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Abstract. Prediction of mean annual runoff is of great inter-

est but still poses a challenge in ungauged basins. The present

work diagnoses the prediction in mean annual runoff affected

by the uncertainty in estimated distribution of soil water stor-

age capacity. Based on a distribution function, a water bal-

ance model for estimating mean annual runoff is developed,

in which the effects of climate variability and the distribution

of soil water storage capacity are explicitly represented. As

such, the two parameters in the model have explicit physi-

cal meanings, and relationships between the parameters and

controlling factors on mean annual runoff are established.

The estimated parameters from the existing data of water-

shed characteristics are applied to 35 watersheds. The re-

sults showed that the model could capture 88.2 % of the ac-

tual mean annual runoff on average across the study water-

sheds, indicating that the proposed new water balance model

is promising for estimating mean annual runoff in ungauged

watersheds. The underestimation of mean annual runoff is

mainly caused by the underestimation of the area percentage

of low soil water storage capacity due to neglecting the effect

of land surface and bedrock topography. Higher spatial vari-

ability of soil water storage capacity estimated through the

height above the nearest drainage (HAND) and topographic

wetness index (TWI) indicated that topography plays a cru-

cial role in determining the actual soil water storage capac-

ity. The performance of mean annual runoff prediction in

ungauged basins can be improved by employing better es-

timation of soil water storage capacity including the effects

of soil, topography, and bedrock. It leads to better diagnosis

of the data requirement for predicting mean annual runoff in

ungauged basins based on a newly developed process-based

model finally.

1 Introduction

Hydrologists have a long-standing interest in mean annual

water balance modeling and prediction. The factors control-

ling mean annual runoff have been studied in literature. Mean

climate has been identified as the first-order control on mean

annual runoff and evaporation and it has been quantified by

climate aridity index, which is defined as the ratio between

the mean annual potential evapotranspiration (Ep) and pre-

cipitation (P ) (Turc, 1954; Pike, 1964). Other controlling

factors include the temporal variability of climate (Farmer

et al., 2003; Troch et al., 2002; Fu and Wang, 2019), vege-

tation (Zhang et al., 2001; Donohue et al., 2007; Gentine et

al., 2012; Li et al., 2013), soil (Atkinson et al., 2002; Yokoo

et al., 2008; Li et al., 2014), and topography (Woods, 2003;

Abatzoglou and Ficklin, 2017). Mean annual runoff or evap-

oration has been modeled as a function of climate aridity

index, and the equation is usually called the Budyko equa-

tion (Budyko, 1958). The effects of other factors are repre-

sented by, including a parameter to Budyko equation (Fu,

1981; Yang et al., 2008; Wang and Tang, 2014). Among

these factors, climate, including its mean and temporal vari-

ability, and soil water storage capacity including its mean

and spatial variability, are dominant catchment character-

istics controlling mean annual runoff, especially for those

catchments dominated by saturation excess runoff generation

(Milly, 1994).

Intra- and inter-annual climate variability introduces non-

steady-state conditions to finer timescale water balances and

the non-steady-state effect could propagate to the mean an-

nual runoff. The effects of seasonal variations of precipi-

tation and potential evaporation on long-term runoff have

been studied in several studies. Milly (1994) showed that

seasonality tends to increase mean annual runoff through a
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stochastic soil moisture model. The seasonality effects have

been demonstrated through a top-down model by Hickel

and Zhang (2006) and a classification study by Berghuijs

et al. (2014). Mean annual water balance also receives im-

pacts from climate variability at the inter-annual and daily

timescales. Li (2014) showed that the inter-annual variabil-

ity of precipitation and potential evaporation could increase

the mean annual runoff up to 10 % based on a stochastic soil

moisture model. Shao et al. (2012) found that daily precipita-

tion with a larger variation potentially increases mean annual

runoff especially in the catchments where infiltration excess

runoff is prevalent. Yao et al. (2020) quantified the relative

contribution of daily, monthly, and inter-annual climate vari-

abilities to mean annual runoff and showed that the contri-

bution decreases, on average, from monthly to inter-annual

scales and then daily scale.

Soil water storage capacity is the maximum storage ca-

pacity from land surface to bedrock, which exerts a pow-

erful control on mean annual runoff (Konapala and Mishra,

2016). A smaller soil water storage capacity creates favor-

able conditions for runoff generation, because the precipita-

tion in excess of the available storage capacity would be lost

as runoff directly, while catchments with a larger soil wa-

ter storage capacity could hold more precipitation for evap-

oration (Sankarasubramanian and Vogel, 2002; Porporato et

al., 2004; Chen et al., 2013). Soil water storage capacity is

closely related to vegetation since the root structure of veg-

etation could affect soil water storage capacity significantly.

Research has been conducted to reveal the role of soil water

storage capacity through the linkage of vegetation and model

parameter (Yang et al., 2008; Chen and Wang, 2015). Ger-

rits (2009) developed equations for transpiration and inter-

ception by considering the root zone and interception storage

capacity as two of the most important catchment character-

istics affecting evapotranspiration. In addition to the magni-

tude of the average soil water storage capacity, the spatial

variability of soil water storage capacity within a catchment

also influences precipitation partitioning at the event scale

and further influences the cumulative runoff at the mean an-

nual scale (Moore, 1985; Jothityangkoon et al., 2001; Gao

et al., 2016). It has also been suggested that the spatial vari-

ability of soil water storage capacity could suppress the ac-

tual evaporation, because the maximum evaporation in areas

with soil water storage capacity less than Ep will be smaller

than Ep; therefore, the average evaporation over the entire

catchment is smaller than Ep even though the average stor-

age is greater than Ep, resulting in more runoff generation

compared to the situation when the soil water storage capac-

ity is spatially uniform (Yao et al., 2020).

Therefore, climate variability and soil water storage ca-

pacity need to be explicitly incorporated into the model for

predicting mean annual runoff. The effect of climate vari-

ability could be taken into account by driving the model

with daily precipitation and potential evaporation which are

usually available. The spatial distribution of soil water stor-

age capacity could be modeled by a distribution function,

and it is usually modeled by the generalized Pareto distri-

bution (Moore, 1985; Zhao, 1992). The distribution function

includes two parameters, i.e., the shape parameter and the

maximum storage capacity over the watershed. In ungauged

basins, soil water storage capacity and its spatial variabil-

ity need to be estimated directly from available data. Gao et

al. (2014) adopted the mass curve technique, which has been

used for designing the storage capacity of reservoir, to esti-

mate the average water storage capacity of the root zone us-

ing precipitation and potential evaporation data. The shape

parameter of the distribution function has been estimated

from soil data (Huang et al., 2003). However, the estimated

parameters from these methods bring much uncertainty in

runoff estimation, and the two parameters of the generalized

Pareto distribution are usually estimated by model calibration

using observed streamflow data (Wood et al., 1992; Alipour

and Kibler, 2018, 2019).

The objective of this paper is to develop a nonparamet-

ric mean annual water balance model for predicting mean

annual runoff in ungauged basins, which has not yet been

fully understood (Blöschl et al., 2013). The mean annual wa-

ter balance model is forced by daily precipitation and poten-

tial evaporation; therefore, the climate variability at different

timescales is represented explicitly in the climate input. The

runoff generation is quantified by a distribution function for

describing the spatial distribution of soil water storage ca-

pacity (Wang, 2018). The mean and the shape parameter of

the distribution function need to be estimated from the avail-

able data in ungauged basins. Therefore, the model serves

as a diagnosis tool for evaluating the data requirement for

estimating soil water storage capacity. The mean soil water

storage capacity is estimated from curve number and climate,

because soil water storage capacity consists of the antecedent

soil water storage and the potential maximum soil moisture

retention which can be calculated through the Soil Conserva-

tion Service (SCS) curve number method. The estimation of

the shape parameter is diagnosed in terms of the data require-

ment including soil, land surface topography, and bedrock

topography. Section 2 introduces the new mean annual water

balance model and the study watersheds. Results and discus-

sion are presented in Sect. 3, followed by Sect. 4 for conclu-

sions.

2 Methodology

2.1 Mean annual runoff model

Climate variability is defined as the temporal variations of

precipitation (P ) and potential evapotranspiration (Ep), in-

cluding their intra-monthly, intra-annual, and inter-annual

variations. For example, the deviations of daily P or Ep from

its monthly mean values are defined as the intra-monthly

variations (Yao et al., 2020). As discussed in the introduc-
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tion section, the mean annual runoff model takes daily pre-

cipitation and potential evaporation as inputs; therefore, cli-

mate variability is explicitly included in the model. The de-

veloped model calculates daily soil wetting (infiltration) and

evaporation by tracking the soil water storage. Mean annual

runoff is estimated by aggregating the daily values. The daily

soil wetting is calculated using the concept of saturation ex-

cess runoff generation by modeling the spatial variability of

soil moisture and soil water storage capacity. To facilitate the

parameter estimation of storage capacity distribution in un-

gauged basins, the following distribution function is used for

modeling the spatial distribution of storage capacity (Wang,

2018):

F (C) = 1 −
1

a
+

C + (1 − a)Sb

a
√

(C + Sb)
2
− 2aSbC

, (1)

where F (C) is the cumulative distribution function (CDF),

representing the fraction of the watershed area for which the

soil water storage capacity is equal to or less than C; a is

the shape parameter of the distribution and varies between

0 and 2; and Sb is the average soil water storage capacity

over the watershed (i.e., the mean of the distribution). As

shown in Wang (2018), this distribution function leads to the

SCS curve number (SCS-CN) method when the initial stor-

age is set to zero. Therefore, there is a linkage between Sb

and the “potential maximum retention after runoff begins” in

the SCS-CN method, denoted as SCN.

Daily soil wetting and runoff generation is computed as a

function of daily precipitation (P ), initial storage (S0), a, and

Sb. As shown in Wang (2018), the average soil wetting (W)

is computed by

W =

P + Sb

√

(m + 1)2
− 2am −

√

[P + (m + 1)Sb]2
− 2amS2

b − 2aSbP

a
, (2)

where m =
S0(2Sb−aS0)
2Sb(Sb−S0)

. Setting S0 = 0 and dividing P on

both sides of Eq. (2), a Budyko-type equation, representing
W
P

as a function of Sb

P
, is obtained (Wang and Tang, 2014),

which has been used to model long-term soil wetting (Tang

and Wang, 2017). Therefore, Eq. (2) can be interpreted as a

non-steady-state Budyko equation which accounts for the ef-

fect of water storage. Daily evaporation (Ed) is computed as

(Yao et al., 2020)

Ed =
W + S0

Sb

Ep + Sb −

√

(

Ep + Sb

)2
− 2aSbEp

a
. (3)

The first component on the right-hand side of Eq. (3), W+S0

Sb
,

is the percentage of storage, and the second component is the

evaporation for the condition when the entire watershed is

saturated, i.e., the spatial distribution of soil water storage is

the same as that of storage capacity (Yao et al., 2020). Divid-

ing by W + S0 on both sides, Eq. (3) represents Ed

W+S0
as a

function of
Ep

Sb
, and the function is the same as the Budyko-

type equation derived by Wang and Tang (2014). Mean an-

nual evaporation (E) is computed by aggregating the daily

evaporation, and mean annual runoff (Q) is computed as the

difference of mean annual precipitation and evaporation:

E =

∑Y
y=1

∑Dy

d=1Ed

Y
, (4)

Q = P − E, (5)

where Y is the number of years, and Dy is the number of days

in year y; y and d represent year y and day d , respectively.

Note that the mean annual runoff includes surface runoff and

baseflow, and both are impacted by climate variability (e.g.,

intra-annual variability) (Berghuijs et al., 2014; Fan et al.,

2007).

This mean annual water balance model applies two non-

steady-state Budyko-type equations at the daily scale: one for

daily soil wetting and the other for daily evaporation. Runoff

routing is not necessary since the model is prepared for long-

term water balance analysis. As a result, the mean annual wa-

ter balance model includes two parameters, i.e., the shape pa-

rameter (a) and the average soil water storage capacity (Sb).

For studies where a one-parameter Budyko equation is ap-

plied to long-term scale directly, the effects of climate vari-

ability (seasonality, inter-annual variability, and daily stormi-

ness) on mean annual water balance are attributed to the sin-

gle parameter of the Budyko equation (e.g., Fu, 1981; Zhang

et al., 2001). This creates the challenge to estimate the single

parameter in ungauged basins, whereas the mean annual wa-

ter balance model used in this paper takes daily precipitation

and potential evaporation as inputs, and the effects of climate

variability are taken into account explicitly. To achieve the

goal of predicting mean annual runoff in ungauged basins, a

and Sb need to be estimated in ungauged basins.

2.2 Parameter estimation

2.2.1 Average soil water storage capacity

Under a given soil moisture condition, soil water storage ca-

pacity is the sum of actual water storage and the remaining

(or effective) storage capacity. The effective storage capacity

corresponding to the normal antecedent moisture condition

defined in the SCS-CN method, SCN (mm), is computed as a

function of CN (SCS, 1972; Bartlett et al., 2016):

SCN = 25.4(1000/CN − 10) , (6)

where CN is the composite curve number based on land use

and land cover (LULC) and hydrologic soil group (HSG) for

each watershed. The LULC data can be obtained from the

National Land Cover Database (Homer et al., 2015), and the

HSG data can be extracted from the Gridded Soil Survey Ge-

ographic (gSSURGO) database with a spatial resolution of

10 m (USDA, 2014). In HSG, soils are assigned to one of the
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four groups (A, B, C, and D) and three dual classes (A/D,

B/D, and C/D) according to the rate of infiltration when the

soils are not protected by vegetation and receive precipita-

tion from long-duration storms. For the cells characterized

by dual classes, the CN value is calculated as the average of

the two CN values corresponding to the two soil groups.

The average soil water storage capacity (Sb) is the sum

of the actual storage under the normal condition (S) and its

corresponding effective storage capacity:

Sb = S + SCN. (7)

The physical meaning of Sb is the mean value of the soil

water storage capacity over a watershed which is defined as

the maximum storage from land surface to bedrock in this

study rather than the storage capacity from shallow soils.

Since the “normal antecedent moisture” can be interpreted

as the steady-state soil moisture condition, S is the long-term

average storage over the watershed. The values of S for 59

MOPEX (MOdel Parameter Estimation Experiment) water-

sheds are estimated based on the long-term water balance

model in Yao et al. (2020), and these watersheds do not in-

clude any watersheds studied in this paper. The long-term

water balance model used in their study has a similar model

structure but the two parameters, i.e., the mean value of the

soil water storage capacity and its shape parameter in the dis-

tribution function, were obtained by model calibration. The

ratio between S and Sb is defined as the long-term storage

ratio
(

S
Sb

)

. It is found that the values of S
Sb

for all the wa-

tersheds were larger than 0.5. As shown in Fig. 1, S
Sb

has a

linear relationship with the climate aridity index:

S

Sb

= −0.468 + 1.2, (8)

where 8 is the climate aridity index. Substituting Eqs. (6)

and (7) into Eq. (8), one can estimate the average soil water

storage capacity as a function of curve number and climate

aridity index:

Sb =
SCN

0.468 − 0.2
. (9)

2.2.2 Shape parameter

The spatial variability of storage capacity is determined by

the spatial distribution of point-scale pore space across the

watershed. The volume of soil pores at the point scale can

be determined by soil thickness and porosity in different soil

layers. The porosity (θs) for each layer is calculated from the

soil bulk density:

θs (j) = 1 −
ρb (j)

ρ
, (10)

Figure 1. The degree of saturation
(

S
Sb

)

under long-term average

climate versus climate aridity index (8).

where j denotes the j th soil layer; ρb (j) is the bulk den-

sity of the j th soil layer; and ρ is the particle density

(2.65 g/cm3). After obtaining the porosity, the point-scale

storage capacity can be calculated as the following equation

(Huang et al., 2003):

C =

∑n

1
zj · θs (j) , (11)

where C is the point-scale soil storage capacity; n is the num-

ber of soil layers; and zj and θs (j) are the thickness and

porosity of the j th soil layer, respectively. In the gSSURGO

database, the soil thickness and bulk density for each layer

are available for shallow soil from the land surface to ∼ 2 m

soil depth.

The total soil thickness at each point is the elevation dif-

ference from land surface to fresh bedrock. However, the

bedrock topography is difficult to obtain especially at the wa-

tershed scale. Alternatively, it is assumed that the spatial dis-

tribution of the actual soil water storage capacity is the same

as the spatial distribution of water storage capacity computed

from the gSSURGO database. In order to compare the shape

parameter evaluated from the soil data with its counterparts

evaluated from other methods, the point-scale storage capac-

ity is normalized with the average storage capacity over the

watershed, and Eq. (1) is rewritten as

F (x) = 1 −
1

a
+

x + (1 − a)

a
√

(x + 1)2
− 2ax

, (12)

where x is the normalized storage capacity
(

C
Sb

)

at the point

scale; a is the shape parameter describing the spatial variabil-

ity of soil water storage capacity. The shape parameter a is

then estimated by fitting the point-scale storage capacity data

obtained from Eq. (11). A nonlinear programming solver

using the derivative-free method (i.e., MATLAB function

“fminsearch”) was used to calculate the optimal shape pa-

rameter by minimizing the root mean square error (RMSE).

Hydrol. Earth Syst. Sci., 25, 945–956, 2021 https://doi.org/10.5194/hess-25-945-2021



Y. Gao et al.: Diagnosis toward predicting mean annual runoff in ungauged basins 949

Figure 2. The sensitivity of mean annual runoff (Q) to the value of

shape parameter (a).

To demonstrate the sensitivity of mean annual runoff to the

value of shape parameter, Fig. 2 presents mean annual runoff

versus shape parameter based on the mean annual water

balance (Yao et al., 2020). It can be found that mean an-

nual runoff decreases significantly as the shape parameter

increases, especially when shape parameter approaches its

upper limit (i.e., 2). The negative relationship between the

mean annual runoff and the shape parameter can be attributed

to the fact that the larger shape parameter indicates that less

watershed area has small values of point-scale storage capac-

ity (Wang, 2018), and more precipitation could be retained

underground for evaporation.

2.3 Study watersheds

The estimations of mean annual runoff in 35 watersheds are

diagnosed in this paper. The number 35 was determined due

to the consideration of the data availability including soil (hy-

drologic soil group), land cover and land use, DEM, and the

minimum snow effect and human activities (Wang and He-

jazi, 2011), as well as to keep the efforts of gSSURGO data

processing to a reasonable level while still having a sufficient

number of samples for the watersheds. The drainage area of

the watersheds varies from 2044 to 9889 km2. Table 1 shows

the USGS (United States Geological Survey) gauge number

and climate aridity index of these watersheds. The satura-

tion excess is the dominated runoff generation in these water-

sheds. Daily precipitation and streamflow data during 1948–

2003 are extracted from the MOPEX dataset (Duan et al.,

2006), and the daily potential evaporation during this period

is calculated based on the Hargreaves method (Hargreaves

and Samani, 1985) by using the daily maximum, minimum,

and mean temperature. The average soil water storage ca-

pacity and the shape parameter for these watersheds are es-

timated from the available data of climate, LULC, soil, and

topography, and the predictions of mean annual runoff are

diagnosed.

3 Results and discussion

3.1 Estimated average soil water storage capacity

The potential maximum retention (SCN) is calculated based

on the average CN in each watershed (Table 1). The average

CN is computed based on LULC and hydrologic soil group.

For examples, Fig. 3a shows the LULC map for the Fox

River watershed in Wisconsin, and Fig. 3d shows the LULC

map for the Spoon River watershed in Illinois. The dominant

land uses are agriculture (49 %) and forest (33 %) in the Fox

River watershed and agriculture (77 %) and forest (15 %) in

the Spoon River watershed. The hydrologic soil groups are

shown in Fig. 3b (Fox River watershed) and Fig. 3e (Spoon

River watershed). Given the same LULC, the hydrologic soil

group D is more favorable for runoff generation compared

with group A. The dominant hydrologic soil groups are group

A (31 %) and group B (19 %) in the Fox River watershed and

group C/D (49 %) and group B/D (20 %) in the Spoon River

watershed. The calculated CN for each grid cell is shown in

Fig. 3c (Fox River watershed) and Fig. 3f (Spoon River wa-

tershed). The average CN is 61.0 for the Fox River watershed

and 78.1 for the Spoon River watershed. Since the Spoon

River watershed has a higher percentage of agricultural land

and lower soil permeability, its average CN is higher than

that for the Fox River watershed. Correspondingly, the calcu-

lated SCN in the Fox River watershed (162 mm) is higher than

that in Spoon River watershed (71 mm). The values of SCN

over the study watersheds vary from 56 mm (Auglaize River

watershed) to 182 mm (Chattahoochee River watershed) as

shown in Table 1.

The average soil water storage capacity is estimated based

on the computed SCN and climate aridity index shown in

Eq. (8). For examples, the climate aridity index in the Fox

River watershed is 1.12 which is the same as that in the

Spoon River watershed. The estimated Sb is 721 mm in the

Fox River watershed and 314 mm for the Spoon River wa-

tershed. As shown in Table 1, the estimated Sb varies from

177 mm (Chikaskia River watershed) to 1559 mm (Chatta-

hoochee River watershed) over the study watersheds. Fig-

ure 4a shows the spatial distribution of the estimated Sb. Wa-

tersheds with higher Sb are mostly distributed in the eastern

US, where the aridity index is relatively lower than that in

the other watersheds.

3.2 Estimated shape parameter

The shape parameter (a) for the distribution of soil water

storage capacity is estimated based on the soil data in the

gSSURGO database. For examples, the black circles in Fig. 5

show the normalized storage capacity for the Fox River wa-

tershed (Fig. 5a) and the Spoon River watershed (Fig. 5b)

based on the soil data in the gSSURGO database. As shown

in Fig. 5, the normalized CDF for both watersheds shows

an S shape. The estimated shape parameter is 1.996 for the
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Table 1. The USGS gauge stations, climate aridity index, the estimated potential maximum retention of curve number method (SCN), and

the average soil water storage capacity (Sb) for the study watersheds.

Index Station name State USGS Climate SCN Sb

gauge aridity (mm) (mm)

number index

1 Susquehanna River NY 01503000 0.69 100 862

2 Chemung River NY 01531000 0.84 95 518

3 Juniata River PA 01567000 0.85 134 714

4 Rappahannock River VA 01668000 0.85 152 792

5 Yadkin River NC 02116500 0.71 153 1221

6 Chattahoochee River GA 02339500 0.69 182 1559

7 Escambia River FL 02375500 0.73 143 1075

8 Allegheny River NY 03011020 0.68 153 1369

9 New River VA 03168000 0.69 177 1494

10 Great Miami River OH 03274000 0.89 63 301

11 Eel River IN 03328500 0.92 68 304

12 East Fork White River IN 03364000 0.83 68 378

13 Little Wabash River IL 03381500 0.96 68 279

14 Fox River WI 04073500 1.12 162 520

15 Auglaize River OH 04191500 0.98 56 225

16 Maquoketa River IA 05418500 1.19 72 209

17 Wapsipinicon River IA 05422000 1.16 69 210

18 Rock River WI 05430500 1.11 98 316

19 Pecatonica River IL 05435500 1.11 66 214

20 Kishwaukee River IL 05440000 1.03 70 255

21 Green River IL 05447500 1.10 75 247

22 Iowa River IA 05454500 1.18 65 191

23 Cedar River IA 05458500 1.17 65 193

24 Kankakee River IL 05520500 0.93 101 448

25 Fox River IL 05552500 1.04 88 321

26 Spoon River IL 05570000 1.12 71 227

27 Kaskaskia River IL 05592500 0.99 67 263

28 Blue River KS 06884400 1.70 74 127

29 Thompson River MO 06899500 1.16 65 195

30 Meramec River MO 07019000 0.95 109 460

31 Chikaskia River OK 07152000 1.82 77 121

32 Neosho River KS 07183000 1.42 63 140

33 Deep Fork River OK 07243500 1.40 87 197

34 Neches River TX 08033500 1.14 174 540

35 Elm Fork Trinity River TX 08055500 1.63 87 159

Fox River watershed (RMSE = 0.58) and 1.990 for the Spoon

River watershed (RMSE = 1.27) by fitting to the soil data. A

higher value of shape parameter indicates less spatial vari-

ability; therefore, the spatial variability in the Spoon River

watershed is higher than that in the Fox River watershed. The

mean value of RMSE for the 35 study watersheds is 0.06.

Figure 4b shows the estimated shape parameters for the study

watersheds, which vary from 1.830 to 1.998.

3.3 Diagnosing mean annual runoff prediction

The estimated values of Sb and a based on climate, LULC,

and soil data are applied to the mean annual water balance

model. The comparison of simulated and observed mean an-

nual runoff for the study watersheds is shown in Fig. 6a. The

RMSE for estimated mean annual runoff is 80 mm/yr. The

water balance model captures 88.2 % of the mean annual

runoff across the 35 study watersheds; therefore, the meth-

ods for estimating Sb and a based on the available data are

promising for predicting annual runoff in ungauged basins.

The water balance model with the estimated values of Sb

and a underestimates the mean annual runoff in some wa-

tersheds, and the relative underestimation error is 11.8 % on

average among all the study watersheds. The underestima-

tion of mean annual runoff could be due to the biased esti-

mation of the shape parameter. As described in Sect. 3, the

spatial variability of soil water storage capacity is assumed to

be equal with the spatial variability of the pore space in the
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Figure 3. The spatial distribution of land use and land cover for the Fox River watershed in Wisconsin (a) and the Spoon River watershed

in Illinois (d), the hydrologic soil groups for Fox River watershed (b) and Spoon River watershed (e), and the curve numbers for Fox River

watershed (c) and Spoon River watershed (f).

shallow soil. The pore space at the point scale is calculated

through the porosity and soil thickness. The thickness of the

shallow soil in the gSSURGO database is quite uniformly

distributed across the watershed, i.e., around 2 m, whereas

the actual soil thickness including the weathered bedrock is

the elevation difference between the land surface and fresh

bedrock, and it can be highly heterogeneous due to the vari-

able land surface and bedrock topography over the water-

shed.

To diagnose the effect of land surface and bedrock to-

pography on mean annual water balance, the shape param-

eter is calibrated using the observed streamflow. The stream-

flow data during 1948–2003 are divided into three periods:

(1) the warm-up period (1948–1953), (2) the calibration pe-

riod (1954–1973), and (3) the validation period (1974–2003).

During the calibration, the estimated Sb based on CN is used,

and a is the only free parameter to be calibrated. The cal-

ibration is conducted by minimizing the absolute error of

the observed and simulated mean annual runoff through a

global optimization method, i.e., the shuffled complex evolu-

tion method (Duan et al., 1992). As shown in Fig. 6b, most

of the calibrated a values are smaller than the estimated a

based on soil data only. The performance of predicted mean

annual runoff (during the validation period) is improved with

the calibrated shape parameter (Fig. 6c). The average of ab-

solute error for the mean annual runoff is 7.1 %.

The overestimation of shape parameter based on the soil

porosity data underestimates the area percentage of low soil

water storage capacity compared with the calibrated one as

shown in Fig. 5a for the Fox River watershed and Fig. 5b

for the Spoon River watershed. The slope at the normalized

soil water storage capacity around 1 for the estimated shape

parameter is higher than that for the calibrated one. There-

fore, the calibrated shape parameter indicates a larger spatial

variability. The underestimation of catchment area with low

soil water storage capacity could result from neglecting the

effect of land surface and bedrock topography, which can-

not be referred from the soil database (gSSURGO) where the

point-scale soil thickness is around 2 m.

To explore the impact of land surface topography on the

spatial distribution of soil water storage capacity, the soil data

(i.e., porosity) are combined with the height above the near-

est drainage (HAND) method proposed by Gao et al. (2019).

HAND is the vertical elevation difference from a point to its
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Figure 4. The estimated average soil water storage capacity (Sb) as a function of SCN and climate aridity index (a) and shape parameter from

soil data (b).

Figure 5. The estimated shape parameter for the spatial distribution of soil water storage capacity based on soil data and the calibrated shape

parameter based on mean annual water balance in the Fox River watershed (a) and the Spoon River watershed (b).

nearest drainage point. The distribution of HAND was used

for estimating the shape parameter of the spatial distribution

of storage capacity. Therefore, the HAND method uses land

surface topography data only for estimating the shape param-

eter. In our analysis, the porosity of the soil beyond the bot-

tom layer in the soil database is assigned with the same value

as the bottom layer. For example, if the HAND for a grid cell

is 10.0 m and the porosity and depth of the bottom soil layer

in the gSSURGO database is 0.2 and 2.0 m, respectively, then

the porosity for the soil from 2.0 to 10.0 m depth is assigned

with 0.2. Finally, the total volume of pores is calculated for

each grid cell based on the soil porosity obtained from the

gSSURGO database and the HAND value based on land sur-

face topography.

The control of land surface topography on the hydrologic

process has also been widely quantified through the topo-

graphic wetness index (TWI) of TOPMODEL (Beven and

Kirkby, 1979). The spatial variability of soil storage capac-
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Figure 6. (a) Observed versus simulated mean annual runoff using shape parameter based on soil data; (b) Soil data-based versus calibrated

shape parameter; and (c) observed versus simulated mean annual runoff using shape parameter based on calibration.

ity based on the TOPMODEL assumption has been demon-

strated as a beneficial representation of the conceptual model

(Sivapalan et al., 1997). Therefore, the heterogeneity of TWI

in a watershed was proposed to be another surrogate of the

heterogeneity of the soil storage capacity in this study, and

the shape parameter estimated by fitting TWI against Eq. (12)

through minimizing the root mean square error (RMSE) for

the Maquoketa River in Iowa was compared with those ob-

tained from other methods.

The dashed blue line in Fig. 7 shows the porosity-HAND-

based CDF of normalized soil water storage capacity for the

Maquoketa River in Iowa (gauge #05418500). The stream

initiation threshold used for calculating HAND is 40 km2,

which is 1 % of the maximum flow accumulation (Maidment,

2002). The threshold affects the value of HAND, but this is

beyond the scope of this paper. The best fit value of a for the

porosity-HAND-based CDF is 1.779, which overestimates

the spatial variability of storage capacity compared with the

calibrated shape parameter (a = 1.905). This is due to the

assumption of the HAND method that the bedrock between

a specific point and its nearest drainage point is horizontal

and intercepts with the channel bed. However, the bedrock

topography may have various slopes in a watershed (Troch

et al., 2002). Therefore, the true value of a (indicated by the

calibrated one) potentially falls between the a obtained from

soil data and the a based on soil and HAND. The bedrock

topography from observation or models is needed to accu-

rately estimate the shape parameter. The dashed dotted red

line in Fig. 7 displays the CDF of the normalized soil storage

capacity based on TWI, and the corresponding value of a is

1.967. The TWI-based a value also presents a larger spatial

variability than that derived from soil data solely, confirming

the importance of topography in determining the heterogene-

ity of soil water storage capacity. The deviation of the TWI-

based a value from its calibrated counterpart could be due

to the fact that the bedrock topography is not considered in

TWI.

Figure 7. The effects of soil, land surface topography, bedrock to-

pography, and topographic wetness index (TWI) on the shape pa-

rameter of the spatial distribution of soil water storage capacity.

4 Conclusions

A mean annual water balance model based on the concept

of saturation excess runoff generation is used for diagnos-

ing the potential for nonparametric modeling of mean an-

nual runoff in ungauged basins. The model takes the effect

of climate variability into account explicitly since it is driven

by daily precipitation and potential evapotranspiration at the

daily time step. The distribution function, which leads to the

SCS curve number method, is used for describing the spatial

distribution of soil water storage capacity. The mean (i.e.,

average soil water storage capacity) and the shape parameter

(i.e., the spatial variability of soil storage capacity over the

watershed) of the distribution function can be estimated from

the available data. Based on the linkage of the distribution

function and the SCS curve number method, a new method

based on the existing observed data of watershed characteris-

tics is proposed for estimating the average soil water storage

capacity. The average soil water storage capacity (Sb), as one
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of the parameters in the model, was estimated as a function of

climate aridity index and curve number which is calculated

based on land cover and soil data.

The developed mean annual water balance was applied

to diagnose the estimation of shape parameter (a) in this

study. The shape parameter, describing the spatial varia-

tion of soil water storage capacity, was first estimated based

on the porosity and soil thickness data in the soil database

(gSSURGO). The estimated values of a were tested in 35 wa-

tersheds. The results showed that the model with the esti-

mated values of Sb and a underestimated the mean annual

runoff by 11.8 % on average over all the study watersheds.

The underestimation of runoff is mainly caused by the un-

derestimation of the spatial heterogeneity of soil thickness

over the watershed. The height above the nearest drainage

(HAND) was then calculated as the total soil thickness for

estimating the total volume of the pore space. The result

showed that topography is of great importance for determin-

ing the spatial variability of soil water storage capacity. The

estimated shape parameter from porosity-HAND overesti-

mated the spatial variability of the storage capacity compared

with the calibrated a, which may result from the assumed

bedrock in the HAND method. The topographic wetness in-

dex (TWI)-based shape parameter further indicated the im-

portance the topography including the land surface topogra-

phy and bedrock topography. Future research will investigate

alternative methods for better estimating the spatial variabil-

ity of soil water storage capacity over watersheds and quan-

tify the impacts of vegetation and climate variability (e.g.,

distribution of rainy days, the magnitude and the seasonality

of climate variables).
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