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Université européenne de Bretagne

3 Software Technologies Laboratory, Università di Firenze, Italy

Abstract. This paper considers the model of Time Petri Nets (TPNs)
extended with time parameters and its use to perform on-line diagnosis
of distributed systems. We propose to base the method on unfoldings.
Given a partial observation, as a possibly structured set of actions, our
method determines the causal relation between events in the model that
explain the observation. It can also synthesize parametric constraints
associated with these explanations. The method is implemented in the
tool Romeo. We present its application to the diagnosis of the example
of a cowshed with pigs.
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1 Introduction

In this paper, we decided to bring attention on a dynamic verification method,
called model-based supervision. It is established that diagnosing dynamical sys-
tems, represented as discrete-event systems, amounts to finding what happened
to the system from existing observations (an event log) derived from sensors. In
this context, the diagnostic task consists in determining the trajectories compat-
ible with the observations. The standard situation is that the observed events
correspond to the firing of some transitions of the model, while the other tran-
sitions are just internal (this situation is called “partial observation” in super-
visory control theory [4]). Supervision, based on unfoldings [7,12] in our case, is
implemented by the on-the-fly construction of the unfolding, guided by the ob-
servations. With this dynamic approach, since we consider only finite sequences
of observations, decidability questions become much easier. The only require-
ment is to be able to decide whether a transition can be fired or not. Petri nets
for supervisory control and diagnosis have been proposed in numerous papers
(see for instance [16] and [9]). In most cases the construction of diagnosers is
based on the state graph (i.e. the interleaving view). The use of unfoldings is
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more recent. Safe ordinary nets are used in [8] with emphasis on distributed
diagnosis. This has been extended to safe time Petri nets in [5]. The parametric
case has not been considered yet.

The great interest of unfoldings in that task is their ability to infer the pos-
sible causal dependencies, which are not in general part of the observations. We
think that adding parameters in specifications is a real need. It is often difficult
to fix them a priori: indeed, we expect from the analysis some useful informa-
tion about their possible values. This feature clearly adds some “robustness” to
the modeling phase. It is particularly relevant for the supervision activity we
consider, in which an arbitrary choice of parameters often avoids to find expla-
nations compatible with the observations. This leads to rejection of the model;
moreover, no additional knowledge how to correct it is provided.

We implemented our method inside the Romeo tool developed in the IRC-
CyN lab in Nantes [11], available as free software. This implementation allowed
us to demonstrate the proposed supervision method on small case studies. In
this paper we chose to develop a new case study, the “cowshed with pigs”. It is
freely inspired from [10], in which the idea was to show how Uppaal can handle
some hybrid models. Here, we consider a Time Petri Net modelling with time
parameters. By observing some particular transitions of the model, we show that
it is possible to infer causalities between the corresponding events, allowing us
to correlate them in order to find the root causes. Furthermore, the method can
compute constraints on parameters that must be satisfied in order to explain the
observations.

We consider here for the first time, the possibility of having a structured set of
observations. The goal of the supervision is to produce explanations compatible
with this set (no contradiction between the respective causal structures).

The contributions of this paper are:

– a general method for on-line diagnosis based on Time Petri Nets with pa-
rameters, able of causal, time, and parametric inference from a structured
set of observations.

– an illustration using an original model of cowshed, which could be of general
interest for the community.

The paper is organised as follows. In Section 2, we first present the Time
Petri net model with parameters and the way it can be unfolded. Then the
model of observations is presented in Section 3 and how it is used to guide the
construction of the unfolding. Section 4 describes our case study and illustrates
the method, before a few words of conclusion.

2 Time Petri Nets with parameters and their unfolding

2.1 General notations

We denote by N the set of non-negative integers, by Q the set of rational numbers
and R the set of real numbers. For A denoting the sets Q or R, A≥0 (resp. A>0)



denotes the subset of non-negative (resp. strictly positive) elements of A. Given
a, b ∈ N such that a ≤ b, we denote by [a..b] the set of integers greater or equal
to a and less or equal to b. For any set X , we denote by |X | its cardinality.
In the symbolic expressions, ∧ denotes the logical conjunction, ∨ the logical
disjunction and ¬ the logical negation operators. We will also use ⇒ as the
logical implication.

For a function f on a domain D and a subset C of D, we denote by f|C the
restriction of f to C.

Let X be a finite set. A (rational) linear expression on X is an expression
of the form a1x1 + · · · + anxn, with n ∈ N, ∀i, ai ∈ Q and xi ∈ X . The set
of linear expressions on X is denoted Expr(X). A linear constraint on X is an
expression of the form LX ∼ b, where LX is a linear expression on X , b ∈ Q and
∼∈ {<,≤,≥, >}. We will also use abbreviations like = and 6=.

For the sake of readability, when non-ambiguous, we will “flatten” nested
tuples, e.g. 〈〈〈B, E, F 〉, l〉, v, θ〉 will be written 〈B, E, F, l, v, θ〉.

2.2 Petri nets

Definition 1 (Place/transition net). A place/transition net (P/T net) is a
tuple 〈P, T, W 〉 where: P is a finite set of places, T is a finite set of transitions,
with P ∩ T = ∅ and W ⊆ (P × T ) ∪ (T × P ) is the flow relation.

This structure defines a directed bipartite graph.

We further define, for all x ∈ P ∪ T , the following sets: •x = {y ∈ P ∪
T | (y, x) ∈ W} and x• = {y ∈ P ∪ T | (x, y) ∈ W}. These set definitions
naturally extend by union to subsets of P ∪ T .

A marking m : P → N is a function such that (P, m) is a multiset. For all
p ∈ P , m(p) is the number of tokens in the place p. In this paper we restrict our
study to 1-safe nets, i.e. nets such that ∀p ∈ P, m(p) ≤ 1. Therefore, in the rest
of the paper, we usually identify the marking m with the set of places p such
that m(p) = 1. In the sequel we will call Petri net a marked P/T net, i.e. a pair
〈N , m〉 where N is a P/T net and m a marking of N , called initial marking.

A transition t ∈ T is said to be enabled by the marking m if •t ⊆ m. We
denote by en(m), the set of transitions enabled by m.

There is a path x1, x2, . . . , xn in a P/T net iff ∀i ∈ [1..n], xi ∈ P ∪ T and
∀i ∈ [1..n − 1], (xi, xi+1) ∈ W .

In an acyclic P/T net, consider (x, y) ∈ P ∪ T . x and y are causally related,
which we denote by x < y, iff there exist a path in the net from x to y. x and
y are in conflict, which we denote by x#y, iff there exists two paths p, t, . . . , x
and p, t′, . . . , y, starting from the same place p ∈ P but such that t 6= t′. It is
also convenient to consider the relation of direct conflict between transitions,
denoted x conf y, indicating that they share in their presets the place that
originated the conflict (•x ∩ •y 6= ∅). x and y are in concurrency, which we
denote by x co y, iff none of the two previous relations holds, that is to say
¬(x < y) ∧ ¬(y < x) ∧ ¬(x#y).



An occurrence net is an acyclic P/T net, finite by precedence, and such
that no element is in conflict with itself and each place has at most one input
transition. We use the classical terminology of conditions and events to refer to
the places and transitions in an occurrence net.

Definition 2 (Branching process). A branching process of a Petri net N =
〈P, T, W, m0〉 is a labeled occurrence net β = 〈O, l〉 where O = 〈B, E, F 〉 is an
occurrence net and l : B ∪ E → P ∪ T is the labeling function such that:

– l(B) ⊆ P and l(E) ⊆ T ,
– for all e ∈ E, the restriction l|•e of l to •e is a bijection between •e and •l(e),
– for all e ∈ E, the restriction l|e• of l to e• is a bijection between e• and l(e)•,
– for all e1, e2 ∈ E, if •e1 = •e2 and l(e1) = l(e2) then e1 = e2.

E should also contain the special event ⊥, such that: •⊥ = ∅, l(⊥) = ∅, and l|⊥•

is a bijection between ⊥• and m0.

Example 1. Fig. 1b shows one branching process of the net presented in Fig. 1a
(ignoring any timing or parameter information). The labels are put inside the
nodes. We can see that the branching process in Fig. 1b unfolds the loop t1, t2, t0
once. This loop could be unfolded infinitely many times, leading to an infinite
branching process.

Branching processes can be partially ordered by a prefix relation. There exists
the greatest branching process according to this relation for any Petri net N ,
which is called the unfolding of N , denoted U(N ).

Let β = 〈B, E, F, l〉 be a branching process.
A co-set in β is a subset B′ of B such that ∀b, b′ ∈ B′, b co b′.
A configuration of β is a set of events E′ ⊆ E which is causally closed and

conflict-free, that is to say ∀e′ ∈ E′, ∀e ∈ E, e < e′ ⇒ e ∈ E′ and ∀e, e′ ∈
E′,¬(e#e′).

For any co-set B′, l(B′) defines a subset of the marking of the net. A cut is
a maximal co-set (inclusion-wise). For any configuration E′, we can define the
set Cut(E′) = E′• \ •E′, which is the marking of the Petri net obtained after
executing the sequence of events in E′.

An extension of β is a pair 〈t, e〉 such that e is an event not in E , s.t. •e ⊆ B
is a co-set, the restriction of l to •e is bijection between •e and •t and there is no
e′ ∈ E s.t. l(e′) = t and •e′ = •e. Adding e to E and labeling e with t gives a new
branching process. Starting from the event ⊥, and adding successively possible
extensions forms the “unfolding algorithm”.

2.3 Parametric Time Petri nets

A mainstream way of adding time to Petri nets is by equipping transitions with
a time interval [13,3]. We consider here an extension allowing the designer to
leave open the knowledge of time bounds by putting symbolic expressions on
parameters in time intervals instead of rational constants.
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Fig. 1. A parametric time Petri net (a) and a prefix of the unfolding of its underlying
(untimed) Petri net (b).

Definition 3 (Parametric Time Petri net). A parametric Time Petri Net
(PTPN) is a tuple 〈P, T, W, m0, eft, lft, Π, DΠ〉 where:

〈P, T, W, m0〉 is a Petri net, Π is a finite set of parameters (Π ∩ (P ∪ T ) =
∅), DΠ is a conjunction of linear constraints describing the set of initial
constraints on the parameters, and eft : T → Q≥0 ∪ Expr(Π) and lft : T →
Q≥0 ∪ {∞} ∪ Expr(Π) are functions respectively called earliest (eft) and
latest (lft) transition firing times. For each transition t, if eft(t) and lft(t)
are constants, it is assumed that eft(t) ≤ lft(t), otherwise, it is assumed that
DΠ ⇒ eft(t) ≤ lft(t).

Example 2. Fig. 1a gives an example of a PTPN. Notice that the time interval
of transition t2 refers to two parameters a and b. The only initial constraint is
DΠ = {a ≤ b}.

Given a PTPN N = 〈P, T, W, m0, eft, lft, Π, DΠ〉, we denote by Untimed(N )
the Petri net 〈P, T, W, m0〉. The definition of unfolding for PTPN is developed
in [14,15]. It relies on an extension and improvement of [6] to have a compact
representation of the unfolding and to deal with parameters. The idea is to deco-
rate the unfolding of the underlying net in associating to each event e a symbolic
expression θ(e) representing the constraints that must be satisfied to justify the
occurrence of e. For each event e, we consider its firing date represented by the
variable θe. The expressions on events are boolean expressions on linear con-
straints on the set of variables and parameters. Fig.2 gives an example of such
“decorated” unfolding.

Let N = 〈P, T, W, m0, eft, lft, Π, DΠ〉 be a PTPN and β = 〈B, E, F, l〉 be the
associated unfolding of Untimed(N ). We define the enabling date of an event
e ∈ E as the expression TOE(e) standing for maxf∈••e θf . It gives the date at
which the corresponding transition has been enabled.
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Fig. 2. A prefix of the symbolic unfolding of the PTPN of Fig. 1a.

Definition 4 (Valid timing function for an unfolding). Given a PTPN
N = 〈P, T, W, m0, eft, lft, Π, DΠ〉. Let β = 〈B, E, F, l〉 be the unfolding of
Untimed(N ). The timing function θ is defined by θ(⊥) = 0 and ∀e ∈ E (e 6= ⊥),






[

(θe 6= ∞) ∧ (eft(l(e)) ≤ θe − TOE(e) ≤ lft(l(e))) ∧
∧

e′∈E,e′ conf e(θe′ = ∞)
]

∨
[

(θe = ∞) ∧
∨

b∈•e(θ•b = ∞)
]

∨
[

(θe = ∞) ∧
∨

e′∈E,e′ conf e[(θe′ 6= ∞) ∧ (θe′ ≤ TOE(e) + lft(l(e)))]
]

Note that in this definition, the parameters appear through the functions eft

and lft.
The first line of the expression means that the event e has been fired, and

consequently that no conflicting events has been fired and that its firing date
must conform to its time interval according to the TPN semantics. The remaining
two lines consider the case in which the event e has not been fired (coded by
the expression θe = ∞). There are two possibilities: either a preceding event has
not yet fired, or a conflicting event has been fired and has prevented e to occur.
This latter case means that such conflicting event has fired while e was enabled.

Example 3. Fig. 2 shows a symbolic prefix of the unfolding of the PTPN in
Fig. 1a. We can see that each event is attributed with a symbolic expression.
The expressions are formed with variables denoting the firing dates of the con-
sidered event and of its neighbourhood (the events that directly precede and
those in conflict) and parameters. In practice, the expressions are implemented
in polyhedrons.

We also define the set of events temporally preceding an event e ∈ E as:
Earlier(e) = {e′ ∈ E | θ(e′) < θ(e) is satisfiable}.

Following the standard semantics of TPNs, [2] has defined the notion of valid
time configuration, which can be used here:



Definition 5 (valid time configuration). A configuration E′ of U(Untimed(N ))
is a valid time configuration of
U(N ) iff (θ⊥ = 0) and

∧

e∈E′\{⊥}

[θe ≥ TOE(e) + eft(l(e)) ∧
∧

e′∈en(l(Cut(Earlier(e)))

θe ≤ TOE(e′) + lft(l(e′))]

Let us consider a maximal (in term of set inclusion) configuration E′ of
U(Untimed(N )), extended with the events that are in direct conflict E′′ and
equipped with the corresponding symbolic expressions of U(N ). Assuming that
events in E′ have fired and that events in E′′ not, E′ is a valid time configuration
if the conjunction of all expressions of E′ ∪ E′′ is satisfiable. This leads to the
following theorem [14].

Theorem 1 (Correctness). Let 〈B, E, F, l, v, θ〉 be the unfolding of a para-
metric time Petri net N = 〈P, T, W, m0, eft, lft, Π, DΠ〉. Consider a maximal
configuration E′ ⊆ E, and E′′ = {e ∈ E | ∃e′ ∈ E′, e conf e′}
E′ is a valid time configuration iff

[
∧

e∈E′

(θe 6= ∞) ∧
∧

e∈E′′

(θe = ∞)] ⇒
∧

e∈E′∪E′′

θ(e) is satisfiable.

3 Application to supervision

We first define the notion of structured observation and then show how to guide
the construction of a finite unfolding containing the configurations that are com-
patible with the observations. We consider that the real distributed system un-
der supervision has been instrumented in such a way that it will produce events
(like prints used for debugging) during its execution. These events have a name,
picked up in some finite alphabet Σ and can be possibly related to each other.
In practice, we consider three cases: two events can be causally related, they can
be concurrent, or their relation is not known. As usual, the causal relation must
be an order. The two others are just symmetric.

Definition 6 (Observation). An observation is a finite set of events O, equipped
with a causal order � and a symmetric relation co. If two events are not related,
their relation is said to be “unknown”. An event also has a name, addressed by
the labelling function λ : O → Σ.

In order to relate the observation and the model, we also consider that tran-
sitions of the PTPN are labelled by a similar function λ : T → Σ ∪ {ǫ}. The ǫ
symbol not belonging to Σ is used to indicate that the occurrence of the tran-
sition cannot be linked to an observable event. The labelling does not need to
be injective, and in general the same observation can be explained by several
trajectories of the model.



We construct the unfolding compatible with the observation. To define this
notion of compatibility, we consider the maximal configurations and ask they
do not contain events and relations that contradicts the observation. Given an
observation O, we consider the Parikh vector ̟(O) = (|λ−1(a)|)a∈Σ , which
counts the number of occurrences of each action in O. The same function can
also be applied to configurations, considering that for each event e, λ(e) is in
fact λ(l(e)).

Definition 7 (Compatibility). The unfolding of a PTPN N is compatible
with an observation O if all its maximal (in the sense of set inclusion) configu-
rations are. A configuration E is compatible with an observation iff:

– ∀e ∈ E, ̟(E) = ̟(O) and

–
∀o1, o2 ∈ O, o1 � o2 ⇒
∃e1, e2 ∈ E s.t. (λ(o1) = λ(e1)) ∧ (λ(o2) = λ(e2)) ∧ (e1 ≤ e2)

–
∀o1, o2 ∈ O, o1 co o2 ⇒
∃e1, e2 ∈ E s.t. (λ(o1) = λ(e1)) ∧ (λ(o2) = λ(e2)) ∧ (e1 co e2)

Theorem 2 (Finiteness). Given a finite observation, if the PTPN does not
contain loops of ǫ transitions, the set of compatible configurations is finite and
thus the unfolding.

Proof. Because of the finiteness of the original Petri net, the only possibility to
obtain an infinite object is to have an infinite configuration. Such a configuration
contains some observable events (events e such that λ(l(e)) 6= ǫ). They are in
finite number, due to the finiteness of the observation and by application of the
Parikh constraint. Thus, the only possibility is to have an infinite number of ǫ
events. Because of the safeness of the net, this infinite set of events must form a
chain of causality, which is prevented by the absence of ǫ-loop in the net.

At the end of the observation, we obtain a finite unfolding in which each
event is equipped with a symbolic expression. From Theorem 1, it is possible to
extract the valid timed configurations. This is done by considering the maximal
configurations of the underlying untimed net, extended by the events that are
in direct conflict with some event of the configuration. The associated symbolic
constraint is given by Theorem 1. After Boolean simplification, keeping only the
configurations in which the expression is satisfiable, we obtain a set of timed
configurations which constitutes the set of “explanations”. An explanation adds
in general a lot of information to the observation:

– It has inferred some added causal and concurrent relations between the ob-
servable events;

– it has inserted also some patterns of non observable events;

– it gives the constraint that must be satisfied between all the firing dates of
the events;

– it gives some constraints about the possible values of the parameters.
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Fig. 3. Two possible explanations.

This is illustrated in Fig. 3. We have considered the PTPN of Fig. 1a in which
only transitions t1 and t2 are observable and labelled with the same letter. Let
us now consider a simple observation formed with only two occurrences of the
letter. The finite symbolic unfolding we obtain is the one depicted in Fig. 2.
There are only two maximal valid timed configurations as shown in Fig. 3.

4 Case study

4.1 The continuous model

In this section, we present a realistic case-study based on the industrial case
study for climate control in a cowshed proposed in [10]. The problem is to keep
the temperature, humidity, CO2 and ammonia concentrations at specified levels
so that the well-being of pigs is ensured. Though it would be relevant to model
temperature, humidity, CO2 and ammonia concentration we limit ourselves to
modeling only temperature. It would though be easy to include the disregarded
climate parameters since the mixing dynamics are, roughly, identical.

The cowshed is divided into distinct climatic zones which interact by ex-
changing air flow. Besides internal air flow a zone interact with the ambient
environment by activating a ventilator in an exhaust pipe and also by opening
a screen to let fresh air into the building. Air flowing from outside into the ith

zone is denoted Qin
i [m3/s]. Air flowing from the ith zone to outside is denoted

Qout
i [m3/s]. Air flowing from zone i to i + 1 is denoted Qi,i+1[m

3/s](air flow is
defined positive from a lower index to a higher index). A stationary flow bal-
ance for each zone i is found: Qi−1,i + Qin

i = Qi,i+1 + Qout
i where by definition

Q0,1 = QN,N+1 = 0. The flow balance for zone i is illustrated in Fig. 4.
The temperature in a given zone is impacted in several ways:



Qout
i

Qin
i

Qi−1,iQi,i−1 Qi,i+1Qi+1,i

heater

fresh air inlet

fan+outlet

zone izone i − 1 zone i + 1

Fig. 4. The zone number i and the air flows through it.

– Each zone is equipped with a heater which can be either on (ui = 1) or off
(ui = 0). We denote by Ui[J/s] the resulting heating;

– The pigs in the zone produce heat, denoted by Wi[J/s];
– Air flows from/to adjacent zones;
– Fresh air flows in from outside through the inlet. Tamb is the outside tem-

perature. Qin,max
i is the maximum flow of air drawn from outside;

– Air flows outside by means of the fan. Qout,max
i is the maximum flow of air

fanned outside.

The evolution of the temperature in zone i is therefore given by the follow-
ing differential equation, where Vi is the volume of zone i, ρair the air density
[kg/m3], and cair the specific heat capacity of air [J/kg.C]:

dTi

dt
= f(Ti−1, Ti, Ti+1), with

f(Ti−1, Ti, Ti+1) = 1
Vi

[Qin
i Tamb − Qout

i Ti + Qi−1,iTi−1 − Qi,i−1Ti

−Qi,i+1Ti − Qi+1,iTi+1 + uiUi+Wi

ρaircair

]

Among all the factors impacting the temperature in the zone, only three are
directly controllable:

– The heater, which is on or off;
– The aperture of the inlet, between 0 and some maximal value inducing

Qin,max
i ;

– The speed of the fan, between 0 and some maximal value inducing Qout,maxi .

In particular, the internal air flows between zones are induced by these last
two parameters. We also decided to extend the system with an extra feature
which is a possibility of failures of fans (depicted by the state OOOi in Fig. 5).
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Fig. 5. The cell i.

4.2 The PTPN generation

We consider a discrete evolution of temperature of each cell on a scale of n
degrees. Each possible temperature in a cell is represented as a place. The marked
place gives the current temperature of the cell. We sample and compute the
successor state considering that Ti−1, Ti and Ti+1 are constants. Let us denote
nextδ(Ti) the temperature of cell i, obtained in these conditions after δ units of
time (t.u.).

We define Cδ ∈ [0, 1] as the coefficient of heat exchange on the duration δ.

1. Without fan (no communication with outside) and without pig:

nextδ(Ti) = Ti + Cδ ∗
Ti−1 − Ti

3
+ Cδ ∗

Ti+1 − Ti

3

On an infinite delay (Cδ = 1), we would obtain the heat equilibrium: nextδ(Ti) =
Ti−1+Ti+Ti+1+Tamb

3

2. Without fan, but with pigs:
Let T W

δ be the heat brought by the pigs during δ time units.

nextδ(Ti) = Ti + Cδ ∗
Ti−1 − Ti

3
+ Cδ ∗

Ti+1 − Ti

3
+ T W

δ



3. With fan and pigs:
Let Camb

δ ∈ [0, 1[ the coefficient of heat exchange with outside (depends on
the power of the fan: Camb

δ = 1 means a fan with an infinite power).

nextδ(Ti) = Camb
δ ∗Tamb+(1−Camb

δ )∗(Ti+Cδ∗
Ti−1−Ti

3 +Cδ ∗
Ti+1−Ti

3 +T W
δ )

The model of a cell i, given in Fig. 5, consists of 4 blocks:

– the block Ti with one place per temperature,
– the block Nexti is used to store the intermediate state,
– the block FANi is a model of the behaviour of the fan including possibility

of failures,
– the block nextδ compute the next temperature of the cell and performs the

exchange of tokens between bloks Ti and Nexti using the block FANi and
the temperature of adjacent cells. This exchange is given by the quantization
(on the n temperature levels) of the function nextδ(Ti).

The sampling is controlled by the places Ctrli Computei and Waiti and
transitions topi, runi and updatei. The new temperature of the cell i is computed
in two steps. First, the new temperature nextδ(Ti) is computed at (δ−ǫ) t.u. and
the result is stored in the intermediate places of block Nexti. This intermediate
result is obtained in zero t.u. and does not depend of the interleaving since
marking of block Ti is not modified by this computation. Then, the intermediate
result is moved from Nexti to Ti after ε t.u.

All the possibilities are defined, which leads to a complex graph. With n
the number of temperature levels, the model have 2× n3 transitions.This one is
tedious to build by hand. Thus we decided to automatically generate the model
by programming a tcl-tk generator, parameterized by the number of considered
cells and the temperature scale. This generator of 1000 lines builds an PTPN
model as a XML file directly read by Romeo. For example, Fig. 6 gives an insight
of the model with 2 cells and 3 levels of temperature.

4.3 The diagnosis experiment

The goal of the experiment is to show a case in which a certain maximal tem-
perature is exceeded in one of the cells. This leads in turn to the death of some
pigs. In the model, we assume that we can observe the changes of temperature
in each of the cells, and we can get to know if some pigs died. As a result we
would like to know the possible explanations of cases in which a pig died. For
example, we can imagine a situation where a fan is broken in a cell. Moreover,
we would like to obtain some information about the possible dates of death.

The experiment was performed on the system presented in the previous sec-
tion in Fig. 6. It consists of 2 cells and 3 levels of temperature. In the example,
we assume that the temperature of cells is monitored at some given rate, which
amounts to 10 units of time.

To be able to execute our scenario, we added some additional transitions to
the model (see Fig. 6). They do not change the main functionality of the model.
They are used for two reasons. The first reason is to verify whether the critical
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Fig. 6. The model with 2 cells and 3 levels of temperature.



temperature was reached or not. Consequently, each time the extra transitions
are fired, one can observe the death of pigs as a consequence of the excessive
temperature. The second reason is to compute a minimal delay between two
events: the initial event of the model (at time 0), and the potential death of pigs
in a cell. The structure which implements this task is based on two transitions.
One of the transitions has a parametrized constraint [a, a]. The transitions share
an input place with a token. The token is active from the very beginning of
the model activity. However, the non-parametrized transition t depends also on
some other token at place p (in the model it denotes the maximal temperature).
Our goal is to get to know when the place p can activate the non-parametrized
transition (in the model it denotes the death of pig). We can note that using the
structure we get the minimal possible date of firing t by reading the parameter a.

For the purpose of the experiment, we set up an initial temperature for each
cell and we entered a set of observed events into our tool for analysis, i.e.: log
with unordered temperature measurements, and an event which signals death
of an animal in one of the cells. In total, there were 8 observable events and
a limit of 6 unobservable events in the observation. As a result, we obtain a
prefix consisting of 108 events with 4 possible explanations. From the prefix we
can observe that in any of the four scenarios, the fans in the both cells have to
be broken before the temperature become critical. Moreover, as a result of the
experiment, we get possible valuations of the parameters given in the model.
Thus, we get to know that the minimal time amount necessary in order to reach
the state dangerous for the pigs amounts to 20 units of time.

To perform the experiment we used a prototype implemented in Romeo,
which is a software for analysis of time Petri nets. The experiment was executed
on a small machine with 1GB of RAM and 2GHz Intel Pentium processor. The
computation time of the example needed about 15 seconds. During our exper-
iments we tested also some different variants of the problem: with more cells,
with more levels of temperature, and with different observations. In general, size
of the model and observations can strongly influence the time complexity of the
diagnosis. It is not difficult to observe that one of the issues which plays a great
role in the time consumption of the analysis is the number of unobservable, or
indistinguishable events in the system. During the tests we observed many diffi-
cult cases in the context of time complexity. We intend to address that issue in
our future work and improve the software tool we used for our experiments.

5 Conclusion

The current version of the Romeo tool 2.9.0 is available on the webpage [1].
It offers the possibility of computing symbolic unfoldings for safe time Petri
Nets with parameters. When guided by a sequence of actions, this feature allows
the user to perform some diagnosis. The diagnosis consists in a finite prefix of
the unfolding, presenting all the possible explanations of the input sequence.
The explanations show the inferred causal relationships between the events of
the model and also give the possible values for the parameters. We think that



such an integrated method is a real added-value for the analysis of concurrent
systems, and opens the door to deal with even more complex models like TPNs
with stopwatches, or TPNs with more robust time semantics (e.g. with imperfect
clocks).
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