR results occur at 

both admission and discharge.

Finally, CT plays its role over the course of the disease 

for evaluating changes in severity and treatment adjust-

ments. The key power of chest imaging is in its prognos-

tic value to identify the severity of the disease as well as 

the likelihood of needing hospitalization and/or admission 

to the intensive care unit (ICU), especially in countries 

with limited human and economic resources. However, the 

interpretation of chest images for confirming suspected 

cases of COVID-19 and a severity assessment of the dis-

ease based on imaging findings are time-consuming and 

may be challenging.

The interpretation of CT and CXR images should be per-

formed by expert thoracic radiologists, who may not be eas-

ily accessible, especially during an outbreak when the number 

of suspected cases of COVID-19 is growing exponentially. To 

address these issues, there has been a surge of interest in devel-

oping SP and DL techniques to extract informative features 

from chest images and help in the fast detection and risk assess-

ment of the COVID-19 infection. 

We would like to mention that, although research works on 

COVID-19-related topics have started very recently, the exten-

sive number of research works that have been  disseminated 

during this short period of time makes the topic mature. More 

specifically, extensive research works on the applications of 

signal/image processing and artificial intelligence (AI) for 

COVID-19 led to almost 1,200 publications by the end of 

November 2020, obtained from PubMed with the keyword 

“COVID-19” and either of the following keywords: “signal 

processing”, “machine learning”, “AI”, or “deep learning”. 

These publications cover several aspects/applications of SP/DL 

for COVID-19, including its diagnosis, classification, detection, 

segmentation, severity assessment, and survival analysis. 

Review methodology
We defined the goal of our article as “identifying the gaps and 

developing a conceptual framework of the topic.” Consequently, 

we followed the two phases of planning and conducting before 

reporting and dissemination [8], explained as follows:

 ■ Planning: The diagnosis/prognosis of COVID-19 images 

was identified as the research question in the planning phase. 

The search strategy was based on the selected databases—

Google Scholar and PubMed—with the selected keywords: 

“COVID-19” and (“Signal Processing” or “Machine 

Learning” or “AI” or “Deep Learning”). For any articles 

found, the reference list was also checked. To broaden the 

focus, not only the published articles but also preprints in 

Arxiv and Medrxiv were considered, along with both imple-

mentation and discussion articles, so as not to exclude useful 

insights. Since COVID-19 is an emerging field, we did not 

restrict the publication date of the included articles.

 ■ Conducting the review: Following the defined review pro-

tocol, articles were retrieved. In this phase, articles whose 

methods were already included in other ones and that did 

not have added value for our research and/or had few cita-

tions were further excluded. Furthermore, we excluded 

articles without sufficient details and evidence. Data 

were, accordingly, extracted from the remaining articles, 

categorized, and summarized in a narrative manner. 

In summary, in this feature article, we aim to present an 

overview of the current state of, challenges in, and opportu-

nities for developing SP/DL-empowered models for the 

diagnosis and prognosis of the COVID-19 infection based 

on medical images. The article mainly focuses on problems 

and applications as well as how SP/DL models can be used 

to address those identified. In brief, we cover the following 

main topics:

 ■ We focus on SP techniques specific to COVID-19 images 

and target specialized SP aspects of COVID-19 diagnoses, 

including AE and HP theory as advanced processing solu-

tions of COVID-19.

 ■ An investigation of the required medical background re -

lated to COVID-19 for the development of advanced 
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SP/DL models is included. An overview of different 

 characteristics of COVID-19 that can be observed on chest 

images is presented.

 ■ The potential applications of SP/DL-based models for the 

diagnosis and predictive prognosis of COVID-19 infec-

tions using medical images as the main source of data are 

introduced. 

 ■ DL radiomic directions specific to the analysis of COVID-19 

infection are presented. We focus on DL-based solu-

tions from the following four different aspects: the seg-

mentation of COVID-19 lesions, models for outcome 

prediction in COVID-19 patients, DL/SP models for 

severity assessment, and the diagnosis and classifica-

tion of COVID-19 cases. 

 ■ We introduce the challenges of, open problems with, and 

opportunities for developing intelligent and autonomous 

models for the diagnosis/prognosis of COVID-19. 

Distinction from existing articles
As a final note, we would like to briefly elaborate on the dif-

ferences between this article and a recent feature article [2] on 

radiomics and other surveys/tutorials [3]–[5] on COVID-19. 

In particular, [2] is focused on handcrafted and DL-based 

techniques for extracting features from cancer-related images. 

Cancer diagnosis is essentially a completely different task 

than that of COVID-19 analysis, which requires its own spe-

cific techniques and solutions. For instance, while nodules 

have solid shapes and defined locations, COVID-19 infection 

areas could be multifocal, ill defined, and diverse in pattern or 

(morphology). Therefore, the traditional radiomics filters are 

not applicable to the latter. 

Furthermore, images from patients with pulmonary mali-

gnancies contain far fewer motion artifacts compared to  

COVID-19 ones, where patients suffer from dyspnea, calling for 

more advanced artifact-reduction techniques. DL models devel-

oped for cancer radiomics are also not transferable to COVID-19 

without modifications. This is mainly due to the fact that, in a 

patient with COVID-19, a large number of slices may be affected, 

for which 3D analysis and more powerful resources are required. 

With regard to differences with recent surveys/tutorials on 

COVID-19 research, [3] is limited to DL techniques. In this 

article, however, we also focus on SP modeling, applications, 

required medical background, and challenges/open problems. 

The work in [4] is more focused on the medical background 

and imaging modalities, and AI models are not discussed in 

a separate section, compared to this article, where different 

models and applications are separated and discussed. In [5], 

the authors review a subset of DL models without referring to 

SP methods and challenges. 

AE and AI-based HP for COVID-19  
image diagnoses
The worldwide outbreaks of COVID-19 and other contempo-

rary contagious diseases have triggered a wide scope of trans-

disciplinary studies on epidemiology for their systematic 

treatment, control, prediction, prevention, management, and 

decision optimization. The transdisciplinary investigations 

into the COVID-19 pandemic have led to the emergence of 

AE underpinned not only by epidemiology, biology, and med-

ical sciences, but also by computer, AI, big data, information, 

and signal and system sciences as well as mathematics, sociol-

ogy, and economics. 

Although the clinical features and imaging manifestations 

of COVID-19 commonly share certain characteristics, the mis-

match between them is a challenging issue for its diagnosis. 

Furthermore, in some cases, there is a considerable mismatch 

between PCR and imaging manifestations. To move toward an 

effective detection/diagnosis and prevention plan for treatment, 

it is crucial to jointly incorporate epidemiology and imaging 

manifestations. In this section, therefore, we focus on AE and 

formal models of DL. This leads to the “DL Radiomics Spe-

cific to COVID-19” section, where DL applications will be 

explored and described.

AE models of COVID-19
AE is a transdisciplinary study of the cognitive, theoretical, and 

mathematical models of COVID-19 and other contagious dis-

eases. It is recognized that AE may be better studied by big 

data explorations at the macro level rather than merely biologi-

cal analyses at the micro level so as not to lose the forest for the 

trees [6]. The decision model of COVID-19 diagnoses may be 

described by a Cartesian product of the sets of symptoms [6] 

and test results.

Definition 1
Let the set of symptoms of COVID-19 be
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where × represents a Cartesian product. The terms T L;  and 

F L;  denote a Boolean logical variable for true or false, 

respectively. The diagnosis results are classified in the catego-

ries of symptomatic positive, susceptibly positive, susceptibly 

negative, and negative. The big-R notation in (1) [9] is defined 

as follows.

Definition 2
The big-R calculus is a recursive operator for neatly manipu-

lating a finite or infinite sequence of recurrent structures and a 

series of embedded functions, i.e.,
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The big-R notation may not only reduce 

the complexity of problem modeling but 

also enhance the efficiency in recursive 

inferences for hard problems. It is necessary 

for complex structure or behavior model-

ing, as demonstrated in the cases of (6)–(9), 

as well as DL in (12) and (13). Equation (1) 

reveals that many important symptoms and 

diagnoses of COVID-19 are in the domain 

of advanced SP as a foundation for COVID-19 diagnoses.

In AE, the reproductive ratio R0  of a contagious disease is 

modeled as an exponential transmission series ( )N tinf  on the 

t0 + kth day, which is estimated by a product of initial infec-

tions ( )N tinf  and the average reproductive rate raised to the  

kth power: 

 0( ) ( ), . , , ( ) .N t k R N t R k N t1 0 0 0inf inf inf
k

0 0 0 02 !$+ =
/

 (3)

Definition 3
The average reproductive rate of a pandemic transmission is 

reduced to the kth root of the average ratio between the num-

ber of infections ( )N t kinf 0 +  cumulatively infected at t k0 +  

by each initial infection ( )N tinf 0 , i.e., 
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For instance, the WHO has empirically estimated the R 0  of 

COVID-19 to be in the range of 2.24–4.00, which is consider-

ably higher than values obtained in rigorous analyses with real-

world data according to (3) and (4) treating a long series of 

macropandemic signals. 

The reproductive rate R0
r  in AE has been adopted as the 

key indicator i  for the congruous severity classified in two 

categories by the threshold . ,R 1 00 =r  i.e.,
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However, when investigating the nature of pandemic dynam-

ics to rigorously predict pandemic trends, we found that, to 

model more general and complex pandemic dynamics, the 

reproductive rate must be treated as a series of variables 

( )R t0  over time. This finding has led to the formal model of 

the series of the dynamic reproductive rates of pandemics.

Definition 4
The series of the dynamic reproductive rates of COVID-19 is 

recursively determined by a long chain of causal probabilities 

over time:
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Simulations based on real-world data have provided highly 

accurate predications based on the mathematical model of the 

AE theory and its dynamic predictability 

for the pandemic hypersignal series [6].

HP for COVID-19 image diagnoses
Hypersignals are a general structure of 

abstract or real-world signals beyond 1D or 

its parallel compositions. HP intends to 

provide a unified mathematical model for 

advancing 1D signal (voice and time series) 

processing to 2D (images) and nD (generic 

hypersignals) processing [9]. The hypersignals may be 

embodied by sequences of images (videos), language expres-

sions and semantics, knowledge structures, neural networks, 

and AI systems. Therefore, HP demands novel theories, math-

ematical means, and algorithms.

Definition 5
General nD hypersignals in the framework of HP theory are 

modeled as follows:
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where B stands for a byte, T represents time, and H  is an 

instance of a general abstract hypersignal.

Although classic 1D signals, such as a time series and its 

counterpart in the frequency domain, in general and a voice sig-

nal in particular may not be involved in COVID-19 diagnoses, they 

are fundamentally compatible with HS as one of its dimensions.

Definition 6
The hyperstructure model (hyper-SM) of complex images  

as hypersignals is formally described in the following  

color schemes: 

Cancer diagnosis is 

essentially a completely 

different task than that of 

COVID-19 analysis, which 

requires its own specific 

techniques and solutions.
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where the 2D frames are represented in six types, including 

FG (gray), FB (black/white), FR)  (red), FG)  (green), FB)  

(blue); the composite color frame FC is represented by a 

Cartesian product of the three primitive 

color types ( ,FR)  ,FG
)  ).FB)  Although 

gray-scale images are normally used in 

COVID-19 diagnoses, user interfaces of 

medical images widely tend to use color 

representation for doctors, technicians, 

and patients.

A paradigm of using HP for COVID-19  

is represented by image frame algebra (IFA) 

[9], which is a set of algebraic operators for-

mally defined on the generic mathematical model of images 

and video frames modeled as SMs based on (8). IFA encom-

passes formal algebraic operators in the categories of logical, 

arithmetic, color manipulation, morphology, pattern recogni-

tion, and analytic operators. The novel analytic operators of 

IFA are image differentiation, similarity, classification, recog-

nition, and image knowledge base manipulations. 

Definition 7
The mathematical model of image differentiation 

( , )I IFG FG1 2; ;d  for COVID-19 image diagnosis according 

to IFA is as follows:
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A COVID-19 image differential diagnosis (IDA) algorithm 

has been devel oped in our labs based on (9). The IDA algo-

rithm is designed for diagnosing suspected COVID-19 patients 

using images of affected lung with two approaches: 1) time and 

b) spatial dif ferentiation of the images:
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where the first model expresses a sequential differentiation of 

image series with respect to time, and the second model 

denotes a differentiation between the left and right images of a 

symmetric structure, such as the lungs or two hemispheres of 

the brain. 

The IDA algorithm is implemented in MATLAB, which 

processes and diagnoses suspected infected lung images by 

efficient and accurate hypersignal manipulations. The time 

series differential method may be applied to patients whose 

historical (heathy) lung image is available; however, the spa-

tial differential method will be adopted for patients by using 

current left and right images, where one of them may be mir-

rored by 180° rotation horizon tally. Both methods may also be 

implemented by comparing a patient’s image against a stan-

dard reference image.

For instance, the results of COVID-19–affected lung imag-

es, as shown in Figure 1, may be diagnosed according to the 

IDA algorithm, where the highlighted spots are symptoms or 

diagnosed outcomes. The results may be 

further quantitatively analyzed against cer-

tain measures, such as the severity, affected 

ratio, dynamic development, and effect of 

treatments. Therefore, based on the IDA and 

IFA, fast screening, AI diagnosis, real-time 

monitoring, early warning, and rapid reac-

tion can be enabled for COVID-19 diagno-

ses and treatments in hospitals, community 

centers, and homes. Further examples are 

discussed in the “Imaging Modalities and Radiological Char-

acteristics of COVID-19” and “DL Radiomics Specific to 

COVID-19” sections.

DL in HP for COVID-19 image diagnosis
Learning is a cognitive process that cumulatively acquires 

knowledge or adaptively generates behaviors and skills. 

Machine learning (ML) mimicking the brain may be formally 

described as follows.

Definition 8
ML is classified into six categories: object identification, clus-

ter classification, pattern recognition, functional regression, 

behavioral generation, and knowledge acquisition as follows: 

FIGURE 1. A formal diagnosis of COVID-19–affected lung images by IFA. 

AE is a transdisciplinary 

study of the cognitive, 

theoretical, and 

mathematical models 

of COVID-19 and other 

contagious diseases.
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where X is a given variable vector or matrix of characteristic 

attributes of a pattern P, such as a frame of an image, a seg-

ment of voice, a stream of video, and a sequence of sentenc-

es; (·)f  denotes a certain function on X; ( )c X  is a formal 

concept; and >  is a composition of a concept (·)c  with exist-

ing knowledge K. The last category of machine knowledge 

learning was identified and developed by Yingxu Wang. 

The recent technologies of deep neural networks (DNN) 

and recurrent neural networks (RNNs) for DL provide a prom-

ising approach to generic ML. A multilayer (k), multioutput (m) 

artificial neural network (ANN), ANN(n,k,m), is illustrated in 

Figure 2. The ANN(n,2,2) neural network can be recursively 

composed by {[3 · ANN(n, 1, 1)] ° [2 · ANN(3,1,1)]} in the 

given topological configuration, where ° represents a compo-

sition between two adjacent layers of the ( , , )n m1ANN 1  and 

( , , )m m1NNA 1  networks.
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recursively configured single-layer, multioutput ANNs, which 

may be coordinately trained through all layers, i.e., 
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where ( )X R x ti
n

i
1

0
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1

1= =  is the initial input vector, and W1
= 

( )R w ti
n

i0
1

1

1

1=  is the primitive weights corresponding to each 

input in .X1

Many important and hard problems in ML are characterized 

as dynamic sequences of finite or infinite lengths. Such problems 

include video stream recognition, speech recognition, language 

translation, machine knowledge learning, and cognitive knowl-

edge base manipulations as well as COVID-19 applications.
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where the activation function f is normally a continuously dif-

ferentiable function, such as a sigmoid function for facilitating 

a least-square optimization during training.

DL methodologies underpinned by DNNs and RNNs 

have paved the way for solving a wide range of hard AI prob-

lems in COVID-19-related applications, as reviewed in the 

following sections of this article, particularly those of lung 

image diagnoses, chest image manifestations, related heart 

and brain image analyses, and pretrained neural networks for 

detecting typical patterns of COVID-19-related symptoms. 

However, it is noteworthy that DL tech nologies may not be 

the only solution for COVID-19 diagno ses and rapid analyses 

because DL theories and technologies for unsupervised, non-

datadriven, and training-free neural networks are yet to be 

advanced and matured.

The fundamental theories of both AE and HP reveal the 

nature of COVID-19 and a rigorous approach to explain vari-

ous practices in COVID-19 epidemiology and image diagnosis 

[6], [7]. They introduce mathematical rigor into COVID-19 

pandemic analytics, which provides an indispensable frame-

work for developing SP/ML models and algorithms for the 

manipulation of complex COVID-19 epidemiology and image 

processing. The applications of the formal models developed 

in the “AE and AI-Based HP for COVID-19 Image Diagnoses” 

section are demonstrated in the following sections throughout 

this article.

Based on the formal framework of COVID-19 epidemi-

ology, the mathematical, methodological, and algorithmic 

insights on the COVID-19 pandemic have been explained 

for not only medical and pandemic control professionals but 

also for the SP community. The links between the overarch-

ing theories in this section and the state of the art of typical 

technologies and practice across the “Imaging Modalities and 

Radiological Characteristics of COVID-19,” “DL Radiomics 

Specific to COVID-19,” and “Challenges, Open Problems, and 
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FIGURE 2. A general multilayer, multioutput deep ANN(n,k,m). 
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Opportunities” sections are synergized, supported by a com-

prehensive literature tutorial. 

The generic methodologies developed in the “AE and AI-

Based HP for COVID-19 Image Diagnoses” section has led to 

the “Imaging Modalities and Radiological Characteristics of 

COVID-19” section for providing a set of COVID-19 imaging 

modalities and their radiological characteristics, which encom-

pass a wide scope of advanced technologies, including CT, 

CXR, ultrasound, and MRI, as well as the multisystemic com-

plications of COVID-19. It is recognized that all of these typical 

COVID-19 imaging technologies are highly dependent on the 

unified hyper-SM of generic image cognition and the mathemat-

ical model of IDAs for efficient COVID-19 image processing. 

The links between the “AE and AI-

Based HP for COVID-19 Image Diagnoses” 

and “DL Radiomics Specific to COVID-19” 

sections are demonstrated by DL technolo-

gies for radiomics specific to COVID-19 

as medical applications of the general SP/

ML methodologies, as modeled in the “DL 

in HP for COVID-19 Image Diagnosis” 

section. Particular examples are elabo-

rated in the case studies of COVID-19 

lesion segmentation, adverse outcome prediction, severity 

assessment, and diagnostic  classifications. 

The basic research in the “AE and AI-Based HP for 

COVID-19 Image Diagnoses” section has helped with the 

recognition and prediction of the trends in, challenges of, and 

opportunities for COVID-19 image diagnosis technologies dis-

cussed in the “Challenges, Open Problems, and Opportunities” 

section on a solid basis. A set of challenges and open problems 

will be discussed in depth for developing advanced COVID-19  

diagnosis/prognosis models and technologies in the “Chal-

lenges, Open Problems, and Opportunities” section. 

Imaging modalities and the radiological 
characteristics of COVID-19
The Fleischner Society and American College of Radiology, 

among others, recommend CT scans and CXR for COVID-19 

patients with moderate to severe cases [10]. Among the chest 

imaging modalities, CXR is less sensitive and less specific 

compared to CT. The advantages of CXR over CT include its 

fast availability, ease of execution, and minimization of in-

hospital transmissions. In addition, the CXR findings correlate 

well with CT findings. 

In some situations where a fast assessment is necessary, the 

point-of-care lung ultrasound offers a radiation-free imaging 

modality with higher accuracy in patients without any previ-

ous cardiopulmonary disease [11]. Several recent studies have 

been conducted to investigate the specific characteristics of 

COVID-19 on the aforementioned chest images. 

Different types of chest imaging patterns and distribu-

tions of lung involvement are related to the severity/stage 

of the COVID-19 infection and can help construct predic-

tive SP/DL models to make decisions on hospital admission 

 versus home isolation, non-ICU versus ICU hospital admis-

sion, monitoring of the treatment process, and the time of 

home discharge. In what follows, we present applications of 

different imaging modalities for COVID-19 diagnosis/prog-

nosis. For each modality, we also present the required medi-

cal background related to COVID-19 for the development of 

SP/DL models.

CT scans
There has been considerable attention on CT imaging as the 

most useful imaging modality for representing COVID-19 

infections. Figure 3 shows common CT patterns in COVID-19 

patients, where the most prevalent are “ground glass opacities” 

(GGOs) and “consolidations.” A GGO is a hazy transparent 

opacity that does not conceal lung vessels 

and bronchial areas. In a consolidation pat-

tern, the air in the alveoli and peripheral 

bronchioles is replaced by a fluid, such as 

pus, water, blood, or an inflammatory mate-

rial, obscuring the underlying distal airways 

and vascular margins. 

In a research study on 645 confirmed 

COVID-19 patients, 88% of patients showed 

either pure GGOs, consolidation, or both. 

The appearance of pure GGO is more common in the early stage 

of the disease, while the appearance of GGOs with consolida-

tions is more frequently seen in the progressive stage [12]. 

Another common CT pattern associated with COVID-19  

is the so-called “crazy paving,” referring to thickened 

 interlobular septa and intralobular interstitium superimposed 

on GGOs. The crazy-paving pattern is more commonly seen 

(a) (b)

(c) (d)

FIGURE 3. The most common CT patterns in COVID-19 patients. (a) An 

axial CT image of a 38-year-old man with bilateral ground glass opacities 

(GGOs) distributed in the posterior lung regions [13]. (b) An axial CT 

image of a 60-year-old woman showing scattered consolidation pat-

terns with mainly peripheral distribution [13]. (c) An axial CT image of 

a 51-year-old man showing the appearance of GGOs (white arrow) and 

consolidations (red arrows) [13]. (d) A crazy-paving pattern in the axial 

CT image of a 43-year-old woman [13]. All CT images were obtained 

without contrast enhancement.

The advantages of 

CXR over CT include 

its fast availability, 

ease of execution, and 

minimization of in-hospital 

transmissions.
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in the progressive stage of the disease [12]. The appearance 

of the crazy-paving/consolidation patterns as a sign of disease 

progression/ severity can help radiologists evaluate the disease 

stage. Interlobular septal thickening, air bronchogram, and 

vascular enlargement are other CT findings in COVID-19 

patients [12].

Distribution of lung involvement in COVID-19
CT findings of COVID-19 infections demonstrate that most of 

the COVID-19 patients have had “bilateral” and “multifocal” 

lung involvement. Bilateral involvement means that the 

lesions are distributed in both the right and left lungs, and 

multifocal involvement implies that more than one lobe (from 

five lobes) of the lung are affected by the disease. A systemat-

ic review of COVID-19 imaging findings declared that, in 17 

out of 36 studies, bilateral lung involvement was much higher 

than unilateral lung involvement [12].

Researchers also showed that COVID-19 lesions, in most 

of the cases, are distributed in the lower lobes and have a 

“peripheral” instead of central distribution [12], [14]. Simi-

larities between the CT features of COVID-19 and those of 

other viral pneumonias pose limitations in using CT images to 

diagnose COVID-19. However, in a study of 58 patients [15], 

six of seven radiologists could distinguish COVID-19 from 

other types of viral infections with an accuracy of 67%–93% 

and a specificity of 93%–100%. Peripheral distribution and 

GGOs were the most critical characteristics 

for distinguishing COVID-19 from non-

COVID-19 pneumonia [15].

Correlation between CT findings and  
severity ∕ stage of the disease
Since CT images provide high sensitivity 

for detecting COVID-19, they are reliable 

for developing SP/DL-based diagnosis 

models. Detecting the pattern of pulmonary involvement in 

COVID-19, including consolidation and/or crazy-paving pat-

terns in chest CT images by SP/DL-powered networks, can 

help evaluate the disease severity. Quantifying the extent of 

lung involvement in COVID-19 patients is a deterministic cri-

terion for assessing the disease’s stage/severity. 

Different CT severity measures have been introduced in the 

literature that can be mapped to disease severity. The manual 

calculation of these measures by radiologists is tedious and 

time-consuming. Severity measures that can be automatically 

quantified by SP/DL models are as follows:

Percentage of opacity 
The percentage of opacity (PO) measures the volume of 

COVID-19 abnormalities related to the whole lung volume. It 

was reported in [16] that the POs for COVID-19 patients are 

divided into three different categories, as shown in Table 1.

Percentage of high opacity and lung high-opacity score 
The percentage of high opacity (PHO) and lung high-opacity 

score (LHOS) introduced in [17] quantify the volume of con-

solidation regions in the whole lung and across the  

lobes, respectively.

CT severity score
The authors of [18] used a severity measure for COVID-19 

patients, referred to as the CT score, that measures the extent of 

involvement based on a semiquantitative scoring for each of the 

five lobes. The score ranges from zero to five and is computed 

as shown in Table 2. The overall CT score would be between 

zero and 25, which is the sum of the lobar scores. (Some stud-

ies use a different scoring scale, which ends up with a CT score 

between zero and 20 [14]). 

Francone et al. [18] conducted research on 130 COVID-19 

patients and evaluated the correlation between the CT score 

and disease severity. They showed that the CT score is strongly 

correlated with the COVID-19 clinical stage and severity. For 

patients in the severe or critical categories, the CT score is 

significantly higher than for patients in the 

mild category [18]. A CT score greater than 

18 (out of 25) can be used as a predictor of 

mortality in COVID-19 patients [18]. 

The CT score is highly correlated with a 

patient’s age. In [18], the authors revealed that 

the CT score in patients older than 50 years 

was significantly higher than those in the age 

range of 26–50 years. For patients in the late 

stages of the disease, the CT score is higher than for those in the 

early stages. The CT score, together with the patient’s age, can be 

used to predict a COVID-19 patient’s death.

CXR
Some studies report that CXR images often show no lung 

infection in COVID-19 patients at early stages, resulting in a 

low sensitivity of 69% for the diagnosis of COVID-19 [19]. 

However, CXR is helpful for the prediction of the clinical 

Table 1. The correlation between the PO measure  
and COVID-19 stage [16].

COVID-19 Stage PO

Moderate, median (interquartile range) 2.2 (0.4–7.1) 

Severe, mean ± std 28.9 ± 19.2

Critical, mean ± std 49.6 ± 14.8

std = standard deviation. 

Table 2. The scoring system for measuring the CT severity score [18].

Lobe involvement rate Score

No involvement 0

Involvement of less than 5% 1 

Involvement from 5% to 25% 2 

Involvement from 26% to 50% 3 

Involvement from 51% to 75% 4 

Involvement of higher than 75% 5 

Since CT images provide 

high sensitivity for 

detecting COVID-19, they 

are reliable for developing 

SP/DL-based diagnosis 

models.
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 outcome and detection of COVID-19 in areas with limited 

access to reliable RT-PCR testing kits. 

The most commonly observed patterns in CXR of COVID-19  

patients are GGOs and consolidations with bilateral peripheral 

distribution [19]. The pre-existence of medical conditions, such 

as heart or other lung diseases, makes the interpretation of CXR 

images challenging. Therefore, the interpretation of CXRs in 

younger patients would be more reliable and predictive. 

In [20], the authors developed a scoring approach for the sever-

ity assessment and outcome prediction of COVID-19 patients 

between the ages of 21 and 50 years based on their CXR images. 

In their scoring system, each lung is divided into three zones. A 

binary score is then given to each zone based on the appearance/

absence of COVID-19 abnormalities, and the total score is in the 

range of zero to six. Their study on 338 patients demonstrates that 

there is a significant correlation between a CXR score greater 

than two and hospital admission. They also reported that a CXR 

score greater than three could predict the need for intubation. 

Using a lung severity measure, referred to as the radio-

graphic assessment of lung edema (RALE) score, the authors 

in [21] quantify the extent of lung involvement and compute 

correlations with the risk of ICU admission for COVID-19 

patients. Recent research works have demonstrated the poten-

tials of developing SP/DL-based models for grading the disease 

stage and performing outcome prediction using CXR images.

COVID-19 CT scans and CXR data sets
To ensure model generalization for clinical use, it is beneficial 

to train SP/DL models based on a diverse set of data sets 

acquired from different scanners and health centers covering a 

wide range of patients. CT images represent different resolu-

tions and contrasts, depending on the type of scanner, image 

acquisition approach, and thickness of the slices. It is, therefore, 

necessary to make CT images consistent before feeding them 

into the processing and learning models. For a list of available 

CT and CXR imaging data sets along with their COVID-19-

related information, please refer to [13] and [22], respectively. 

It should be noted that most of the available data sets con-

tain a specific imaging modality collected based on various 

equipment and protocols. This, combined with the diversity of 

the patient populations, makes the development of ML meth-

ods that generalize well a very challenging task. 

To address this challenge, the Radiological Society of North 

America (RSNA) and the Society of Thoracic Radiology creat-

ed the “RSNA International COVID-19 Open Radiology Data-

base” (RICORD) [23]. RICORD is the first multi-institutional 

and multinational data set of thoracic CT scans and chest X-rays 

of COVID-19-confirmed cases. It comprises 240 thoracic CT 

scans and 1,000 chest radiographs annotated and manually seg-

mented by thoracic specialists. Given the heterogeneity of the 

data and its free availability, this set creates a great opportunity 

for the research community to create better models.

Ultrasound and MRI
Besides the advantages of using CT or CXR combined with 

an RT-PCR test for a correct and precise diagnosis/prognosis 

of COVID-19, these imaging modalities have limitations, 

including diagnostic accuracy, logistic challenges, time-con-

suming assessment, and the use of ionizing radiation [11]. 

Despite the low sensitivity of ultrasound for the diagnosis of 

COVID-19 patients in the mild and moderate categories, lung 

ultrasound has shown high-sensitivity results in critical cases. 

Due to its low cost, portability, ease of use, and being radia-

tion free, lung ultrasound can play a crucial role in the fol-

low-up and monitoring of patients in the ICU. Furthermore, 

ultrasound has been widely used for the diagnosis and monitor-

ing of COVID-19 in pregnant women. 

In Italy, health professionals used lung ultrasound as a 

screening tool and developed a lung ultrasound score for evalu-

ating the severity of the disease in COVID-19 patients [24]. In 

another study with 93 patients, where 27 (29%) of them tested 

positive for COVID-19 by RT-PCR or CT, ultrasound imag-

ing achieved a sensitivity of 89% and specificity of 59% [11]. 

Considering a subgroup of 37 patients without any cardiopul-

monary disease, an assessment based on ultrasound revealed a 

sensitivity of 100% and specificity of 76% [11]. 

Thus, ultrasound represents a valuable imaging modal-

ity for the detection or assessment of COVID-19 sever-

ity, mainly in patients without any medical history 

of cardiopulmonary disease. Table 3 summarizes the 

Table 3. The COVID-19 severity measures based on different imaging modalities.

Reference Modality Severity Measure Lesion ROIs Lung ROIs Quantification Method Range 

[16] CT PO All lesions Whole lungs 
lung volume

lesion volume 0–100 

[14] and [18] CT CT severity score All lesions Lobewise Scoring system 0–20 or 0–25

[17] CT PHO Consolidations Whole lungs 
lung volume

lesion volume  0–100 

[17] CT LHOS Consolidations Lobewise Scoring system 0–20 

[20] CXR CXR score All lesions Three specific zones for each  
lung (a total of six zones) 

Scoring system 0–6 

[21] CXR RALE score Consolidations Lung radiographic quadrant Scoring system 0–48 

[24] Ultrasound Lung ultrasound score GGO and  
consolidations 

Six specific regions for each  
lung (a total of 12 regions) 

Scoring system 0–36 
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COVID-19 severity measures based on different imag-

ing modalities.

MRI is a radiation-free medical imaging modality that can 

demonstrate common pulmonary image findings of COVID-19 

pneumonia. However, the American College of Radiology 

recommends that health care practitioners minimize the use 

of MRI for patients with suspected or confirmed COVID-19 

except for absolutely necessary cases [25]. 

MRI scanning has a longer acquisition time and increases 

the risk of disease transmission, which is critical in the case of 

a contagious disease, such as COVID-19. Although best known 

for affecting the lungs and causing respiratory infection, 

numerous research studies and case reports indicate that the 

COVID-19 disease may affect other body organs, such as the 

brain, heart, and kidneys. The complications and dysfunctions 

of other organs due to COVID-19 conditions, usually assessed 

by the MRI technique, are outside the scope of this article.

In summary, investigating the imaging manifestations of 

COVID-19 pneumonia and its radiological characteristics 

can help develop more powerful processing/learning mod-

els and identify new applications of SP/DL in this context. 

The specific imaging features, such as lesions’ “peripheral” 

and “multifocal” distributions, help radiologists distinguish 

COVID-19 pneumonia from other types of community-

acquired pneumonia (CAP). These imaging features can 

be extracted from medical images using SP techniques and 

incorporated in DL-based diagnostic models to enhance the 

model’s overall performance. 

The severity measures, summarized in Table 3, can be 

quantified using DL-based segmentation models by seg-

menting the target regions of interest (ROIs) of the lungs and 

lesions. Radiological research indicates that CXR and ultra-

sound imaging findings can assist in the severity assessment 

and treatment monitoring of COVID-19 patients admitted to 

the ICU, which calls for developing SP/DL-based prognosis 

models using these imaging modalities.

DL radiomics specific to COVID-19
In this section, we first present an overview of potential appli-

cations of SP/DL models for the diagnosis and predictive 

prognosis of COVID-19 infections. Then, we present different 

DL-based radiomic models specific to the analysis of the iden-

tified applications.

Applications
Chest imaging provides an important source of data for the 

diagnosis/prognosis of COVID-19 infection, assessment of the 

treatment response, and monitoring of COVID-19 patients. 

Generally speaking, applications of SP/DL models for 

COVID-19 diagnosis/prognosis can be classified into the fol-

lowing four categories:

 ■ Localizing COVID-19 lesions and identifying their types: 

The pattern and extent of chest imaging findings is related 

to the stage and severity of COVID-19 and affects the 

treatment decision making. In the “Segmentation of 

COVID-19 Lesions” section, we further describe the 

 applications of SP/DL models in localizing the involved 

areas and demonstrating imaging features on CT scans.

 ■ Outcome prediction (COVID-19 prognosis): To efficiently 

manage the limited medical resources during the pandem-

ic, it is vital to accurately predict the risk of poor outcomes 

in COVID-19 patients. Some essential outcomes in 

COVID-19 patients are the 1) mortality risk, 2) progression 

to the severe/critical stage, 3) need for ICU admission/

mechanical ventilation, and 4) length of the hospital stay. 

Predictive models are required to compute the probability 

of poor outcomes to help health-care professionals deliver 

appropriate services to high-risk patients. This application 

domain is presented in detail in the “Predictive Models 

for Adverse Outcome Prediction in COVID-19 Patients” 

section.

 ■ Severity assessment of COVID-19: Chest imaging can be 

used to assess the lung infection severity in COVID-19 

patients. The calculation of the percentage of parenchymal 

involvement and CT severity score can be achieved by seg-

menting the infected regions and lung areas in chest imag-

es. This is required to evaluate and quantify the severity 

and then predict the prognosis of the COVID-19 infection. 

In the “DL/SP Models for COVID-19 Severity 

Assessment” section, we present different SP/DL models 

developed for computing the lung infection rate and CT 

severity score metrics as two commonly used criteria for 

the severity assessment of COVID-19 infection.

 ■ Diagnosis of COVID-19 pneumonia from CAPs: The most 

common COVID-19 symptoms (cough, shortness of 

breath, and fever) overlap with CAP symptoms. CAP is 

mainly caused by a bacterial infection but can also be 

caused by viruses. In most cases, microbiological tests for 

CAP, such as cultures of sputum and blood, are time-con-

suming, with poor sensitivity and specificity, and are not 

enough to identify the main pathogen. Thus, the PCR test 

via nasopharyngeal or oropharyngeal swab has been used 

for the correct identification of the source of the viral 

cause of CAP (like influenza). For COVID-19, a variation 

of PCR test, RT-PCR, has been used as the gold standard. 

Due to the test inaccuracy, the decision on treatment may 

be incorrect, i.e., antibacterial drug therapy can be admin-

istrated to all CAP patients who may not be confirmed as 

COVID-19 positive, but, for patients who test positive for 

COVID-19, this treatment is not required. Cases of nega-

tive results on RT-PCR with persistent COVID-19 symp-

toms are submit ted to chest imaging evaluation. This 

application domain is further discussed in the  

“COVID-19 Classification Models” section, where 

different SP/DL models developed for COVID-19 diag-

nosis are presented.

Segmentation of COVID-19 lesions
In this section, we provide an overview of segmentation 

networks developed in the context of COVID-19. 

Segmentation allows physicians to identify the type and 

location of COVID-19 lesions, evaluate the extent of lung 
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involvement, and quantify the lung severity measures. 

Segmentation-based infection quantification models can be used 

to evaluate the effectiveness of different treatment solutions. 

Since segmentation is the first step of the handcrafted radiomics 

workflow, we also discuss handcrafted 

radiomics in this section.

Imaging modalities used for the  
segmentation of COVID-19 lesions
Since CT images provide the most accurate 

COVID-19 manifestations for the grading 

and evaluation of infections, they have been 

widely used for COVID-19 lesion segmen-

tation. In the literature, some studies [26]–

[28] developed 2D models for the 

segmentation of lung infections in each CT 

slice. There have also been some 3D segmentation models that 

take the 3D CT volumes as input and segment the lung abnor-

malities on a patient-level basis. 

It is worth mentioning that 3D segmentation models, which 

are able to segment areas of infection in the whole lung volume 

and assist in the patient-level assessment of the disease, would 

be more helpful in real practice. However, they need a large 

amount of pixel-level annotated lung volumes for training, 

which is not always practical. Furthermore, the development/

training process of 3D segmentation models is more time-con-

suming as compared to 2D models.

Since the use of portable CXRs is more feasible for patients 

in the ICU, it is essential to develop segmentation models for 

the severity assessment of COVID-19 patients based on CXR 

images. A study conducted based on 2,951 COVID-19 CXR 

images, performed the lung infection segmentation as the 

first step of its COVID-19 diagnosis pipeline [29]. Using a 

human–machine collaboration, the researchers provided the 

first open access COVID-19 CXR data set with ground-truth 

infection masks.

ROIs
The ROIs would be different in COVID-19 segmentation 

models based on the research objective and can be classified 

into the following three main categories:

 ■ Localizing the infection regions without considering their 

types: These studies perform a two-way segmentation 

approach, assigning each pixel of the CT images to either 

an infection or a background class.

 ■ Segmenting different types of COVID-19 lesions: As men-

tioned previously, different types of COVID-19 infections 

can be correlated to the stage/severity of the disease. In this 

regard, some studies have segmented different types of 

COVID-19 lesions under different classes to further evalu-

ate the severity of the disease [26], [30], [31]. For instance, 

a 3D DeepLabv3 segmentation model was proposed in [30] 

using CT images of 4,154 patients. The constructed model 

segments lung regions and different types of COVID-19 

infections, including consolidations, GGOs, pulmonary 

fibrosis, interstitial thickening, and pleural effusion.

 ■ Segmentation of the lungs, lobes, and pulmonary 

regions: Researchers who aim to quantify the extent 

of lung involvement and determine the COVID-19 

severity measures consider segmenting lung/lobe/pul-

monary regions besides the COVID-19 

lesions. Advanced segmentation models 

can be trained to quantify different 

severity measures, such as PO, PHO, 

CT score, and LHOS, based on CT 

images. This will be further discussed 

in the “DL/SP Models for COVID-19 

Severity Assessment” section.

Next, we investigate different DL architec-

tures proposed for the segmentation of 

COVID-19 lung abnormalities.

DL architectures for the segmentation  
of COVID-19 lesions
Due to the distributed nature of COVID-19 infections (as dis-

cussed in the “Imaging Modalities and Radiological 

Characteristics of COVID-19” section), acquiring high-quality 

annotations is a challenging task. Consequently, on the one 

hand, the majority of recent studies leveraged well-established 

segmentation networks as a basis of their model to segment 

COVID-19 areas of infection. On the other hand, some research 

works proposed innovative encoder–decoder networks specifi-

cally designed for the segmentation of COVID-19 lesions. 

Here, we present these two categories.

COVID-19 lesion segmentation via well-established models
Since the U-Net model has shown superior performance for 

medical image segmentation, the majority of models used for 

the segmentation of COVID-19 lung abnormalities are devel-

oped based on it. Other segmentation architectures, such as 

fully convolutional networks, U-Net++, and VB-Net, have also 

been used to segment COVID-19 lesions in chest CT images 

[32], [33]. 

Segmentation models [developed based on convolutional 

neural networks (CNNs)] contain a contracting path (encoder) 

for extracting informative features from the input images and 

an expanding path (decoder) for reconstructing the mask rep-

resenting the ROIs. Adopting pre-existing CNN—like densely 

connected convolutional networks (DenseNet), VGG, and 

residual neural network (ResNet)—blocks in a segmentation 

model’s encoder path will result in extracting higher-resolution 

features from CT images [17], [34]. 

Since COVID-19 lung infections appear at varying sizes 

across the lungs, DL-based segmentation models containing 

only a single kernel size may fail to segment all lesions. In this 

regard, multiscale feature fusion, i.e., the integration of dilated 

convolutions with different dilation rates, can be added into 

segmentation models to help capture COVID-19 lung abnor-

malities in different scales [35]. 

Additionally, the integration of attention mechanisms 

in COVID-19 lesion segmentation studies [31] has shown 

promising results. Given the distributed nature of COVID-19 

Segmentation allows 

physicians to identify 

the type and location 

of COVID-19 lesions, 

evaluate the extent of 

lung involvement, and 

quantify the lung severity 

measures.
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 infections across the lungs, attention mechanisms can improve 

the segmentation performance by ignoring irrelevant features 

and focusing more on helpful regions for the target task. 

Furthermore, to improve the prediction accuracy of 

COVID-19 segmentation models while preserving their com-

putational efficiency, attention gates have been incorporated. 

For example, the authors of [26] proposed a new attention 

mechanism that enables the basic U-Net model to better under-

stand the contextual information associated with COVID-19 

abnormalities from CT slices. SCOAT-Net, proposed in [32], 

is developed based on U-Net++, incorporating spatialwise 

and channelwise attention modules and allowing the success-

ful extraction of helpful features at both the pixel and chan-

nel levels. Their fivefold cross-validation results on a data set 

containing 1,117 annotated CT images from 19 COVID-19 

patients achieved a Dice score of 89.48% 

and a sensitivity of 88.74%, yielding better 

results than other attention-based segmen-

tation networks.

DL-based segmentation models need 

a large amount of pixel-level labeled data 

for efficient training. However, providing a 

high-quality annotated data set for training 

COVID-19 lesion segmentation models is 

challenging for several reasons. First, dif-

ferent types of COVID-19 lesions, such as 

GGOs and consolidations, have shown dif-

ferent shapes, scales, and contrasts. As shown in Figure 4, in 

comparison to lung cancer tumors, which have round shapes 

with clear boundaries from healthy lung tissues, COVID-19 

areas of infection have irregular shapes, nonuniform contrasts, 

and boundaries that are hardly distinguishable from the sur-

rounding regions. 

Second, experts may have different labeling methods, caus-

ing interobserver variabilities. Both inter- and intraobserver 

variabilities might be intensified due to the blurred boundaries 

and irregular shapes of COVID-19 lesions when experts anno-

tate chest images. Such challenges result in a data set that is not 

accurate at the pixel level, which will, in turn, reduce the reli-

ability and performance of the segmentation model. To address 

these issues, one approach [35] is to use a noise-robust loss 

function to efficiently train a COVID-19 segmentation network 

using low-quality training data sets.

Innovative COVID-19 specific encoder–decoder networks
Capitalizing on the fact that COVID-19 infections are distrib-

uted across the lung volume, appearing in varying shapes and 

sizes, some studies have developed innovative models for the 

segmentation of COVID-19 opacifications 

from scratch. These new modeling efforts 

target the following two key challenges of 

COVID-19 segmentation.

On the one hand, the training/fine-tuning 

process of massive segmentation networks 

with tens of millions of learning parameters 

is very expensive and time-consuming. This 

is not acceptable during the pandemic, when 

there is urgency to develop/train robust 

models in a timely fashion. It is necessary 

to design powerful but lightweight segmen-

tation networks for the localization of COVID-19 lesions. For 

example, Qiu et al. [28] proposed a compact (lightweight) 

segmentation network based on 100 annotated CT slices from 

more than 40 COVID-19 patients.

On the other hand, labeling a large amount of data for train-

ing DL-based segmentation models in a short period is imprac-

tical. To address this issue, Fan et al. [27] developed a novel 

COVID-19 lesion network where a parallel partial decoder 

aggregates high-resolution features, and attention modules 

are then implemented to improve the model representations. 

A semisupervised approach is proposed where the segmenta-

tion model can be trained using a few labeled CT images and a 

large number of unlabeled data. 

In [36], researchers proposed an innovative method for train-

ing a COVID-19 lesion segmentation model with no labeled 

data. Using different operations, such as random shape/noise 

generation and image filtering, they synthesized COVID-19 

lesions and inserted them into healthy chest CT scans to make 

training pairs. The experiments on two different public data sets 

indicated their model’s effectiveness. Table 4 provides more 

details on the different COVID-19 lesion segmentation models.

Handcrafted radiomics
Handcrafted radiomics refers to the process of extracting sev-

eral quantitative and semiquantitative features from the ROI 

with the ultimate goal of diagnosis/prediction. Compared to 

DL techniques, handcrafted radiomics is less common in the 

problem of COVID-19 analysis, as it requires a fine delinea-

tion of the infected regions and a prior knowledge of the types 

(a)

(b)

FIGURE 4. A comparison of lung abnormalities in (a) lung cancer [81] and 

(b) COVID-19 pneumonia disease from axial chest CT images [13]. As 

can be seen, lung cancer tumors have round shapes with clear boundar-

ies from healthy lung tissue. In comparison, COVID-19 areas of infections 

have irregular shapes hardly distinguishable from the surrounding 

regions. 

Since COVID-19 lung 

infections appear at 

varying sizes across 

the lungs, DL-based 

segmentation models 

containing only a single 

kernel size may fail to 

segment all lesions.
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of features to extract. Nevertheless, it benefits from more 

interpretability, as the features are self-designed. 

As shown in Figure 5, handcrafted radiomics, utilized in a 

few COVID-19 studies, follows a multistep process. First, the 

infected regions are annotated. Consequently, several features 

are extracted from the segmented regions and fed to a conven-

tional model, such as support vector machine (SVM), logistic 

regression, and decision tree, for the final decision.

Handcrafted features cover a wide range of categories, 

including first-order (basic intensity and shape-based features); 

second-order (texture features extracted from various matri-

ces); and more advanced features, including those calculated 

from Fourier and wavelet transforms. Intensity, shape-based, 

and/or texture-based features as well as other COVID-19-re-

lated features, such as CT quantification metrics, can be lever-

aged [34], [46]. 

The authors of [37] segmented COVID-19 lesions and lung 

fields from the CT images of 1,658 patients confirmed with 

COVID-19 disease and 1,027 CAP patients. Then, based on 

the specific characteristics of the COVID-19 manifestations in 

the CT scans, they extracted a set of handcrafted features to 

diagnose COVID-19 cases from other types of pneumonia. 

First, they calculated the PO measure for each CT vol-

ume and observed that the lung infection rate in COVID-19 

patients is generally higher than in other types of CAPs, saying 

that PO can be helpful in COVID-19 screening models. They 

also extracted other volume features, including the infection 

rate for each lobe and pulmonary segment. Intensity-related 

features were extracted using intensity histograms. Since 

COVID-19 lung involvement is usually bilateral and multifo-

cal, they considered the total number of infection regions for 

each lung field as another discriminating feature. To take into 

account the peripheral distribution of COVID-19 lesions, they 

constructed infection and lung boundary surfaces and mea-

sured the distance of each infection surface from the nearest 

lung boundary surface. Their experimental results showed 

that their diagnosis model could yield the best results when 

using the handcrafted features specifically designed based on 

COVID-19 characteristics. 

Saygili [38] used three different data sets of thoracic CT 

and CXR from different countries and applied classical steps, 

i.e., preprocessing, feature extraction, and classification. The 

feature extractors included histogram of oriented gradient, 

gray-level co-occurrence matrices, scale-invariant feature 

transform, and local binary pattern (LBP). The evaluated clas-

sifiers include the k-nearest neighbors (k-NNs), SVM, bag of 

trees, and kernel extreme learning machine. 

The best results are reported for a binary classification case 

(COVID-19 versus pneumonia and no findings) where the LBP 

+ SVM reaches an accuracy of 99.02%. For another data set, the 

binary classification (positive and negative cases for COVID-19) 

using the LBP + k-NN reaches an accuracy of 98.11%. These 

results show the potential of classical methods, which, unlike 

DL approaches, are not data hungry and take less time to pro-

cess. Radiomics in COVID-19 studies are mostly used in adverse 

outcome prediction models, explained in the next section.

Segmentation guideline
The main building block of most of the discussed segmenta-

tion techniques is CNN, whose performance is greatly 

improved by adding skip connections, resulting in the popular 

U-Net architecture. Although U-Net leads to promising 

results, it is restricted to 2D images; therefore, it is more suit-

able for specific types of COVID-19 images, such as CXRs. 

Lesion

Segmentation Feature Extraction Analysis

Texture

Intensity

Shape

Conventional

Radiomics

COVID-19-

Specific Radiomics

Severity Measures

(PO, PHO, and so on)

Number of

Infection Regions

The Distance of

Lesion Center From

Lung Boundaries

FIGURE 5. A handcrafted radiomics workflow [48]. 
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CT scans can be processed individually, but useful informa-

tion might be lost by not considering the relations between 

consecutive slices. 

When dealing with 3D images, 3D U-Net is a more appro-

priate choice. It, however, suffers from memory limitations and, 

thus, cannot process the whole volume at once. V-Net architec-

ture, on the other hand, benefits from improved convergence 

through residual connections and a better memory footprint. 

All of the discussed segmentation techniques can be 

enhanced by introducing attention modules to obtain detailed 

region boundaries, which is a challenge in COVID-19 segmen-

tation, as the boundaries of the ROI are vague compared to 

other problems, such as lung cancer segmentation. Further-

more, multitask training can be adopted when the data are 

scarce, but labels associated with other tasks are available. This 

approach leads to feature sharing and more generalizability. As 

a final note, it is worth mentioning that, although handcrafted 

radiomics is not a segmentation technique, it relies on accurate 

segmentation, as these features are commonly extracted from 

segmented regions.

Models for adverse outcome prediction  
in COVID-19 patients 
As stated previously, for the efficient utilization of limited 

medical resources during the COVID-19 pandemic, it is criti-

cally important to accurately predict the risk of poor outcomes 

and help health-care professionals deliver appropriate services 

to high-risk patients. Although image-driven features have 

shown high correlation with COVID-19 outcomes, they are 

not the only influential factors. In other words, radiologists 

use image-driven features together with other clinical and risk 

factors to make the final decision. 

Some of the clinical/laboratory pieces of information used 

for COVID-19 outcome prediction are patients’ symptoms, 

laboratory test results, oxygen saturation, and comorbid dis-

eases. Chronic lung diseases, obe sity, hypertension, cardiovas-

cular diseases, and diabetes are examples of comorbidities that 

increase the risk of adverse out comes in COVID-19 pneumo-

nia. In this section, we focus on predictive models that leverage 

chest medical images to esti mate the risk of adverse outcomes 

in COVID-19 patients. In what follows, predictive models are 

categorized and described in terms of their model structure 

and target outcome (Table 5).

Structure of COVID-19 outcome prediction models
To effectively benefit from heterogeneous data resources in pre-

dicting poor outcomes in COVID-19 patients, conventional ML 

methods or hybrid models can be utilized, as explained here. 

Conventional ML models
In some COVID-19 predictive studies, CT radiomics and other 

informative features specific to COVID-19 are extracted from 

chest images in a preprocessing step. Extracted features are 

then used together with clinical/laboratory data to train a shal-

low classifier, such as logistic regression or random forest (RF). 

For instance, Chao et al. [39] extracted lobewise and whole- 

lung involvement metrics from CT images. These CT fea-

tures, together with patients’ clinical information, including 

age, sex, vital signs, and laboratory findings, were then fed 

into an RF classifier to predict the need for ICU admission in  

COVID-19 patients. 

Homayounieh et al. [45] used a multiple logistic regression 

model to predict the risk of ICU admission or death in COVID-19  

patients based on CT radiomics and clinical information. 

Table 5. The predictive models for outcome prediction in COVID-19 patients.

Reference Data Set Size 
Data Set  
Diversity Input Data Model Target Outcome 

[39] 295 COVID-19 
patients 

Multicenter CT scans and clinical/ 
laboratory data 

Random forest Need for ICU admission 

[40] 1,170 COVID-19 
patients 

Multicenter CT scans and blood/urine test 
results 

DL-based hybrid model Risk of mortality 

[41] 1,003 patients Multicenter Clinical, biological, and CT 
radiomics 

DL pipeline for segmentation/DL  
pipeline for predicting severity evolution

Progression risk 

[42] 236 patients Single center Clinical parameters and  
CT metrics 

Logistic regression ICU admission or death versus 
no ICU admission or death 

[43] 60 COVID-19 
patients 

Single center CT scans and clinical/ 
laboratory data 

DL for volume calculation/correlation 
with clinical factors 

Need for ICU admission/
mechanical ventilation 

[44] 31 COVID-19 
patients 

Multicenter CT radiomics Random forest/logistic regression Length of hospital stay

[45] 315 COVID-19 
patients 

Single center CT quantification metrics and  
clinical/laboratory data 

Multiple logistic regression Risk of ICU admission or 
death 

[46] 693 patients Multicenter Radiomic CT features and  
clinical/biological attributes 

Ensemble consensus-driven learning Severe versus nonsevere/
short- versus long-term  
prognosis 

[47] 133 patients in 
the mild stage

Single center Temporal information of CT scans 
and clinical/laboratory data 

A joint multilayer perceptron and  
LSTM network 

Progression from the mild to 
sever/critical stage 
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Their study incorporated clinical data, including patients’ 

symptoms, laboratory test results, oxygen saturation, and 

comorbid diseases. They indicated that CT radiomics, 

including pulmonary involvement and the type of infec-

tions in each lobe, could be superior to radiologists’ visual 

assessments in predicting COVID-19 outcomes. Following 

these studies, one can conclude that adding clinical infor-

mation to CT features can improve the overall outcome pre-

diction performance.

Hybrid models
Hybrid models (such as multiple models, a mixture of 

experts, and ensemble models) are of high importance in the 

field of medical imaging, typically improving the initial 

results. While hybrid models can be developed in a variety of 

forms, they are mostly adopted in COVID-19 analysis in two 

main ways, i.e., a combination of handcrafted features and 

clinical/laboratory information or of DL-driven features and 

clinical/laboratory information: 

 ■ Combinations of handcrafted features and clinical/labo-

ratory information: As explained previously, although 

handcrafted radiomics typically relies on fine annotations 

and prior knowledge of the features to be extracted, it ben-

efits from domain knowledge. Combining the CT hand-

crafted features and clinical/laboratory information in a 

hybrid model, therefore, can help in achieving improved 

overall results. For instance, hybrid models can be devel-

oped to predict the probability that mild COVID-19 

patients deteriorate into the severe/critical stage. In this 

regard, [47] developed a hybrid model where clinical/labo-

ratory data are fed into a multilayer perceptron (MLP). 

The output then is integrated with extracted handcrafted 

features from serial CT scans and fed into a long short-

term memory (LSTM) network followed by fully con-

nected layers. The LSTM network could detect the 

tempo ral dependencies between the vector of features and 

achieved an area under the curve of 0.92 in distinguishing 

mild patients who are more likely to deteriorate into the 

severe/critical stage.

 ■ Combination of DL-driven features and clinical/laborato-

ry information: The superiority of hybrid models that take 

advantage of both image-driven DL features and clinical 

factors is investigated in [40]. In this study, a hybrid model 

is designed to predict the probability of mortality outcome 

in COVID-19 patients. The authors used 19,685 labeled CT 

slices and the blood and urine test results of 1,170 patients. 

The developed model consists of two successive CNN net-

works for analyzing CT images, a DNN network for the 

analysis of clinical features, and a penalized logistic regres-

sion to integrate image-driven DL features and the DL fea-

tures extracted from clinical data to predict mortality 

outcomes. Improvements are reported when image-driven 

and clinical features are jointly used.

Next, the use of different model architectures and data sources 

in predicting COVID-19 adverse outcomes is further investi-

gated in COVID-19 studies.

Target outcomes in COVID-19 patients
Generally speaking, in the context of COVID-19 prognosis, 

the target outcomes of interest include progression to the 

severe/critical stage, mortality risk, the need for ICU admis-

sion/ventilation, and the length of hospital stay. Here, we pres-

ent different COVID-19 outcome prediction models based on 

these target outcomes:

 ■ Risk of progression to more severe stages: Lassau et 

al. [41] developed a DL-based framework incorporat-

ing EfficientNet and ResNet50 as encoders to predict 

the severity evolution in COVID-19 patients using CT 

features and clinical data. Their results, obtained 

based on a multicenter data set containing 1,003 

COVID-19 patients, demonstrated that CT features, 

including the GGO/crazy-paving/consolidation extents 

and total lung involvement, are significantly associat-

ed with the risk of disease progression to the more 

severe stages.

 ■ Mortality risk: Chassagnon et al. [46] used an ensemble of 

classifiers, including nearest neighbor, SVM, decision 

trees, RFs, adaptive boosting, extreme gradient boosting, 

Gaussian naive Bayes, and MLP, to predict a short-term 

negative outcome (death in fewer than four days) or a long-

term negative outcome (patients who did not recover after 

31 days: either died after four days or were still intubated). 

They trained their model based on a multicenter cohort of 

693 patients and obtained promising results on multiple 

external validation sets.

 ■ Need for ICU admission: The authors of [42] implemented a 

logistic regression model to predict the risk of ICU admission/

death based on the clinical parameters and lung involvement 

metrics of 236 COVID-19 patients from one health center. 

Lung involvement metrics can also be used to predict ICU 

admission or death. PO and PHO are calculated in [43] for 

potential correlation with clinical and laboratory factors. The 

obtained results show that patients with a high PO and PHO 

have greater need for ICU admission/mechanical ventilation. 

 ■ Length of hospital stay: The need for short- or long-term 

hospital stay for COVID-19 patients can be estimated 

using handcrafted features followed by an ML classifier. In 

[44], handcrafted features, such as first-order, second-

order, and/or shape features, are extracted from CT images 

and fed into an RF classifier to predict the length of hospi-

tal stay of COVID-19 patients.

In summary, existing research works show that adding clinical 

information, including age, gender, vital signs, and blood and 

urine tests (laboratory findings), to image-driven features can 

improve the overall outcome prediction performance. In par-

ticular, clinical data (including age and gender) should be 

combined with image radiomic features to predict a short- or 

long-term negative outcome. 

Furthermore, CT quantification metrics, i.e., CT features 

including the GGO/crazy-paving/consolidation extents, and 

the total lung involvement are strongly associated with the 

risk of disease progression to the more severe stages. It was 

shown that such CT quantification metrics could be superior to 
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 radiologists’ visual assessments in predicting COVID-19 out-

comes. CT quantification metrics should be jointly used with 

clinical and laboratory parameters, i.e., patients’ symptoms, 

laboratory test results, oxygen saturation, and comorbid dis-

eases, for predicting the risk of ICU admission/death.

Predictive modeling guideline
Since predictive models deal with forecasting COVID-19 out-

comes, they commonly incorporate clinical information as 

well as imaging data. When extracting features from images, 

one can choose to utilize a handcrafted workflow or a DL 

model, depending on the requirements. The former results in 

more interpretable features and requires fewer computational 

resources, while the latter is more computationally expensive 

and less interpretable. DL-based solutions, however, do not 

rely on annotated regions and a prior knowledge of the fea-

tures to extract. In other words, DL techniques learn features 

that contribute the most to the problem at hand, where the fea-

tures do not necessarily resemble radiological findings. 

It should be noted that the use of handcrafted features that 

have been specifically designed based on COVID-19 lung 

manifestations, such as the infection rate in each lung, lobe, or 

pulmonary segment, can help in achieving better results in pre-

dicting COVID-19 adverse outcomes. Hybrid models have been 

developed for COVID-19 outcome prediction research using 

medical images and clinical data. Hybrid modeling is a fruit-

ful direction for the development of more advanced predictive 

models, as hybrid models are more robust in integrating hetero-

geneous data resources and yielding more accurate predictions.

DL/SP models for COVID-19 severity assessment
Severity essentially refers to how much the lungs are affected 

and involved in the disease. COVID-19 severity assessment is 

of high importance due to its unique role in risk management 

and resource allocation. In this section, we present the existing 

severity assessment methodologies from two perspectives, i.e., 

imaging modality and type of assessment (Table 6). 

Imaging modality used for the severity  
assessment of COVID-19
The severity of the COVID-19 can be assessed using both CXR 

and CT scans, where the latter, due to its 3D nature, is capable 

of providing a more accurate estimate of the lung involvement. 

Here, we provide a few examples of recent works using CXR 

or CT for the severity assessment of COVID-19 infection.

CXR for severity assessment
To utilize CXR for severity assessment, irrelevant, low-quali-

ty, and negative COVID-19 images need to be excluded prior 

to the analysis [75]. 

CT for severity assessment
CT scans are utilized by Li et al. [34] and divided into severe 

and nonsevere groups. The nonsevere cases may progress 

into the severe class during the treatment. Since severe and 

nonsevere patients have different treatment regimens, the 

same grouping is performed in [49]. CT scans from multiple 

centers are utilized by Ghosh et al. [50] for a generalizable 

severity assessment. 

Table 6. The COVID-19 severity assessment models.

Reference
Input 
Data Data Set Size Data Set Diversity Objective Segmentation Method Type of Assessment 

[50] CT 509 CT images from  
101 COVID-19 patients 

Multicenter Diagnosis DL, traditional, and 
manual 

Handcrafted 
radiomics 

[73] CT 51 patients One hospital Diagnosis Automatic followed by 
manual adjustment 

Volume calculation 

[16] CT 842 COVID-19 CT volumes for 
segmentation; 126 COVID-19 
patients classified into four clinical 
stages: 6 mild, 94 moderate,  
20 severe, and 6 critical cases 

One hospital Progression assessment DL Volume calculation 

[34] CT 531 thick-section CT scans  
from 204 COVID-19 patients 

One hospital Progression assessment DL Volume calculation 

[75] X-ray 131 portable CXR images  
from 84 COVID-19 patients 

One public data set Diagnosis Not required DL

[49] CT 176 patients Seven hospitals with  
different scanners 

Diagnosis DL Volume calculation 

[76] CT 1,110 COVID-19 patients One public data set Diagnosis Traditional Handcrafted 
radiomics 

[74] CT 346 COVID-19 patients Two hospitals Progression assessment DL DL

[77] CT 99 COVID-19 patients Two institutions Correlation with clinical 
factors 

DL Handcrafted 
radiomics 

[78] X-ray 468 COVID-19 patients One hospital Progression assessment Not required Siamese neural  
networks
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As stated previously, segmentation models are, typically, 

used to quantify different severity measures, such as PO, PHO, 

CT score, and LHOS, based on CT images. More specifically, 

to quantify (PO, CT score) and (PHO, LHOS), the model learns 

to segment COVID-19 infections and COVID-19 high-opacity 

infections, respectively. The whole lung region and lobe regions 

are segmented to measure (PO, PHO) and (CT score, LHOS). 

For instance, in [16], researchers segmented the lung regions 

and COVID-19 lesions using U-Net-based commercial software 

and determined the PO in COVID-19 patients. Based on the 

clinical data, they could map the PO measure to the severity of 

the disease. It was concluded in this study that the median PO 

for patients in the moderate category is 2.2 (0.4, 7.1), for those 

in the severe group is 28.9 ± 19.2, and for those in the critical 

category is 49.6 ±14.8.

Along a similar path, the authors of [33] developed a VB-Net-

based segmentation model using 249 CT volumes of COVID-19 

patients to seg ment the lung regions, lobes, and lung infections. 

Their model could quantify the PO mea sure with an error of 

0.3% over a test set of 300 CT volumes collected at a single 

hospital. Commercial U-Net-based soft ware has also been used 

in some research works for the quan tification of COVID-19 

abnormalities and determining the severity of the disease [16].

Severity Assessment Types
Generally speaking, two types of severity assessment can be 

defined within the COVID-19 literature. The first one is to 

consider a classification approach, where different discrete 

labels are defined to assess the severity. The second type, 

however, aims at calculating the degree/portion of lung 

involvement as a measure of severity. Although the second 

type, referred to as quantification, is often followed by a 

classification paradigm, the degree of lung involvement is 

essentially embedded in the feature vector. In the following 

sections, we further elaborate on these two severity assess-

ment types. 

COVID-19 severity classification
Similar to most of the classification problems, COVID-19 

severity classification can be solved using either handcrafted 

or DL methods.

 ■ Handcrafted radiomics: While different engineered fea-

tures have the potential to distinguish between severe and 

nonsevere cases, Ghosh et al. [50] proposed a handcrafted 

feature, referred to as the .Lnorm  This feature is defined 

using the maximum bone reference (B), minimum air ref-

erence (A), and mean gray-scale intensity of the lesion (L), 

as follows

 , .L
B A
L A

L100 0 100norm norm# # #=

-

-
 (14)

 The optimum cutoff value to distinguish between severe and 

nonsevere cases using the Lnorm  is then obtained based on a 

receiver operating characteristic curve analysis. Other tradi-

tional handcrafted features, such as first-order histogram 

features and/or texture-based ones, can be  incorporated 

 followed by a regression model to distinguish between 

severe and nonsevere patients. First-order histogram features 

are also used in [77] for severity classification.

 ■ DL: To identify the discrete severity scores of COVID-19 

patients, CNN-based models can alternatively be devel-

oped [75]. A two-stage DL framework is proposed in [74] 

for COVID-19 severity classification. In the first stage, CT 

scans are individually fed to a U-Net model, whose extract-

ed features are stored for the second stage. Through the 

second stage, the feature vectors are fed to a bidirectional 

LSTM model for the final classification.

Severity assessment via quantification
Although quantification is performed by calculating the lung 

and infection volume in most of the studies, it is also possible 

to adopt a different approach, such as using a Siamese neural 

network. Here, we discuss recent works performed along these 

two directions:

 ■ Quantification via volume calculation: The PO index and 

average infection Hounsfield unit (HU) are calculated in 

[34] to quantify the severity, followed by dividing the 

patients into two groups of severe and nonsevere. The 

infection and GGO ratios are calculated in [49]. These two 

measures, along with several other quantitative features, 

are further fed to an RF classifier to classify patients as 

severe and nonsevere.

 ■ Quantification via Siamese neural networks: This 

approach consists of two identical models, in terms of 

weights and parameters, with the goal of finding the simi-

larity between the two inputs. Beside having several appli-

cations, Siamese models, in particular, convolutional 

Siamese neural networks, can be adopted for COVID-19 

severity assessment [78]. In such scenarios, the Euclidean 

distance between the two final layers is calculated as a 

measure of the difference between the inputs. Therefore, 

the distance between a COVID-19 and normal scan can 

show the degree of abnormality. Utilizing a pool of normal 

images, the median distance can represent the severity.

The taxonomy of the COVID-19 prognosis models is present-

ed in Figure 6.

Severity assessment guideline
Quantifying the extent of lung involvement in COVID-19 

patients is the main criterion for assessing the disease’s 

stage/severity. Different severity measures have been intro-

duced in the literature with the goal of providing a discrete 

or continues severity score. While the former is less accu-

rate, it can be performed using conventional classification 

techniques. It is, therefore, faster and not necessarily depen-

dent on annotation. The latter, although being more burden-

some, results in a more accurate estimation of the severity by 

determining the degree of lung involvement. 

However, the manual calculation of these measures by 

radiologists is tedious and time-consuming, therefore moti-

vating the development of SP/DL models to automatically 

quantify severity measures. Different types of chest imaging 
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patterns and distributions of lung involvement are related to 

the severity/stage of COVID-19 infection and can help in con-

structing SP/DL models for autonomous severity assessment. 

In particular, the appearance of the crazy-paving/consolida-

tion patterns is a sign of disease severity and can be used for 

model development. 

Among different imaging modalities, CT images provide 

the high sensitivity required for evaluating changes in the 

severity of the disease. Particularly, CT images can be used 

for the detection of pulmonary involvement patterns, including 

consolidation and/or crazy-paving patterns, to help evaluate 

the disease severity.

COVID-19 classification models
The development of DL-based COVID-19 classification 

models can be approached from four main perspectives, as 

shown in Figure 7. The first aspect is the annotation depen-

dency of the developed frameworks. The second one is 

whether the proposed methods consider a binary or multi-

class classification, followed by the third perspective, 

which focuses on the imaging modality used for the classi-

fication, as, based on the modality, different solutions are 

admissible. The DL model architecture is another impor-

tant aspect of the developed frameworks. Next, we discuss 

these four categories in detail. Table 7 summarizes how 

different studies approach the aforementioned categories.

Annotation dependency
Annotation dependency refers to whether the developed 

COVID-19 classification models rely on annotated images as 

inputs. Annotation can be related to either segmenting the 

whole lung region or the infected areas from the chest image. 

In this regard, we categorized studies into three groups of 

1) no annotation required, 2) lung segmentation required, and 

3) infection segmentation required. These three groups are 

discussed in the following sections.

COVID-19

Classification

Annotation

Dependency

Number of

Classes

Modality

Architecture

No Annotation

Required

Lung

Segmentation

Infection

Segmentation

Binary

Classification

Multiclass

Classification

X-Ray

CT

CNN

RNN

CapsNet

LSTM

Bidirectional

LSTM

Self-Designed

Pre-Existing

Slice Level

Patient Level

Feeding Extra

Information

Layer

Modification

FIGURE 7. The taxonomy of the COVID-19 classification techniques using DL. CapsNet: capsule network. 
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Table 7. The COVID-19 classification models.

Reference
Input 
Data Data Set Size 

Data Set  
Diversity 

Number of 
Classes Architecture 

Bias and Overfitting  
Prevention 

Annotation 
Dependency

[51] CT 419 COVID-19
486 non-COVID 

18 centers Binary Inception and  
ResNet CNN 

Data augmentation and  
transfer learning 

Lung segmentation 

[52] CT 4,356 chest  
CT exams from 
3,322 patients 

Six hospitals Multiclass ResNet50 CNN Data augmentation Lung segmentation 

[72] X-ray 403 COVID-19
721 normal 

Multicenter Binary VGG CNN Generative adversarial net-
work-based data augmentation  
and transfer learning 

Not required 

[53] X-ray 266 COVID-19
5,538 non-COVID
8,066 normal 

Multicenter Binary CapsNet Loss modification and transfer  
learning 

Not required 

[54] CT 44 COVID-19
55 non-COVID 

Three  
hospitals 

Binary Inception CNN and 
ensemble of classifiers 

Transfer learning Infection  
segmentation 

[22] X-ray 266 COVID-19
5,538 non-COVID
8,066 normal 

Multicenter Multiclass CNN Data augmentation and  
transfer learning 

Not required 

[55] X-ray 45 COVID-19
1,591 non-COVID
1,023 normal 

Multicenter Multiclass ResNet CNN Data augmentation and  
transfer learning 

Not required 

[56] X-ray 50 COVID-19
50 normal 

One public  
data set 

Binary ResNet CNN Transfer learning Not required 

[57] X-ray 127 COVID-19
500 non-COVID
500 normal 

Two public  
data sets 

Multiclass  
and binary 

Darknet [you only look 
once (YOLO) base 
model] 

NA Not required 

[58] X-ray 266 COVID-19
5,538 non-COVID
8,066 normal 

Three public  
data sets 

Multiclass Ensemble CNN Data augmentation Not required 

[48] CT 449 COVID-19
495 non-COVID
425 normal 

Three  
hospitals 

Multiclass Encoder–decoder  
CNN 

Multitask learning Not required 

[70] CT 127 COVID-19
500 non-COVID
500 normal 

Two public  
data sets 

Multiclass Xception CNN Transfer learning Not required 

[63] X-ray 1,525 COVID-19
1,525 non-COVID
1,525 normal 

Several public  
data sets 

Multiclass LSTM NA Not required 

[59] X-ray 25 COVID-19
25 non-COVID 

Two public  
data sets 

Binary CNN NA Not required 

[61] X-ray 599 COVID-19
24,622 non-COVID
18,881 normal 

Multiclass One-class  
anomaly  
detection 

EfficientNet CNN Data augmentation and  
transfer learning 

Not required 

[69] CT 159 COVID-19
90 non-COVID 

Multicenter Binary ResNet CNN Data augmentation and  
transfer learning 

Lung segmentation 

[62] CT 150 COVID-19
150 non-COVID
150 normal 

Two hospitals Multiclass Multiscale CNN Loss modification and data  
augmentation 

Lung segmentation 

[60] CT 88 COVID-19
101 non-COVID
86 normal 

Hospitals of  
two provinces  
in China 

Multiclass CNN NA Lung segmentation 

[64] CT 540 COVID-19
229 normal 

One hospital Binary CNN Data augmentation Lung segmentation 

[65] CT 110 COVID-19
224 non-COVID
175 normal 

Three hospitals Multiclass CNN Changing sampling  
probability 

Infection  
segmentation 

[66] CT 20 COVID-19
282 non-COVID 

One public  
data set 

Multiclass Bidirectional LSTM  
and CNN 

Changing sampling probability  
and data augmentation 

Lung segmentation 

[67] CT 146 COVID-19
149 normal 

One hospital Binary CNN Data augmentation Lung segmentation 

[68] CT 366 COVID-19 Four centers Binary 3D CNN with integrated 
clinical data 

Loss modification and data 
augmentation 

Lung segmentation 
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COVID-19 classification without annotation
Studies that do not include any segmentation as a preprocess-

ing step essentially feed the developed model with raw imag-

es. As CXR images are single slices and simpler to process 

compared to CT scans, they are utilized without annotation in 

most of the studies. The work in [57] is an example of such a 

study, where raw CXR images are fed to a DL model for bina-

ry and multiclass COVID-19 classification. 

Das et al. [70] and Islam et al. [63] also utilized CXR 

images without annotation for a three-way COVID-19 clas-

sification. Although using CT scans, [48] is independent 

from segmented inputs. It exploits annotation labels in the 

output layer to develop a multitask training framework. In 

other words, both classification and segmentation are aimed 

at in this work.

Lung segmentation for COVID-19 classification
Lung segmentation is the first step in many COVID-19 

classifications studies, as it eliminates unessential informa-

tion. Gozes et al. [69], for instance, used a pretrained 

U-Net model for this task. Since the segmentation model 

should be able to annotate the lungs even in the presence of 

COVID-19 opacities, the U-Net model is fine-tuned on a 

data set of interstitial lung disease cases. More advanced 

lung segmentation models are also used in COVID-19 stud-

ies. The authors of [62], for instance, proposed a multiwin-

dow U-Net that incorporates several windows instead of 

the standard HU window. Furthermore, this study uses a 

sequential information attention module to integrate all  

CT slices.

Infection segmentation for COVID-19 classification
Besides lung segmentation, some COVID-19 classification 

studies rely on segmenting the pulmonary regions of infec-

tion. Xu [65], for instance, used a 3D CNN model trained on 

pulmonary tuberculosis for infection segmentation. 

Although this model is not trained on a COVID-19 data set, 

it can still extract candidate patches. The annotation results 

are consequently used to form cubic patches around the 

regions of infection, which are then fed to the classification 

model. Based on the COVID-19 characteristics, such as 

GGO, Wang et al. [54] manually delineated the CT scans to 

extract all of the ROIs, from which two or three patches are 

randomly selected as the input to the CNN model for clas-

sification purposes.

COVID-19 classification types
Binary or multiclass COVID-19 classification refers to 

whether the problem is considered as COVID-19 versus all 

other possible categories as one class or if all of the classes are 

treated separately. These two approaches are investigated in 

the following sections.

Binary COVID-19 classification problems
The work in [57] is an example of binary classification, where 

the goal is to distinguish between COVID-19 and non-COVID 

cases. Non-COVID cases include both normal and pneumonia 

patients. The authors of [56] explore three different  

COVID-19-related binary classification problems, in each of 

which COVID-19 is classified against a different class, includ-

ing viral pneumonia, bacterial pneumonia, and normal. The 

obtained results show that COVID-19 is best distinguishable 

from bacterial pneumonia. Besides positive and negative 

COVID-19, patients can be classified based on other clinical 

outcomes. Meng et al. [68], for instance, consider high and 

low risk as the binary classification labels.

Multiclass COVID-19 classification problems
The authors of [57], besides considering a binary classification 

problem, try to solve a multiclass classification consisting of 

three classes of COVID-19, pneumonia, and normal. The 

obtained accuracy, however, is lower than the binary scenario. 

The same categorization is followed in [63]. The authors of 

[48] also followed a three-way classification, with the differ-

ence that all diseases other than COVID-19 are considered as 

the “others” class to be classified against COVID-19 and nor-

mal subjects. COVID-19, pneumonia, and other diseases are 

considered as three separate classes in [70]. Since [65] uses 

annotated infection patches as inputs to a CNN model, it also 

considers an irrelevant-to-infection class to exclude incorrect-

ly segmented areas.

It is worth mentioning that, unlike binary and multiclass 

approaches, COVID-19 classification is considered as a one-

class anomaly detection in [61], where the model’s output is the 

anomaly score of the input, along with a confidence score that 

determines the model’s confidence in its prediction. Conse-

quently, subjects with a high anomaly score or low confidence 

score are considered as positive for COVID-19.

Imaging modality used for COVID-19 classification
CXR and CT are two common imaging modalities considered 

in COVID-19 classification studies. These two modalities, 

however, require different processing strategies, as described 

in the following sections. 

COVID-19 classification via CXR images
CXR images are 2D, and, as such, processing techniques to 

incorporate the relation between images are not required. CXR 

images can be independent inputs to a DL model. The works 

in [57], [63], and [70] are examples of using CXR images for 

classification tasks. 

COVID-19 classification via CT scans
Unlike CXR images, CT scans are 3D in the sense that each 

patient is associated with several 2D slices. As a result, ana-

lyzing CT scans requires specific strategies, the first of which 

is a slice-level classification, where slices are treated indepen-

dently with the goal of assigning labels to separate slices. 

Patient-level classification, on the other hand, tries to make the 

final decision using all of the available slices.

 ■ Slice-level classification: The work in [48], as an exam-

ple of a slice-level classification algorithm, uses separate 
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slices as inputs to a DL model, where slices are gathered 

from three different data sources and preprocessed to 

have consistent size, resolution, and contrast. In [62], 

patient-level labels are assigned to all of the slices, and a 

2D CNN model is lever aged. This strategy, however, can 

cause inconsistency when a slice without any visible 

manifestation is assigned with a COVID-19 or pneumo-

nia label. The work in [67] is another example of a slice-

level classification model, where target slices are 

manually selected to train the CNN model. At the test 

time, however, this study averaged over all of the proba-

bilities to form the patient-level classification. Therefore, 

the underlying study can be considered as cross sections 

of the slice- and patient-level classifications, bringing 

us to the discussion in the next part, i.e., patient-level 

classification. 

 ■ Patient-level classification: Patient-level classification 

using CT scans requires a voting strategy to combine the 

slice-level outcomes. The voting mechanism is of partic-

ular importance, as the whole CT volume typically can-

not be processed at once. Different voting mechanisms 

have been developed in the literature, including the fol-

lowing items:

 • Volumetric scoring: In [69], 2D slices are first pro-

cessed to form the slice-level outcomes. Summing 

over the activation maps of the detected positive slic-

es, consequently, results in the aforementioned volu-

metric score. It is worth mentioning that only 

activations above a predefined threshold are consid-

ered in the summation. The obtained COVID-19 score 

can also be considered as the extent of the disease in a 

patient’s lungs.

 • Pooling operations: For patient-level classification, one 

approach is to combine different models (e.g., parallel 

CNNs) in a parallel architecture. The results from indi-

vidual slices can then be aggregated through pooling 

operations [60]. Similarly, Li et al. [52] incorporate par-

allel CNNs, the results of which are aggregated through 

a max-pooling operation.

 • Whole CT volume: To leverage the information from all 

of the CT scans and capture their relations, Wang et al. 

[64] feed their developed CNN model with the whole CT 

volume, which is concatenated with the segmented lung 

mask. The same strategy of feeding the whole CT vol-

ume is also used in [68].

 • Bayesian merging: A noisy-or Bayesian function is 

adopted in [65] to combine the outcomes of several 

infection patches. 

 • RNN-based merging: Using RNNs is another strategy to 

combine the slice-level information and consider the spa-

tial relations. This group of models is discussed in the 

“DL Architectures for COVID-19 Classification” section.

 • Multistage frameworks: Designing a multistage frame-

work is also a common patient-level classification 

approach. Mei et al. [51], for instance, designed a 

two-stage workflow, where, in the first stage,  abnormal 

slices are detected using a previous pretrained pulmo-

nary tuberculosis detection model. The top 10 candi-

date slices are then fed to another CNN, in stage  

two, to identify slices with positive COVID-19.  

The final outcome is ultimately set as the average of 

the slice-level prediction of a patient’s 10 most abnor-

mal  candidates.

DL architectures for COVID-19 classification
Although different DL architectures are applicable to the task 

of image classification, in the COVID-19 scenario, discrimina-

tive models, including CNNs, RNNs, and capsule networks 

(CapsNets), are the most commonly used ones. These net-

works and how they are incorporated in COVID-19 classifica-

tion studies are explained here.

CNN-based COVID-19 classification models
CNNs are a stack of convolutional and pooling layers, often 

followed by fully connected ones. Since the trainable filters 

share weight across the whole image, these networks are com-

putationally effective and can extract local features from the 

input. CNNs have shown promising results in the field of 

image processing, including COVID-19 classification. 

Although it is possible to design a CNN from scratch, most of 

the studies have built their models upon pre-existing success-

ful CNN models: 

 ■ Pre-existing CNN models: Since the start of the outbreak, 

the following pre-existing CNN models for COVID-19 

classification have been used: 

 • Darknet-19 model: The DarkCovidNet model proposed 

in [57] is a modification of the Darknet-19 model, which 

is the basis of the you only look once object detection 

system. The proposed DarkCovidNet consists of 17 con-

volutional layers, which are followed by pooling layers 

and, eventually, one fully connected layer for the final 

classification.

 • Inception model: This is another CNN model commonly 

utilized in COVID-19 studies. In [70], for instance, an 

extreme version of the Inception model, referred to as 

Xception, is used. Two other variations of Inception, 

referred to as InceptionV3 and Inception-ResNetV2, are 

exploited in [56], along with three variations of the popu-

lar ResNet architecture, namely, ResNet50, ResNet101, 

and ResNet152. The obtained results show superior per-

formance for ResNet50 model.

 • ResNet models: ResNet50 is the basis of the model pro-

posed in [55], referred to as the COVID-ResNet. This 

model is trained in three stages, where, in each stage, the 

image size is increased gradually. The ResNet50 model 

of [69] is followed by a gradient-weighted class activa-

tion mapping localization to verify the pathological areas 

focused through the training process. The resulting map 

can provide insights to the radiologist.

 • VGG models: Besides the variations of ResNet [69] and 

Inception, VGG models, such as VGG19 [59], are com-

mon choices.
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 • EfficientNet: Utilizing compound coefficients to scale up 

CNNs, this is another architecture used for COVID-19 

classification in [61]. 

 • Ensemble models: Besides adopting the pre-existing 

CNN architectures, it is also possible to develop ensem-

ble frameworks to leverage the potentials of different 

CNN models. Such a strategy is used in [58], where sev-

eral models, including VGG and ResNet, are combined.

 ■ Self-designed CNN models: Based on 

the identified requirements, some stud-

ies have designed their own specific 

CNN models for COVID-19 classifica-

tion. A multiscale CNN, for instance, is 

proposed in [62], where intermediate 

CNN representations are aggregated 

through a global max-pooling operation 

to make the final decision. The self-

designed CNN model proposed by 

Wang et al. [64] consists of three subse-

quent blocks, the first of which is a 

vanilla 3D CNN, followed by a residual block. The last part 

is a progressive classifier, containing convolutional and 

fully connected layers. 

Besides focusing on designing the layers of a CNN, 

another strategy is to feed the model with information other 

than the raw image. Such a strategy is leveraged in [65], 

where the distance between the center of infection and 

pleura is concatenated with a fully connected layer. This 

distance can contribute to a more accurate classification, as 

COVID-19 infection has a pleural distribution, partly dis-

tinguishing it from other diseases. Meng et al. [68] utilized 

patients’ clinical factors, such as gender, age, and chronic 

disease history, as the additional information to be concate-

nated with the CNN’s fully connected layer. More heteroge-

neous factors, including travel and exposure history as well 

as symptomatology, are incorporated in the model designed 

by Mei et al. [51]. 

RNN-based COVID-19 classification models
RNNs are especially useful in medical imaging when the goal 

is to process the whole volume or analyze follow-up studies. 

Since RNNs are subject to the problem of vanishing gradients, 

LSTM networks are commonly used as an effective alternative. 

The vanilla LSTM is not designed for extracting local features 

from images, and, as such, this network is often combined with 

a CNN to make use of its weight-sharing advantages. 

Such a model is utilized in [63] for COVID-19 classifi-

cation, resulting in a CNN–LSTM design. In the underlying 

study, 12 convolutional layers are first incorporated to extract 

features from CXR images. The output of the CNN is then 

fed to an LSTM, the result of which determines the probabil-

ity of COVID-19, pneumonia, and normal classes. While 

a conventional LSTM considers only forward relations, 

bidirectional LSTMs additionally take the backward rela-

tions into account. Such models are incorporated in [66] for  

COVID-19 classification.

CapsNet-based COVID-19 classification models
CapsNets are relatively new DL architectures, proposed 

to solve the incapability of CNNs to recognize spatial 

information. Each capsule in a CapsNet consists of several 

neurons to represent an object’s instantiation parameters as 

well as its existence probability. 

The main feature of the CapsNet is its routing-by-agree-

ment process, through which capsules in a lower layer pre-

dict the outcome of capsules in the next 

layer. The parent capsules take these pre-

dictions into account based on the simi-

larity (agreement) between the prediction 

and actual outcome. Using the routing by 

agreement, CapsNet is capable of rec-

ognizing spatial relations between image 

instances and, therefore, handling much 

smaller data sets compared to CNNs. The 

authors of [53] recently exploited CapsNets 

for the problem of COVID-19 classification 

using CXR, showing improvements over 

the CNN counterparts. The proposed architecture, referred to 

as COVID-CAPS, consists of several convolutional, pooling, 

and capsule layers, the output of which determines the prob-

ability of positive COVID-19. A similar architecture can be 

utilized with CT scans by combining slice-level final cap-

sules to form a patient-level decision.

Classification guideline
COVID-19 classification can be performed in a slice- or 

patient-level manner. While the former is more simple, requir-

ing less-complicated models and computational resources, it 

does not utilize the available information in a whole volume 

or study. While CNNs are the architecture of choice within 

the medical imaging domain, they might not be able to cap-

ture the spatial information between infections, which is of 

high importance in COVID-19 classification.

CapsNets may result in a more promising performance, 

especially when a large data set is not available. When pro-

cessing a whole volume or even if follow-up studies are consid-

ered, analyzing all of the images at once may not be possible 

using conventional models. RNNs are more proper choices for 

processing serial images. CNNs and CapsNets, however, can 

be utilized by designing a voting strategy between slices.

Challenges, open problems, and opportunities
In this section, first, we focus on the limitations and challeng-

es of developing COVID-19 diagnosis/prognosis models. 

Then, we discuss open problems and potential opportunities 

for SP research by highlighting the problems and challenges 

of developing SP/DL models for COVID-19 management.

Challenges in developing COVID-19  
diagnosis/prognosis models
The ultimate goal of developing COVID-19 diagnosis/progno-

sis models is to use them in clinical applications and reduce 

the health-care system’s workload during pandemic conditions. 

The ultimate goal of 

developing COVID-19 

diagnosis/prognosis 

models is to use them in 

clinical applications and 

reduce the health-care 

system’s workload during 

pandemic conditions.
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Some models proposed for the diagnosis and prognosis of 

COVID-19 have shown successful results in real applications 

and enhanced the performance of junior radiologists  to senior 

level [30]. In what follows, we summarize the limitations and 

challenges specific to the development of COVID-19 diagno-

sis/prognosis models:

 ■ Different types of respiratory infections have shown simi-

larities with COVID-19 pneumonia in lung manifesta-

tions, which makes it challenging for both radiologists 

and DL-based models to distinguish COVID-19 disease 

from other types of CAPs based on medical images. One 

characteristic that helps differentiate COVID-19 images 

from other CAPs is the multifocal and peripheral distribu-

tion of infection regions across the lung. In this regard, 

extracting handcrafted radiomic features based on 

COVID-19 imaging characteristics can help enhance DL 

models’ performance in diagnosing COVID-19 cases.

 ■ The ambiguous boundaries and irregular shapes of 

COVID-19 lung infections exacerbate inter- and intraob-

server variabilities when annotating infection regions by 

expert radiologists. This makes it necessary to work with a 

team of expert radiologists to annotate lung lesions accu-

rately and take the average of annotations, which is 

impractical in pandemic conditions. This issue results in 

generating inconsistent and inaccurate annotations that 

cause bias in DL models. Noise-robust loss functions and 

adaptive self-ensembling training frameworks can help 

achieve better segmentation results while being trained on 

inaccurate annotated data sets.

 ■ The lack of annotated labels in developing COVID-19 

lesion segmentation models is another challenge in this 

context. Inspired by the intensity range and specific char-

acteristics of COVID-19 lesions in chest images, it is 

possible to synthesize lesions inside healthy lung images 

and generate pairs of chest images and their associated 

masks. This synthesized data set can then be used for 

training segmentation models [36] to tackle the lack of 

annotated labels. Semisupervised learning, incorporated 

in [27], is another method that can be used to address 

this issue.

 ■ To accelerate the annotation process, human–machine col-

laboration methods can be developed. It is shown in [29] 

and [33] that collaborative interactions between radiolo-

gists and DL models can dramatically reduce the annota-

tion time.

 ■ To improve the accuracy of COVID-19 outcome prediction 

and severity assessment methods, CT severity measures can 

be quantified by DL-based segmentation models and then 

incorporated within prediction and assessment models. 

Furthermore, there is no consensus on which severity scor-

ing system to use, which is a challenge for the adoption of 

automatic assessment models. This requires further research 

on the evaluation, comparison, and design of a unified 

severity measure. 

 ■ Due to restrictions imposed on preserving patients’ priva-

cy and also health centers’ strict data-sharing protocols, 

collecting sufficient data is a common problem in 

AI-based research in the medical domain. This issue, how-

ever, gets more challenging during a pandemic when an 

unknown disease is threatening people’s lives, and 

researchers need to develop robust models in a short peri-

od of time. Conventional data-augmentation strategies are 

the most commonly used methods to overcome this 

 problem by applying conventional transformations on 

original images [61], [69]. 

Generative adversarial networks have been used in 

[72] to augment the training data set by generating fake 

instances from original images. Pretraining DL models on 

both natural-image data sets [28], [56] and similar medical 

data sets [53] have shown promising results in improving 

COVID-19 diagnosis/prognosis models. Developing DL 

models using multitask learning to perform COVID-19 

classification and lesion segmentation at the same time can 

provide improved results [48]. 

Incorporating CapsNets, which are less data demand-

ing compared to CNNs and can be trained using smaller 

data sets, is another approach that has shown potential for 

the development of COVID-19 diagnosis models [53]. A 

class-imbalanced data set is another common challenge 

in the medical imaging domain, including COVID-19 

models. Modified loss functions can tackle this issue by 

assigning more penalties to the misclassified instances/

pixels of the minority class [26], [62], [68]. Data resam-

pling is another strategy that can address this problem.  

Li et al. [71] introduced a new offline sampling strategy 

that ranks the non-COVID-19 samples based on their 

diversity and difficulty levels. The most informative sam-

ples can then be used to decrease the training time while 

maintaining the overall performance of the model.

Open problems
In this section, we focus on open problems and potential 

opportunities for SP research by highlighting the prob-

lems and challenges of developing SP/DL models for  

COVID-19 management.

 ■ As stated previously, to have an effective detection/diagno-

sis and prevention treatment plan, it is crucial to jointly 

incorporate epidemiology and imaging manifestations. 

Currently, works on AE and medical imaging are mainly 

performed separately. A focus on the development of diag-

nosis/prognosis DL models for COVID-19 based on a 

simultaneous epidemiology study has not yet been 

explored. This opens a fruitful direction for future research 

for the development of a comprehensive diagnosis/progno-

sis DL modeling framework.

 ■ COVID-19 patients suffer from dyspnea; as such, there are 

inevitable motion artifacts in the acquired images. This is 

in contrast to most other medical images, where motion 

artifacts are rarely present. The artifacts in the COVID-19 

images sometimes overlap with the main areas of infection, 

making the diagnosis/prognosis challenging even for expe-

rienced radiologists. 
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To eliminate the effect of artifacts, most of the stud-

ies simply remove the noisy data from the data set. This, 

however, reduces the generalizability and applicability of 

the model in clinical practice. An alternative solution is 

to the approach of using advanced artifact-reduction tech-

niques, among which the adaptive techniques are of higher  

capability, as they can adjust and track the signal under 

noisy conditions. 

 ■ COVID-19 involves a large volume of the lung and is 

sparsely distributed around the lung volume. This is, in 

particular, in contrast to medical images in which the ROI 

is found in a specific location of the organ. Analyzing and 

extracting patterns from the COVID-19 images require 

sparse filtering techniques within the SP domain.

 ■ As COVID-19 infection is distributed in 

the whole lung volume, the relation 

between the image slices is of high 

diagnostic and prognostic importance, 

calling for specific 3D filtering and pat-

tern-recognition approaches.

 ■ A key issue with chest CT scans is 

exposing patients to harmful radiation. 

In this regard, using low- or ultralow-

dose scanning is of high interest. More importantly, low-

dose examinations are associated with less cancer risk, 

especially in young women. 

Figure 8 shows the obtained CT scans for three differ-

ent patients at three different dose levels, i.e., standard, 

low, and ultralow. According to this figure, although 

low- and ultralow-dose images have more visible arti-

facts, they can still reveal the presence of COVID-19 

infection. The artifacts, however, can hamper the effec-

tive training of the model. Furthermore, collecting a 

data set of low-dose scans may not resolve this issue, as, 

besides dose, other factors, such as the patient’s weight, 

can influence the quality of the image, leading to a wide 

variety of possible artifacts. This calls for advanced SP/

DL models that can cope with images at different resolu-

tions while providing the same level of diagnosis/prog-

nosis performance.

 ■ COVID-19 is relatively new, and, as such, large data sets 

are not easily accessible. Therefore, the developed SP/DL 

models should be capable of handling small data sets and 

yet capturing informative features.

 ■ COVID-19 lesion segmentation models are mainly devel-

oped using the CNN architecture. Since convolutional ker-

nels are local operators, CNN models cannot fully capture 

long-range dependencies in the underlying 

image. In this context, transformers have 

recently revolutionized natural language 

processing (NLP) research due to their 

capability of learning long-range dependen-

cies in a sequence of tokens. Following 

their promising results in different NLP 

tasks, transformers have found their way to 

the image processing domain. 

The potentials of applying transformers for medical 

image segmentation have recently been explored in dif-

ferent studies [79], [80], where it was shown that trans-

formers can outperform CNN-based attention networks. 

For example, TransUNet [79] adds transformers to the 

encoder path of the segmentation network (on image 

patches extracted by CNN blocks) to better learn the glob-

al context. Using a pure transformer as the encoder, [80] 

proposed a segmentation network for 3D medical image 

segmentation that can learn global information at different 

One important challenge 

associated with COVID-19 

analysis is the disease 

manifestation in patients 

with complications other 

than COVID-19.

(a) (b) (c)

FIGURE 8. Acquired CT images with three different dose levels for three COVID-19 patients: (a) standard, (b) low, and (c) ultralow doses [82]. 
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scales. Capitalizing on the superior performance achieved 

across various medical segmentation tasks, including mul-

tiorgan segmentation from CT scans and cardiac segmen-

tation from MRI, one can conclude that transformers are 

solid encoders for COVID-19 segmentation tasks. Given 

the distributed nature of COVID-19 infection regions 

across the lung, learning long-range dependencies in chest 

images is of high importance in the context of COVID-19 

lesion segmentation. Consequently, and on the basis of 

the promising results achieved by applying transform-

ers for medical image segmentation, the development of 

transformer-based segmentation networks is of significant 

potential for detecting COVID-19 areas of infection at dif-

ferent scales.

 ■ To encourage physicians and health professionals to con-

fidently utilize DL models, it is important to provide 

explanations and interpretations on the internal behavior 

of the DL models and achieved results and, therefore, 

eliminate the “black-box perception.” Regarding the 

black-box nature of DL models, communicating explain-

able outcomes to physicians is essential for the clinical 

adoption of implemented DL models. Several explain-

ability techniques are leveraged in COVID-19 studies, 

the simplest of which is to verify the outcomes with a 

radiologist. This approach is, however, time-consuming 

and burdensome. 

Techniques providing heat maps of the most important 

regions of the input image are also popular within COVID-19  

studies. One of the commonly used heat-map techni -

ques is class activation mapping (CAM), utilized in [62] at 

 different feature levels. Gradient-weighted CAM (Grad-

CAM), visually depicting the deep model’s decision, is 

also a CAM approach with the advantage of not requiring 

retraining. The Grad-CAM outcome shows how the devel-

oped model pays more attention to the regions of infection 

of the chest radiographs in [57] and [63]. A saliency map has 

also shown interpretable outcomes within the COVID-19  

studies [62].

Despite the advances in improving the explainability 

of the models, there are still examples for which the mod-

els fail to provide a clear explanation. Furthermore, heat 

maps do not provide enough explanation of the unique 

features they use to distinguish between COVID-19 and 

CAP cases.

 ■ Due to the policy of protecting people’s privacy and also 

immediate quarantine of mild cases without further 

examinations, scans with nonsevere symptoms are miss-

ing from most of the public data sets, and models are 

mostly developed based on patients with severe lung 

lesions who are at the late/advanced stages of the disease. 

The models, therefore, are biased toward severe cases and 

cannot be easily generalized.

 ■ Evaluating the developed SP/DL models’ performance 

in an unseen domain results in a decrease in the sensitiv-

ity of COVID-19 diagnosis. Most of the developed mod-

els, however, incorporate data coming from a single 

hospital, without a cross-center validation. In other words, 

the impact of equipment differences is not fully consid-

ered yet, and data from different sources are required to 

verify the generalizability of the models. It is worth not-

ing that integrating data from multiple centers has specific 

challenges. Although institutions commonly follow gener-

al CT acquisition guidelines and protocols, there may still 

be inconsistencies in parameters such as slice thickness 

and the reconstruction algorithm. In this regard, we would 

like to suggest the following harmonization techniques:

(a) (b) (c)

FIGURE 9. Acquired images for three patients suspected of having COVID-19. These patients have pre-existing conditions interfering with the diagno-

sis of COVID-19: (a) a 47-year-old male with fatty embolism and pulmonary edema, (b) a 51-year-old female with a history of right lung cancer and 

right lower lobectomy, and (c) a 27-year-old male with a gunshot injury in the left hemithorax with pulmonary contusion as well as left hemothorax and 

pneumothorax. 
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1) One important strategy to be considered is selecting 

radiomics features based on their stability, referring to the 

degree of dependency between the features and data 

source. Stable features are more reli-

able and more independent from the 

acquisition parameters. Test–retest is 

one of the most common techniques of 

assessing the stability of the radiomics. 

2) It is of high importance to include 

data from several centers in both the 

training and test sets.

3) It is also suggested that different 

SP methods be followed to harmo-

nize the image intensities through normalization, 

noise estimation, and denoising, e.g., through wave-

lets, anisotropic diffusion, and bilateral filtering. 

 ■ One limitation associated with many COVID-19 studies 

is that they try to distinguish COVID-19 cases from nor-

mal ones or categorize normal and non-COVID pneumo-

nia cases as one class. Studies that consider a separate 

CAP class also report a relatively poor performance in 

distinguishing the COVID-19 and CAP classes. This 

calls for developing models with stronger backbone 

architectures and higher capacities. Furthermore, 

pneumonia incidence samples are older compared to the 

COVID-19 ones, and images from pneumonia patients 

with COVID-19 symptoms are not included in the 

data sets.

 ■ Although hybrid models, which combine images and other 

relevant clinical information, can play an important role in 

COVID-19 analysis, few data sets are accompanied by 

demographic and clinical risk factors. 

 ■ One important challenge associated with COVID-19 

analysis is the disease manifestation in patients with 

complications other than COVID-19. Several diseases 

can impact the lung tissue and interfere or change the 

appearance of COVID-19. Interstitial lung diseases as 

well as pleural or cardiac diseases may have imaging 

manifestations that can mask superadded COVID-19  

and make it challenging for the interpreting radiologist. As 

shown in Figure 9, it is not clear if the abnormalities are 

related to COVID-19. This calls for developing more 

advanced SP solutions and unique features to facilit - 

ate COVID-19. 

Conclusions
Medical imaging plays an important role in the diagnosis 

and management of COVID-19 infection. SP methods 

 coupled with DL models can help to develop robust 

 autonomous solutions for the diagnosis/prognosis of 

COVID-19 based on chest images. In this article, an inte-

grated sketch is presented for designing and developing 

intelligent models for the COVID-19 infection diagnosis/

prognosis. The latest developments on the theoretical frame-

work of AE and HP for COVID-19 have been formally elab-

orated. Advanced SP methodologies and DL models for the 

diagnosis and prognosis of COVID-19 are presented, taking 

into consideration major challenges and opportunities. 

This article provides the SP community with a compre-

hensive introduction to various solutions 

to COVID-19 radiomics. In addition, the 

article provides the required radiologi-

cal background, available resources, and 

challenges/opportunities for extensive 

future SP research in this multidisciplinary 

domain to serve our diligent role in combat-

ing the COVID-19 pandemic and possible 

future similar ones.
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