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Diagnostic ability of deep learning 
in detection of pancreatic tumour
M. G. Dinesh 1, Nebojsa Bacanin 2*, S. S. Askar 3 & Mohamed Abouhawwash 4,5*

Pancreatic cancer is associated with higher mortality rates due to insufficient diagnosis techniques, 
often diagnosed at an advanced stage when effective treatment is no longer possible. Therefore, 
automated systems that can detect cancer early are crucial to improve diagnosis and treatment 
outcomes. In the medical field, several algorithms have been put into use. Valid and interpretable 
data are essential for effective diagnosis and therapy. There is much room for cutting-edge computer 
systems to develop. The main objective of this research is to predict pancreatic cancer early using deep 
learning and metaheuristic techniques. This research aims to create a deep learning and metaheuristic 
techniques-based system to predict pancreatic cancer early by analyzing medical imaging data, mainly 
CT scans, and identifying vital features and cancerous growths in the pancreas using Convolutional 
Neural Network (CNN) and YOLO model-based CNN (YCNN) models. Once diagnosed, the disease 
cannot be effectively treated, and its progression is unpredictable. That’s why there’s been a push in 
recent years to implement fully automated systems that can sense cancer at a prior stage and improve 
diagnosis and treatment. The paper aims to evaluate the effectiveness of the novel YCNN approach 
compared to other modern methods in predicting pancreatic cancer. To predict the vital features from 
the CT scan and the proportion of cancer feasts in the pancreas using the threshold parameters booked 
as markers. This paper employs a deep learning approach called a Convolutional Neural network (CNN) 
model to predict pancreatic cancer images. In addition, we use the YOLO model-based CNN (YCNN) 
to aid in the categorization process. Both biomarkers and CT image dataset is used for testing. The 
YCNN method was shown to perform well by a cent percent of accuracy compared to other modern 
techniques in a thorough review of comparative findings.

The most prevalent solid pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). Aggressive and chal-
lenging to cure, pancreatic cancer is the more general name for this disease. Pancreatic cancer has a meager 
endurance rate than other cancer  types1,2. Although there have been improvements in surgical methods, medi-
cation, and radiotherapy, the 5-year existence rate is still just 8.7%3. Pancreatic cancer is difficult to diagnose 
since most patients experience vague illnesses. While surgical resection plus chemotherapy gives the highest 
coincidental of life, with a 5-year survival rate of roughly 31.5%, only 10–20% of patients appear. Eighty to ninety 
percent of patients do not benefit from treatment because of widespread or regional  metastases4,5.

Compared to the incidence rates of other cancers with a higher death rate, such as lung, breast, and colorectal 
cancer, the overall incidence of malignancy is significantly lower. Therefore, age-based population screening 
is challenging because possible screening tests have low positive prediction performance, and there are many 
unnecessary assessments for individuals with false-positive findings. In addition, not many identified risk fac-
tors have a high penetrance for pancreatic cancer, making early identification of this illness difficult. For many 
years, the danger of pancreatic cancer has been evaluated based on family background, behavioral and physical 
lifestyle influences, and, more generally, systemic biomarkers and hereditary factors. This process began in the 
 1970s6. At this time, the serial pancreas-directed scan is performed on some associated with an increased risk 
due to family heritage or pathogenic genetic variations or cystic lesions of the pancreatic to detect slightly earlier 
pancreatic cancers.

However, accurate early diagnosis is still challenging and primarily reliant on imaging  modalities7. Computed 
tomography (CT) is the most frequent imaging sense modality for the first examination of alleged pancreatic 
 cancer8,9, outranking ultrasonography, MRI, and endoscopic ultrasonography. Subclinical people with a high 
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risk of developing pancreatic cancer can also be screened with CT scans. The average survival time for patients 
with pancreatic cancer identified accidentally during an imaging scan for a particular condition is significantly 
longer than those who presented with clinical  symptoms10. CT has a 70–90 percent sensitivity for detecting 
pancreatic  adenocarcinoma11. Thin-section contrast-enhanced dual-phase multidetector computed tomography 
is the modality of choice for diagnosing pancreatic  cancer12.

The main objective of this research is to predict pancreatic cancer early using deep learning and metaheuris-
tic techniques. Also, Analyze both biomarkers and CT image datasets to test the performance of the developed 
models. Specifically, the research aims to develop a deep learning and metaheuristic techniques-based system 
to predict pancreatic cancer early by analyzing medical imaging data, particularly CT scans. The objective is to 
identify vital features and cancerous growths in the pancreas using Convolutional Neural Network (CNN) and 
YOLO model-based CNN (YCNN) models.

Recent advances in deep neural networks and rising healthcare demands have shifted the focus of AI research 
toward CAD systems. Some early breakthroughs have been seen in using deep learning to evaluate radiological 
images. A deep learning-aided decision-making approach has been utilized to help diagnose lung nodules and 
skin  tumors13,14. Given the severity of pancreatic cancer, it is essential to work on creating CAD systems that 
can tell cancerous from noncancerous tissue. Consequently, creating a sophisticated discriminating mechanism 
for pancreatic cancer is essential. A convolutional neural network (CNN) can extract characteristics from the 
image by probing the local spatial correlations in a picture. CNN models have been able to effectively address 
a wide variety of challenges relating to the classification of  pictures15. In this paper, we used clinical CT scans 
to show that a deep learning approach can accurately classify pancreatic ductal adenocarcinoma, as confirmed 
by a pathologist.

The following is the structure of this paper: In Section “Related works”, we discuss the work done on super-
vised and unsupervised learning to diagnose pancreatic cancer. In Section “Proposed YOLOv3 based CNN meth-
odology for pancreatic cancer classification”, we will discuss the algorithm that we use for deep understanding. 
In the previous section (Section “Dataset”), we discussed the experimental set and the datasets utilized for the 
investigation. The discussion of the results of the experiment can be found in Section “Sample code and Implica-
tions”. Discussions and closing comments are included in the last section, numbered 6.

Related works
This section offers a comprehensive analysis of the many categorization schemes for pancreatic tumors that 
have previously been published. A CNN classifier was developed by Ma et al.16 to detect pancreatic cancers in 
CT data automatically. A dataset of 3494 CT scans was obtained from 3751 CT scans of 190 people with typical 
pancreatic cancer and 222 with pathologically proven pancreas tumors. This dataset was used to develop a CNN 
algorithm. They extracted three datasets from the picture, calculated the approach concerning ternary classi-
fiers, and evaluated the algorithm’s efficacy in specificity, accuracy, and sensitivity with tenfold cross-validation.

In17, an eightfold cross-validation approach is used to measure performance after a CNN-based DL technique 
was applied to CECT images to get three methods (arterial or venous, arterial, and venous). When evaluating 
the TML and DL algorithms for predicting the pathological grading of pNEN, the optimal CECT picture is used 
for comparison. Quantitative and qualitative CT data were also used to assess radiologists’ efficiency. Using an 
eightfold cross-validation procedure, we could estimate the best DL approach for scanning a separate testing set of 
19 individuals from Hospital II using different scanners. For the challenging task of pancreatic segmentation, Fu 
et al.18 introduced a novel pancreatic segmentation network that initially extends the RCF described to the edge 
detection domains. The divulged connectivity carried out per-pixel categorization by meticulously considering 
objects’ multi-resolution extensive contexture data (pancreas). This was possible using a multilayer up-sampling 
design instead of each level’s most fundamental up-sampling activities. This network was also trained and fed 
with CT images, producing a productive outcome.

Manabe et al.19 calculated a modified CNN technique to boost the efficiency of medical pictures. They changed 
the AlexNet technique based on convolutional neural networks to work with a 512-by-512 input space. Maximum 
pooling and convolutional layers both had their filter sizes decreased. Many other approaches were tested and 
developed using this modified CNN. Improved Convolutional Neural Network (CNN) estimates for pancreatic 
absence/presence CT image classification were made. Total accuracy measured on test photos not used to train 
the Resnet was also correlated.

Malignancy classification of lung nodules benefited from the knowledge of many high-level picture charac-
teristics. Eighty-two percent of lobulated nodules, ninety-three percent of ragged nodules, ninety-seven percent 
of heavily spiculated nodules, and one hundred percent of halo nodules were malignant in a dataset studied  by20. 
Automatic identification of characteristics and kinds of lung nodules was investigated  in21. This project aimed 
to categorize six distinct forms of nodules (solid, non-solid, part-solid, calcified, perivisceral, and spiculated 
nodules). This method relies on 2D CNN, which is inadequate for assessing lung nodule malignancy. Further, 
benign status was assigned to 66% of the round nodules.

By using massive volumes of imaging data, artificial intelligence has the potential to aid radiologists in the 
early identification of PDAC. In particular, CNNs belong to the family of AI algorithms known as deep learning 
models, and they have demonstrated excellent accuracy in the image-based diagnosis of several  cancers22,23. With 
the scan as input, CNNs routinely extract features useful for the diagnostic job through a chain of convolutions 
and pools. Attempts to automate the diagnosis of PDAC have recently shifted focus to deep learning  models24–29. 
However, the majority of studies conduct binary classification, determining whether or not a given input picture 
contains cancer, and do not also localize lesions at the same time. Not only that, but just one  research27 reported 
the model’s performance for tumors less than 2 cm in size. In contrast, most papers paid little attention to these 
early-stage lesions.
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Transfer learning is a machine learning technique where knowledge gained from solving one problem is 
applied to predict pancreatic  cancers30,31. In this case, pre-trained deep learning models trained on large image 
datasets are fine-tuned to detect cancerous lesions in pancreatic images. The aim is to improve the detection of 
pancreatic cancer at an early stage, which is critical for better patient outcomes. Also, authors  in32 have suggested 
that deep learning has more effective in predicting pancreatic cancer when compared to other ML techniques. 
The  article33 highlights the poor prognosis of pancreatic cancer due to late diagnosis and the importance of early 
detection and identification of molecular targets for treatment. It also suggests that screening and surveillance 
in high-risk groups, combined with new biomarkers, may offer new strategies for risk assessment, detection, 
and prevention of pancreatic cancer.

The  paper34 describes the development of a machine-learning algorithm based on changes in 5-hydroxym-
ethylcytosine signals in cell-free DNA from plasma for early detection of pancreatic cancer in high-risk individu-
als. The ML algorithm shows high specificity and sensitivity in distinguishing pancreatic cancer from noncancer 
subjects, with a sensitivity of 68.3% for early-stage cancer and an overall specificity of 96.9%. The  article35 
describes a study investigating the link between serum proteins and early-stage cancer detection. The study 
found that a positive history of alcohol consumption can diminish the sensitivity of serum protein-mediated 
liquid biopsy in detecting early-stage malignancies, resulting in a 44% decline in sensitivity. A grouped neural 
network is proposed  in36 for early diagnosis of pancreatic cancer using laboratory health tracking. The  work37 
describes a study that aims to develop new methods to simplify the large volume of patient medical records to 
improve clinical decision-making. The study uses deep-learning architectures to create simplified patient state 
representations that are predictive and interpretable to physicians.

The radiology department has most cancer diagnosis tests using machine and deep learning  algorithms38,39. 
The prediction accuracy is relatively achieved higher using these machine learning algorithms. Various medi-
cal diagnosis of pancreatic symptoms is tested in the radiology  department40. The  article41 induces multiple 
applications on the radiology side that have used AI. This paper discusses various applications for pancreatic 
cancer prediction.

The study proposes that this beneficial effect of long noncoding RNA p21 on endothelial repair is mediated by 
a pathway involving three protein molecules: SESN2, AMPK, and  TSC242. The study proposes that the inhibitory 
effect of homocysteine on pro-insulin receptor cleavage is caused by a process called cysteine-homo cysteinyla-
tion. Cysteine is another amino acid containing a sulfur atom, and homocysteine can form disulfide bonds with 
cysteine residues on proteins, altering their  function43. It involves using hyperpolarization techniques to increase 
the sensitivity of NMR, which allows for the detection of rare and subtle interactions between  molecules44. Drug 
delivery systems are methods for delivering drugs to specific targets in the body, such as diseased cells or tissues, 
while minimizing the potential for side  effects45. The method also incorporates DS evidence theory, a mathemati-
cal framework for combining different types of evidence and uncertainty in decision-making46. Deep learning 
is a type of machine learning that uses artificial neural networks to learn from large amounts of data and make 
predictions or  classifications47. The study also identified some critical factors that influence the thermal behavior 
of solid propellants, such as the presence of additives and the effects of  moisture48,49. The study results showed 
that silencing GTF2B expression led to a significant decrease in the proliferation of A549 cells, suggesting that 
GTF2B plays a role in promoting cell  growth50,51.

The study evaluated the proposed method’s effectiveness using a large lung CT image dataset. It showed that 
it outperformed existing image retrieval methods regarding accuracy and computational  efficiency52,53. The study 
evaluated the effectiveness of the proposed method using a large dataset of CT image sequences. It showed that 
it significantly improved retrieval time and accuracy compared to existing methods for mobile telemedicine 
 networks54. ViT-Patch is a deep learning model based on a type of neural network called a transformer that has 
recently shown state-of-the-art performance on a range of image classification  tasks55. The method involves first 
transforming the input images into a sparse representation using a sparse  dictionary56.

The researchers evaluated the efficacy of their surface-functionalized biomaterials using in vitro and in vivo 
 experiments57. The researchers also demonstrated the feasibility of using phased array technology to generate 
and detect guided waves in curved plates, which could have critical applications in structural health monitor-
ing and damage  detection58,59. The results showed a significant association between the health status of family 
members and the health behaviors of other family members. Specifically, having a family member with good 
health was associated with a higher likelihood of engaging in healthy behaviors such as regular exercise and not 
 smoking60,61. OCT is a non-invasive imaging technique that uses light waves to capture detailed images of the 
retina, and it is commonly used for diagnosing and managing  ERM62,63. The results showed that treatment with 
the therapeutic aptamer significantly increased bone formation in the mice with OI without increasing their 
cardiovascular  risk64,65.

This study utilized spectral domain optical coherence tomography (SD-OCT) to examine the postopera-
tive outcomes of vitrectomy in highly myopic macular  holes66. Sclerostin is a naturally occurring protein that 
inhibits the activity of cells responsible for bone formation called osteoblasts. It is crucial in regulating bone 
metabolism and preventing excessive bone  growth67. It targets specific proteins, known as immune checkpoints, 
that inhibit immune cell  activity68. Nanotherapeutic platforms refer to nanoscale materials that can be utilized 
for therapeutic purposes. In this case, the focus is on metal-based nanoparticles and their potential applications 
in treating bacterial  infections69. The researchers used SRS microscopy to acquire high-resolution prostate core 
needle biopsies images. These images captured the distribution and composition of different biomolecules within 
the tissue, enabling a detailed analysis of the cancerous  features70.

From the literature study, it is shown that deep learning algorithms are well suited to the diagnosis of pan-
creatic cancers. This research contributes by using deep learning and metaheuristic model to predict pancreatic 
cancer earlier.
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1. First, CNN is used to classify the pancreatic cancer images
2. Data pre-processing and segmentation process is done using sail fish optimizer.
3. Finally, a novel YOLO-based CNN model is used to predict cancer objects and classify cancer patients with 

high accuracy

The significant limitations of literature studies as follows

1. Studies mentioned in the discussion may have limitations regarding evaluating their proposed techniques. 
For example, the review might be limited to a specific dataset or may not involve a large and diverse sample 
size, which could affect the generalizability of the results.

2. Many studies primarily focus on the binary classification of pancreatic cancer (presence or absence) and may 
not adequately address the detection and characterization of early-stage lesions. Early detection improves 
prognosis, but only some papers address this.

3. IWhile deep learning models have been employed for cancer detection, most studies do not simultaneously 
focus on localizing lesions within the pancreas. Localization is essential for accurate diagnosis and treatment 
planning; more research is needed in this area.

4. Only one study reports the model’s performance for tumors smaller than 2 cm. The detection and charac-
terization of small tumors are critical for early diagnosis, and further investigation is needed to assess the 
effectiveness of the proposed methods for these lesions.

5. The studies mentioned utilize various image datasets for training and evaluation. It is essential to consider the 
potential biases and limitations in these datasets, such as variations in image quality, patient demographics, 
and imaging protocols, which may affect the generalizability of the results.

6. Some studies may need more clinical validation or evaluation in real-world settings. Further research is 
necessary to assess the effectiveness of the proposed techniques in clinical practice and their integration into 
existing diagnostic workflows.

Proposed YOLOv3 based CNN methodology for pancreatic cancer classification
The process of the model is illustrated in Fig. 1. During training, we determined which of the initial CT scans 
of the abdomen had accurate pictures for diagnosis. Following the augmentation of the data, we created a deep-
learning model consisting of three linked sub-networks. These models are commonly utilized in medical picture 
recognition due to their established  effectiveness29,71. Images of the pancreas that include it may be recognized 
with the help of ResNet50. The transverse plane CT scans shown in Fig. 1 do not have the pancreas and are not 
directly utilized in the YCNN model diagnosis. It does it by making predictions on each pixel of the picture, 
which produces binary values for the pancreatic segmentation.

This research incorporated texture characteristics of the pancreas into the segmentation outcome so that 
the future sub-network would have a more robust diagnostic base. This was done during the subsequent image 
fusion process. ResNet50, the last neural network in the YCNN model, is employed to determine whether or not 
a patient has a pancreatic tumor. The quantity of discrepancy between the production of the neural network and 
the label is used to calculate the loss function, and the back-propagation approach is applied to calculate how each 
gradient weight must be upgraded. The loss function is based on the level of divergence that persists between the 
production of the human brain and the classification. After analyzing the data, we chose the weights that would 
result in the least amount of data being lost and then locked them down for later application to the testing dataset.

In Fig. 1, we depict our unique and practical framework for tumor identification. The network’s core is an 
amalgamation of Feature Pyramid Networks (FPN) and P-CNN, and its contributions are comprised of three 
parts: augmented FPNs, SAFF, and a Dependencies Computation Module. First, we use a convolutional neural 
network (CNN) to extract features from the pre-processed CT images. Next, we construct the feature pyramid 
using up-sampling and horizontal connections. Second, a bottom-up approach is set up to make the transmission 

Figure 1.  Overall framework of the pancreatic cancer model.
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of low-level localization information more efficient, which improves the overall feature hierarchy and, in turn, 
the detection performance. Finally, we use a Region Proposal Network (RPN) at each tier to create proposals 
before employing Feature Fusion to increase the associated region of interest and encode richer background 
information across various balances. To further capture each proposal’s interdependencies with its surrounding 
tissues, we run the Dependencies Computation Module.

Segmentation. In order to segment images, we use a method based on Kapur’s thresholding (SFO-KT)72 
and the sailfish optimizer. During the image decomposition method, the pre-processed photograph is used as 
input by the SFO-KT technique in order to find the problematic regions in the CT scan. Therefore far, it has 
seen the most useful in determining the best threshold for histogram-based picture segmentation. At first, the 
entropy criteria were proposed for bilevel thresholding, much like the Otsu model. It is expressed  in72,

The equation represents the calculation of the Kapur’s entropy function, denoted as f kapur(t), based on 
two probabilities distributions of a discrete variable YR. The variable YR represents a set of non-negative real 
numbers, and it can be interpreted as the ratio of two positive quantities ω0 and ω1.

The formula is split into two terms, E0 and E1, which are the entropy of YR for two different intervals. The 
first term, E0, is the entropy of YR for the interval [0, t], and it is calculated by summing over all YR values in 
that interval. Specifically, for each YR value in that interval, we calculate its probability as  YRi / ω0, where ω0 is 
a reference quantity, and then we take the logarithm of this probability and multiply it by the probability itself. 
This process is done for all YR values in the interval, and the results are summed to obtain  E0.

The second term,  E1, is the entropy of YR for the interval [t + 1, L-1], where L is the total number of YR values. 
It is calculated in a similar way as  E0, except that we use ω1 as the reference quantity instead of ω0.

Finally, the Kapur’s entropy function, f_kapur(t), is obtained by adding  E0 and  E1 together. The parameter t 
is a threshold value that splits the YR values into two groups, [0, t] and [t + 1, L-1], and the function f kapur(t) 
measures the total entropy of YR for these two groups. The optimal value of t is the one that minimizes f kapur(t), 
and it is used as a criterion for selecting the best threshold value for classification or segmentation tasks.

Next, threshold values of kapur entropy is optimized using sail fish optimizer (SFO). SFO is metaheuristic 
approach which is based on sail fish attack alteration strategy. The position of the ith sailfish in the kth search 
round was denoted by  SAi,k and its corresponding fitness was evaluated as f(SAi,k). In the SFO technique, sardines 
also played a significant role. They were represented as a school moving through the search space, and the posi-
tion of the  ith sardine was denoted by  SRi, with its fitness evaluated as f(SRi).

The elite sailfish, possessing the optimal position, was selected during the SFO technique to influence the 
manoeuvrability and acceleration of sardines under attack. Additionally, the optimal position of any injured 
sardines from previous rounds was chosen for collaborative hunting by the sailfish to avoid selecting previously 
discarded solutions. These elite sailfish and injured sardines were designated as  Ynew  SAi, which  represents72 an 
upgraded solution dependent on subsequent iterations, is represented as,

where SRD denote sardine density.

In this, A represent amount sailfish and sardine. Then the new position of sardine is updated. Next, attack 
power of sailfish is computed with new position. Sardine upgrade to new position. if sardine is hunted, then 
fitness is superior to sail fish. Once the value is optimized then the segmentation is performed.

Feature pyramid network. CNNs can glean semantic information throughout the feature extraction pro-
cess. Similarly, high-level feature maps have a very positive response to global characteristics, making them ideal 
for spotting massive objects. However, because the tumor is so tiny in CT images, the successive pooling layers 
risk distorting the feature maps’ spatial information. In addition, tumour recognition relies heavily on low-level 
exact localization data; however, the propagation effect is influenced by the lengthy (over a hundred layers) data 
communication channel in FPN. For this purpose, we construct an Augmented Feature Pyramid working from 
the bottom up. Initially, we create Q1,Q2,Q3, andQ4 using FPN. Then, starting at Q1 , the enhanced route is 
formed, and Q1 is immediately utilised as R1 without further transformation. The next step is to execute a 3× 3 
convolutional operator with stride 2 on a higher resolution feature map Ri in order to shrink the size of the map. 
After that, we combine the down sampled feature map with another, coarser feature map, Qi+1 , by summing 
their respective elements. We then apply a second 3× 3 convolutional operator to each fused feature map to 
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produce Ri+1 for subsequent feature map creation. This procedure is repeated until the level Q4 is reached. A 
fresh R1,R2,R3, andR4 Augmented Feature Pyramid is thus obtained. The Fig. 2. displays the proposed YCNN 
construction.

Feature fusion. As a result of focusing on a single level for all of the actions after obtaining the suggested 
areas with RPN, certain potentially relevant details from lower levels are lost in the process. To fully use con-
text information at many scales, we propose a Self-adaptive Feature Fusion module that integrates hierarchical 
feature maps from several layers. Each proposal’s level Rm of the Augmented Feature Pyramid is formally deter-
mined by assigning the ROI with dimensions w and h.

I denotes the input image size 224. Through an examination of CT scans, clinicians are able to locate tumours 
by studying the image’s universal context, local geometric edifices, shape changes, and most importantly, spatial 
interactions with adjacent tissues. To calculate the retort at a given point, which is a biased sum of the char-
acteristics at all positions on the expanded region Q , we make use of the Dependencies Computation Module. 
One of the most helpful pieces of data for detecting tumours may be accessed by performing this process, which 
allows the network to focus more on connections and dependencies at various scales, from the local to the global. 
To be more precise, the whole Addictions Computation Module is well-defined as follows, with i as the input.

We created a CNN model to classify CT scan images for use in the early identification of pancreatic cancer. 
As shown in Fig. 3, our suggested CNN model has the following architectural layout. With three convolutional 
layers and a fully linked layer, our model was somewhat complex. Evey convolutional layer was followed by a 
weaker than expected max-pooling layer, a rectified linear unit (ReLU) layer that applied an activation function, 
and a batch normalisation (BN) layer to constrain the layer’s output results. To further minimize the dimen-
sionality of the feature values sent into the fully connected layer, we also implemented an average-pooling layer 
beforehand. To avoid overfitting and overspecialization, we chose a 0.5 percentage point dropout rate between 
both the median and fully linked layers. In addition, we attempted implementing a Spatial Dropout between 
each max-pooling layer and the convolutional layer that followed, however this led to a decrease in overall per-
formance. This is why Spatial Dropout was not used. The network accepts the CT image’s pixel values as input 
and returns the likelihood that the picture belongs to a certain class as output. Our model was gradually given 
the CT scans. Every layer receives as input the numbers generated by the layer above it. Layers process the input 
values by applying various transformations before sending them on to the following layer.

Our model was trained on the training set with a mini-batch size of 32 using a dataset with n target classes. 
The loss between our model’s predictions and the true outcomes was computed using the cross-entropy loss 
function at the end of each training cycle. This reduction influenced Adam’s optimization of weight modifica-
tions to our CNN model. After making changes to the model, we evaluated it based on its performance on the 
validation data. Our model was trained for up to 100 iterations before the one with the greatest accuracy on the 
validation set was chosen. Our methods were tested using a cross-validation procedure with a tenfold increase 
in sample size. Each set of photos from each stage was randomly split into 10 groups , of which 8 were used for 
training, 1 for validation, and 2 for testing the model. This was done ten times, with each "fold" serving as the 
test set once. Results were noted as being around average. We measured the accuracy, precision, and recall of 
our CNN model on the test sets.
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Figure 2.  The proposed CNN architecture.
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Classification model. In order to advance the accuracy of our finding, we made advantage of the overall 
design of YOLOv3, with DarkNet53 serving as the network’s backbone and a three-layer spatial pyramid serving 
as the neck. The BCE Loss function was utilised as the target loss function in the detection head, and a branch 
and loss function that was particularly optimised was added to the original YOLOv3 implementation. YOLOv3 
model is used in detection of cancer as an object and classify the image. Because the accuracy of the classification 
was more significant than the detection area for the early cancer detection, we decided to provide a bigger weight 
to the loss of classification. We made to start generating the network configuration in a random fashion. This was 
done to ensure that the activation function insights for each layer at the starting of the training stage were within 
a reasonable interval, which was necessary to ensure that the network would converge quickly.

Since the dataset we utilized was much smaller than the data used in the YOLOv3 network, it was possible 
that overfitting would occur if we had learned effectively with the provided boundaries. Therefore, in order to 
determine the characteristics of the DarkNet53 backbone network, Upon first, we did some preliminary train-
ing on the Image Net’s image recognition job and the dataset’s object classification task. After that, we added a 
three-layer pyramid detecting neck and fine-tuned it using the data set for early cancer. As can be seen in Fig. 4, 
we normalized the photographs from Image Net and the data sources by using the range and mean of the slightly 
earlier tumor training set to best align the learning rate with the early tumor data set. This lets us go as close as 
possible to fitting the model parameters to the early cancer data set. We utilized 64 images for each iteration of 
the network’s fine-tuning process, with entries measuring 224 by 224 pixels. As a result of the limited memory 
available on the GPU, a batch was split into 32 divisions. The total number of epochs that were performed was 
one hundred, with the first two epochs serving as the warm-up training and employing a cosine learning rate of 
0.01 for each epoch. After the warm-up, the learning rate dropped to 0.001 each epoch. We worked to provide 
context to the data, increasing their value.

Figure 3.  Construction of CNN model.

Figure 4.  The sample architecture of YOLO Model used in our proposed model.
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Dataset
Image dataset. In the period between June 2017 and June 2018, a dataset of 3494 CT pictures was gathered 
from 222 patients with pathologically proven pancreatic cancer, while a dataset of 3751 CT images was gathered 
from 190 individuals with healthy pancreas, and using these images, a CNN model was developed. The sample 
images are shown in the Fig. 5.

We divided these pictures into three phases-based datasets, tested the method using tenfold cross validation 
for binary classification (i.e., cancer or not) as shown in the Table 1.

Urinary biomarkers. Urinary biomarkers have been investigated for their potential role in the detection of 
pancreatic cancer. Pancreatic cancer is often diagnosed at an advanced stage when treatment options are limited, 
and the prognosis is poor. Therefore, identifying reliable and non-invasive biomarkers for early detection is criti-
cal for improving outcomes.

Several urinary biomarkers have been studied for their potential in detecting pancreatic cancer, including:

1. CA 19–9: A glycoprotein that is often elevated in pancreatic cancer patients and is currently used as a bio-
marker in clinical practice.

2. MUC1: A transmembrane mucin protein that has been found to be overexpressed in pancreatic cancer.
3. Osteopontin: A glycoprotein that has been shown to be overexpressed in pancreatic cancer and can be 

detected in urine.
4. Tumor-associated trypsin inhibitor (TATI): A protein that is often elevated in pancreatic cancer patients and 

has been investigated as a potential biomarker.
5. Human epididymis protein 4 (HE4): A glycoprotein that has been found to be overexpressed in pancreatic 

cancer and can be detected in urine.

This research uses LYVE1 (Lymphatic Vessel Endothelial Hyaluronan Receptor 1), REG1B (Regenerating 
islet-derived protein 1 beta), TFF1 (Trefoil factor 1) and REG1A (Regenerating islet-derived protein 1-alpha) 
biomarker as a dataset.

LYVE1 has been investigated as a potential target for cancer therapy, as its expression has been found to be 
upregulated in various types of tumors, including breast, lung, and pancreatic cancer. A study published in the 
journal Pancreas in 2014 found that REG1B was significantly elevated in the serum of pancreatic cancer patients 
compared to healthy controls and patients with pancreatitis. Another study published in the same journal in 2017 
found that REG1B levels were higher in the urine of pancreatic cancer patients compared to healthy controls and 
patients with chronic pancreatitis. A study published in the journal PLOS ONE in 2017 found that TFF1 levels 
were significantly higher in the serum of pancreatic cancer patients compared to healthy controls and patients 
with pancreatitis. Another study published in the journal Oncotarget in 2018 found that TFF1 levels were higher 
in the urine of pancreatic cancer patients compared to healthy controls and patients with chronic pancreatitis. 

Figure 5.  Sample CT scan images from the dataset.

Table 1.  Image dataset information.

Particulars Data

Total pancreatic cancer images 3494

Patient with pancreatic cancer 222

Total healthy pancreas images 3451

Patient with healthy pancreas 190

Thickness 5.0 mm
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REG1A has been shown to be a prognostic indicator of pancreatic cancer, with higher levels of REG1A associated 
with poorer outcomes. The Fig. 6 shows data of biomarkers present in the used dataset.

They collected biomarkers from the urine of three distinct patient populations:

• Health indicators
• Pancreatic ductal adenocarcinoma patients, malignant pancreatic environments

Figure 6.  the circulation of data in biomarkers dataset.
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• They were coordinated by age and sex when accurate. The purpose was to discover a reliable method of 
diagnosing pancreatic cancer. The Fig. 7. exhibits the dataset data. This figure shows 590 patients sample_id, 
patient_cohort,sample origin,age,sex,diagnosis, 199 stages , 208 diagnosis samples, 350 plasma tests, 590 
cretinine, biomarkers are presented in the dataset.

Sample code and implications
In this section sample codes are discussed. After computing threshold values, the YOLOv3 and DarknetRes is 
computed in python environment. Code snippets of YOLOv3 model, which is used to detect the tumour region 
based on computation value, is shown in Fig. 8. Finally, DarknetRes model used for classification. The few 
samples are shown below.

Figure 9 shows sample coding snippets for the YOLO and DarknetRes neural networks. in Fig. 10 you can see 
how input is loaded in the platform to compute. The predicted output values are shown in the Fig. 11 and error 
value computation are shown in the Fig. 12. However algorithm computes for 11 min and does not fail in any 
instances during the computation. From confusion matrix below it can be confirmed that the proposed model 
predicts data with high accuracy level.

Result and discussion
Using the two datasets, we tested our method for both binary and ternary classifications, and we determined 
how well it performed using the standard measures for such endeavours as accuracy, precision, and recall. The 
proportion of correctly supervised classification (abbreviated TRPS ) is used to quantify the quality of a picture. 
The accuracy of class K is defined as the fraction of pictures properly labelled as belonging to class K (denoted 
TRPS ) relative to the total number of images labelled as belonging to class ( TRPS + FPi). Among all the photos 
that should be identified as class K, the quantity of those that are properly classified as class K (signified as TRPS ) 
is the recall for class K. The following is how these measurements are made:

The Fig. 13 depicts the accuracy on the dataset Urinary Biomarkers and also on the image dataset. Both dataset 
produces the accuracy nearlyb100% on classifying the pancreatic cancer.

(9)Accuracy(AC) =
TRPS

TRPS + TRNG + FAPS + FANG

(10)Precision(PR) =
TRPS

TRPS + FAPS

(11)Recall(RC) =
TRPS

TRPS + FANG

Figure 7.  The dataset information.
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Given that accuracy evaluates a classifier’s performance across all classes and not just for a single class Ci, it 
was the primary metric we used to assess the efficacy of our method. The Fig. 14. Shows the loss of the model 
on both datasets.

In cancer diagnosis, sensitivity equals recall, or the ratio of properly predicted malignant lesions to total 
malignant lesions.

Specificity in detecting non-cancer cases is the Recall in detecting non-malignant cases which is the properly 
predicted non-malignant instances divided by the all-non-malignant cases);

Accuracy in cancer diagnosis is measured by the percentage of malignant lesions for which a correct predic-
tion was made, relative to the overall number of malignant lesions. 

The Fig. 15 shows confusion matrix for urinary biomarker dataset. Creatinine biomarker was predicted as 
Creatinine with 100% accuracy. However, Creatinine biomarker has mispredicted as LYVE1 as 34%, REG1B 
as 26%, TFF1 as 40%. LYVE1 biomarker has mispredicted as Creatinine as 34% and TFF1 as 58%. REG1B bio-
marker has mispredicted Creatinine as 26%, LYVE1 as 54% and TFF1 as 69%. TFF1 biomarker has mispredicted 
Creatinine as 40%, REG1B as 69%.

Figure 16 shows the confusion matrix of the non-cancer and cancer result predictions for image dataset. The 
confusion matrix confirms that the model achieves the 100% accuracy on Urinary Biomarkers dataset and 99.9% 
accuracy on the CT image dataset.

The Table 2 predicts the precision recall and the f1-score produced by our proposed YCNN model. The results 
ensures that the proposed model gives the 100% accuracy on classification.

The domains of illness diagnosis and treatment, care coordination, medication research and development, 
and precision medicine stand to benefit greatly from the use of machine learning. Its applicability to seeing the 

(12)F1− Score(F1) =
2× Precision(PR)× Recall(RC)

Precision(PR)+ Recall(RC)

(13)Sensitivity(SE) = Recall(RC)incancerdetectection ==
TRPS

TRPS + FANG

(14)Specificity(SP) = Recall(RC)innon− cancerdetectection ==
TRNG

TRNG + FAPS

Figure 8.  YOLOv3 code with detection strategy.
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Figure 9.  Sample snippets of YOLO layer and DraknetRes computation.

Figure 10.  Input loading.
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Figure 11.  Prediction values and sample predicted output.

Figure 12.  Error value computation.

Figure 13.  Accuracy on the datasets.
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Figure 14.  Loss on the dataset.

Figure 15.  Confusion matrix on the dataset Urinary Biomarkers.

Figure 16.  Confusion matrix on the CT image dataset.
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pancreas has been hampered since the pancreatic is very changeable in shape, size, and position, but it only 
occupies a very small percentage of a CT picture. This makes it difficult to observe the pancreas. As a direct 
consequence of this, diagnostic efficiency and accuracy have been subpar. The model consists of four stages: 
image screening, the localization of the pancreas, the division of the pancreas, and the diagnosis of pancreatic 
tumours. It achieves an area under the curve (AUC) of 1.00, an F1 score of 99.9%, and an accuracy of 100.0% on 
an independent testing dataset. The Fig. 17 shows the accuracy of AUC.

The creation of a more comprehensive dataset that includes a wider variety of pancreatic tumours than was 
previously possible as a result of this work is yet another advantage of the study. This may be of assistance to the 
deep learning system when it comes to recognising photos of the various pancreatic tumour kinds. The model 
can distinguish between the many cancers that can occur in the pancreas. The end-to-end automatic diagnosis is 
another strength of the system. This type of diagnosis takes only about 16.5 s per patient to complete, beginning 
with the input of the initial abdominal CT image and ending with a diagnosis result. It has great diagnostic and 
curative promise since it can manage and substantially interpret huge volumes of data fast, correctly, and afford-
ably in clinical settings. For instance, the model might be utilised for large-scale pre-diagnosis during physical 
examinations, or it could be used to aid with diagnosis at low-level facilities that have limited resources. One 
more feature of the model that has the potential to help improve its reliability is its capacity to generate saliency 
maps, which can be used to pinpoint the aspects of diagnostic decision making that are of the utmost significance. 
Despite the fact that our method relies solely on evidence obtained from CT scans, medical professionals have 
access to additional information, such as the medical histories of patients and their testimonies. Consequently, 
the decision making of independent practitioners, and not just the results of a deep learning system, should pro-
ceed to be the basis for convincing symptoms and care planning. We conducted the same research on the other 
baseline model such as VGG, DenseNet, etc. The Table 3 displays the promising outcomes of the performance 
judgement. For instance, the MobileNet achieves nearly 99% but not more than YCNN model.

The results presented in the Table 3 indicate the performance of different models for pancreatic cancer detec-
tion using urinary biomarkers and image datasets. Some useful insights that can be derived from presented 
results are as follows:

1. Urinary Biomarkers vs. Image Dataset Accuracy The table shows that the accuracy of urinary biomarkers is 
generally lower than that of image datasets. This suggests that image-based diagnostic tests might have a 
higher predictive power for pancreatic cancer detection compared to urinary biomarkers alone.

Table 2.  Performance evaluation of the model YCNN.

Precision Recall f1-score

1 100% 100% 100%

2 98% 100% 99%

3 100% 99% 98%

Accuracy 100%

Macro avg 100% 100% 100%

Weighted avg 100% 100% 100%

Figure 17.  AUC curve of the proposed model.
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2. Model Performance The table includes various models used for pancreatic cancer detection. Some models, 
such as YCNN, achieve perfect accuracy (100%) for both urinary biomarkers and image datasets. These 
models demonstrate the potential for highly accurate detection of pancreatic cancer.

3. Performance Variations among Models There are notable variations in performance among different models. 
For instance, MLP and LSTM models achieve lower accuracy compared to other models. On the other hand, 
CNN-based models, including VGG19, Resnet50, Inception, and DenseNet, show higher accuracy for both 
urinary biomarkers and image datasets. MobileNet also performs well in terms of accuracy. These results 
suggest that convolutional neural network (CNN)-based models have the potential to be effective tools for 
pancreatic cancer detection.

4. Potential Clinical Applications The strong performance of certain models, especially those based on CNN 
architecture, indicates their potential for clinical application in pancreatic cancer detection. These models 
could be integrated into computer-aided diagnostic systems to assist healthcare professionals in making 
more accurate and timely diagnoses. However, further research and validation studies are necessary before 
implementing these models in clinical practice

Conclusion and future work
In the realm of medicine, deep learning has contributed to developments in the analysis and forecast of a wide 
variety of disorders. In this study, a novel automated YCNN was presented to help the pathologist classify 
pancreatic cancer grades based on pathological images. The pycharm and Google Colab platforms serve as the 
backbone of the system, which also includes the YOLO model for making predictions based on the data. Input 
pictures are scaled up and divided into 224 × 224 pixel patches before being fed into the YCNN all at once. After 
that, CNN is used to categorise the patches into their respective grades, and then the patches are stitched back 
together to produce a single complete image before the final result is sent to the pathologist. On the datasets, 
f1-score measures of 0.99 and 1.00 have been reported, which are both encouraging. The proposed system could 
be enhanced by adopting the most advanced deep learning model, expanding the image dataset, and using aug-
mentation to improve the learning rate of the model on a variety of colour variations. In addition, a more recent 
method of synthetic image generation, can be planned to generate more images of pancreatic cancer pathology 
with the guidance of specialists before the training process begins. At this point, the findings of this research 
may be able to assist in giving pathologists a consistent diagnosis for the grade of pancreatic cancer by making 
use of a straightforward web interface that does not require any installation. In the future, we anticipate that the 
system will provide the pathologist with a second opinion if it is able to improve its performance and achieve 
an accuracy that is closer to 1.

Data availability
The datasets generated during and/or analysed during the current study are available in the [kaggle] repository, 
[https:// www. kaggle. com/ datas ets/ kmader/ siim- medic al- images? select= dicom_ dir], [https:// www. kaggle. com/ 
code/ kerne ler/ start er- pancr eas- ct- datas et- 628d2 558-a/ data], [https:// www. kaggle. com/ datas ets/ johnj davis iv/ 
urina ry- bioma rkers- for- pancr eatic- cancer].
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