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�e present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of
headache that are not related to any organic etiology.�ey are divided into four types: migraine, tension, cluster, and other primary
headaches. A�er we took this main objective into consideration, three di	erent neurologists were required to 
ll in the medical
records of 850 patients into ourweb-based expert systemhosted on our projectweb site. In the evaluation process, Arti
cial Immune
Systems (AIS) were used as the classi
cation algorithms. �e AIS are classi
cation algorithms that are inspired by the biological
immune system mechanism that involves signi
cant and distinct capabilities. �ese algorithms simulate the specialties of the
immune system such as discrimination, learning, and the memorizing process in order to be used for classi
cation, optimization,
or pattern recognition. According to the results, the accuracy level of the classi
er used in this study reached a success continuum
ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.

1. Introduction

Headache is a subjective topic concerning pain in the di	erent
parts of the head. �e most commonly known version is
migraine, and it is usually confused with other headaches.
�ere are certain symptoms of headaches, and their diagnos-
tic criteria are de
ned in “�e International Classi�cation of
Headache Disorders, Second Edition (ICHD-2)” [1] by “�e
International Headache Society (IHS)” [2]. All of the criteria
for headache diagnosis seem complicated because of the sim-
ilarities between each diagnosis of headaches. Additionally,
due to the lack of time spent on each patient at the hospitals,
doctors may come up with a wrong diagnosis. �e doctors
(54% of the neurologists) in Turkey indicated that the error in
the diagnosis of migraine is because of the density of patients
in the hospitals [3]. So far, di	erent algorithms such as deci-
sion tables [4] or various machine learning classi
ers [5, 6]

have been used by di	erent researchers for headache diagno-
sis. What makes this study unique is the fact that it makes use
of arti
cial immune system algorithms, which have recently
been popular classi
ers and these algorithms have not been
used for the categorization of headache types.

Immune-inspired algorithms attracted the attention of
computer scientists [7] because of their easy usage, �exibility,
stable structure, and precise results. Basically, an immune
system discriminates between the self (antibody) and nonself
material (antigen, pathogen) in an organ. Mammals obtain
immunity through a process of mutation, recognition, and
proliferation and a process of memorizing when potentially
harmful antigens stimulate the immune system by encoun-
tering T-cells or B-cells with an a�nity calculation. T-cells
and B-cells have receptors that bind to antigens from epitopes
with their paratopes. �e pattern recognition of T-cells and
B-cells for an antigen or pathogen is illustrated in Figure 1.
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Figure 1: B-cell and T-cell pattern recognition of an antigen or pathogen.

Table 1: Neurologists’ headache diagnoses.

Headache types Number of patients Percentage %

Migraine 609 71.65%

Tension type 184 21.65%

Cluster type 56 6.59%

No headache 1 0.11%

2. Materials

We conducted this research on 850 patients with headache
problems. Patients were from both sexes, were older than 15
years old, and lived in di	erent cities from across Turkey.

For this study to work, patients needed to respond to
the questions of doctors to keep medical records voluntarily.
Doctors put this information into our web-based question-
naire hosted on http://www.migbase.com/ by using a tablet or
computer.�erefore, informed consent was obtained from all
patients, and the requirement for written, informed consent
was waived by the investigational review board.

Doctors are supposed to enter their personal diagnosis
into the system following the patient’s completion of the
questionnaire. �e system does not allow doctors to see the
diagnosis of the website before they enter their diagnosis.
�is system was set up by using the MySQL database and
PHP language. Microso� Excel was used to create the dataset
from all of the records. We classi
ed headaches by using
WEKA Algorithm Implementation [8], which is a data-
mining workbench so�ware.

�e questionnaire contains headache-related questions
related to severity, localization, aggravation, characterization,
nausea, photophobia, and aura symptoms as well as personal
questions like gender, age, or smoking. �e database has 40
attributes in total. �e results of the so�ware diagnosis and
opinions of doctors can be accessed from the website [9].
Table 1 shows the neurologists’ diagnoses.

According to the results, the migraine population is high,
whereas the cluster type of headache is low, and there was
only one patient who had no headaches. �e algorithms
implement the classi
cation through a learning stage by using
a training dataset that is derived from the research data.�us,
the variability of the training dataset is crucial for a successful
classi
cation.

3. Methods

3.1. Immunos Algorithms. �e 
rst algorithm based on AIS,
called “Immunos-81,” was developed by Carter [10] who is
a medical doctor. He used T-cells to control the production
of B-cells. All variables of the antigens transmitted to the
system are stored in an amino acid library, and the T-cells use
this library to recognize the new antigen. �e T-cells create
B-cells whose paratopes are matched to the epitopes of an
antigen. Immunos-81 is an instance based classi
er, and it
has two implementations called Immunos-1 and Immunos-2.
�e algorithm training and classi
cation process is shown in
Figure 2.

Brownlee [11] improved those classi
ers by integrating
cell proliferation and hypermutation techniques from other
AIS-based algorithms and 
nally developed a new immunos
algorithm called the Immunos-99 algorithm, which is shown
in Figure 3.

3.2. Arti�cial Immune-Recognition System Algorithms. �e
arti
cial immune-recognition system (AIRS) was imple-
mented by Watkins [12] in his master’s thesis. �is algorithm
is actually a cluster-based implementation of the classi
er
by using the �-nearest neighbor. �e AIRS makes general-
izations by data reduction; however, the �-nearest neighbor
uses all of the training data for the classi
cation. Brie�y, the
AIRS algorithm is about creating a population of arti
cial
recognition balls (ARBs) ormemory cells to be representative
of the training dataset. �e ARB refers to the matching or
speci
c recognition cells. �ey are populated from mutated
clones a�er an a�nity calculation. �e ones working best
for the purpose of an antigen simulation are selected a�er
competing for limited resources. �e AIRS algorithm [13]
makes a classi
cation by using the mutated clones of the
best match memory for an antigen from the ARBs pool. �e
algorithm process is given in Figure 4.

�is algorithm has three implementations called AIRS1,
AIRS2, and Parallel AIRS. �ere is a persistent resource
during the training process in the AIRS1 classi
er, whereas
AIRS2 uses a temporary resource for each antigen.�eAIRS1
also needs a mutation for the class of the generated clones.
Another approach on the AIRS2 algorithm is parallelism [14],
which is about dividing the dataset into number partitions
and processing them individually.
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Figure 2: Immunos-81 algorithm. (a) General version of training. (b) Summary of the classi
cation.
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Figure 3: Immunos-99 algorithm. Classi
cation and training process.

3.3. Clonal Selection Algorithms. Another AIS-based classi-

er developed by de Castro and Von Zuben [15] is the Clonal
Algorithm (CLONALG), which is based on clonal selection
theory. Basically, the logic behind this algorithm is that the
production of various antibodies, which are generated from
B-cells a�er an antigen simulation, binds to an antigen with
a higher value of a�nity. �ese antibodies become trained
materials; therefore, they are used to classify new antigens in
case of another encounter. �e algorithm structure is shown
in Figure 5.

Another classi
er, called the Clonal Selection Classi
-
cation Algorithm (CSCA) [16], was created by Brownlee. It
has an optimization process that maximizes the correctly
classi
ed patterns and keeps the incorrect ones minimized.
�e algorithm process is shown in Figure 6.

4. Results

We evaluated 850 cases of headache diagnosis. �e dataset
included 40 attributes and four classes named “no headache,”
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Figure 5: CLONALG algorithm.

“migraine,” “tension type,” and “cluster type” headaches. We
used Immunos-1, Immunos-2, Immunos-99, AIRS1, AIRS2,
AIRS2-Parallel, CLONALG, andCSCAalgorithms. Each type
of headache has been analyzed by the algorithms, except some
of them, such as 1.5.5 migraine-triggered seizures, childhood
periodic syndromes, or other types of primary headaches
that are not convenient for survey analysis. �erefore, four
patients with hypnic headaches have been eliminated from
the analysis.We changed numeric attributes to nominal ones,
such as duration, and we collected the duration information

at intervals to obtain a better classi
cation. We used a 10-fold
cross validation on the dataset to establish reliability through
randomization. Each parameter in all of Tables 2, 3, 4, 5, 6, 7,
8, and 9 presented is explained in the appendix.

�e Immunos-1 and Immunos-2 algorithmshave nouser-
de
ned parameters. We used 0.2 for the seed population
percentage, which refers to the antigen population percentage
in each class for B-cells in order to improve speed and data
reduction, 0.5 for the minimum-threshold scalar used for
pruning and controlling the population size of the antibodies,
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Table 2: Detailed accuracy by class for the Immunos-1 algorithm.

Class TP rate FP rate Precision Recall �-measure ROC area Accuracy

Migraine 0.947 0 1 0.847 0.973 0.974 94.70%

Cluster 0.911 0 1 0.911 0.953 0.955 91.10%

Tension 0.951 0.039 0.871 0.951 0.909 0.956 95.10%

No headache 0 0.025 0 0 0 0.488 0.00%

Weighted avg 0.945 0.008 0.971 0.945 0.957 0.968 94.50%

Table 3: Detailed accuracy by class for the Immunos-2 algorithm.

Class TP rate FP rate Precision Recall �-measure ROC area Accuracy

Migraine 1 1 0.716 1 0.835 0.5 100.00%

Cluster 0 0 0 0 0 0.5 0.00%

Tension 0 0 0 0 0 0.5 0.00%

No headache 0 0 0 0 0 0.5 0.00%

Weighted avg 0.716 0.716 0.513 0.716 0.598 0.5 71.60%

Table 4: Detailed accuracy by class for Immunos-99 algorithm.

Class TP rate FP rate Precision Recall �-measure ROC area Accuracy

Migraine 0.949 0 1 0.949 0.974 0.975 94.90%

Cluster 0.929 0 1 0.929 0.963 0.964 92.90%

Tension 0.995 0.05 0.847 0.995 0.915 0.973 99.50%

No headache 0 0.005 0 0 0 0.498 0.00%

Weighted avg 0.956 0.011 0.966 0.956 0.959 0.973 95.60%

Table 5: Detailed accuracy by class for the AIRS1 algorithm.

Class TP rate FP rate Precision Recall �-measure ROC area Accuracy

Migraine 0.995 0 1 0.995 0.998 0.998 99.50%

Cluster 0.964 0 1 0.964 0.982 0.982 96.40%

Tension 1 0.009 0.968 1 0.984 0.995 100.00%

No headache 0 0 0 0 0 0.5 0.00%

Weighted avg 0.993 0.002 0.992 0.993 0.992 0.995 99.30%

Table 6: Detailed accuracy by class for the AIRS2 algorithm.

Class TP rate FP rate Precision Recall �-measure ROC area Accuracy

Migraine 0.995 0.008 0.997 0.995 0.996 0.993 99.50%

Cluster 0.911 0 1 0.911 0.953 0.955 91.10%

Tension 0.995 0.012 0.958 0.995 0.976 0.991 99.50%

No headache 0 0 0 0 0 0.5 0.00%

Weighted avg 0.988 0.009 0.987 0.988 0.988 0.99 98.80%

Table 7: Detailed accuracy by class for the AIRS2-Parallel algorithm.

Class TP rate FP rate Precision Recall �-measure ROC area Accuracy

Migraine 0.998 0 1 0.998 0.999 0.999 99.80%

Cluster 0.982 0 1 0.982 0.991 0.991 98.20%

Tension 1 0.005 0.984 1 0.992 0.998 100.00%

No headache 0 0 0 0 0 0.5 0.00%

Weighted avg 0.996 0.001 0.995 0.996 0.996 0.998 99.60%
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Table 8: Detailed accuracy by class for the CLONALG algorithm.

Class TP rate FP rate Precision Recall �-measure ROC area Accuracy

Migraine 0.998 0.033 0.987 0.998 0.993 0.983 99.80%

Cluster 0.911 0 1 0.911 0.953 0.955 91.10%

Tension 0.978 0.005 0.984 0.978 0.981 0.987 97.80%

No headache 0 0 0 0 0 0.5 0.00%

Weighted avg 0.987 0.025 0.986 0.987 0.986 0.981 98.70%

Table 9: Detailed accuracy by class for the CSCA algorithm.

Class TP rate FP rate Precision Recall �-measure ROC area Accuracy

Migraine 0.995 0.008 0.997 0.995 0.996 0.993 99.50%

Cluster 0.982 0 1 0.982 0.991 0.991 98.20%

Tension 0.989 0.008 0.973 0.989 0.981 0.991 98.90%

No headache 0 0 0 0 0 0.5 0.00%

Weighted avg 0.992 0.008 0.991 0.992 0.991 0.992 99.20%

Table 10: Overall benchmark results of the algorithms.

Algorithms Immunos-1 Immunos-2 Immunos-99 AIRS1 AIRS2 AIRS2-Parallel CLONALG CSCA

Correctly classi
ed instances 803 609 813 844 840 847 839 843

Accuracy 94.4706% 71.6471% 95.6471% 99.2941% 98.8235% 99.6471% 98.7059% 99.1765%

Incorrectly classi
ed instances 47 241 37 6 10 3 11 7

Inaccuracy 5.5294% 28.3529% 4.3529% 0.7059% 1.1765% 0.3529% 1.2941% 0.8235%

Classi
cation time in seconds 0.05 0.02 0.48 1.12 5.37 12.45 0.81 4.03
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Figure 6: CSCA algorithm.

and 2 for the total generations, which represents the total
number of the re
nement iterations for each B-cell popula-
tion in the Immunos-99 algorithm.

In the AIRS experiment, the stimulation-threshold value,
which controls the amount of re
nement on ARBs for an
antigen, was 0.9 in AIRS1 and 0.5 in both AIRS2 and AIRS2-
Parallel.�e parameter for the initial memory pool size value
was 3 in AIRS1 and 100 in both AIRS2 and AIRS2-Parallel.
Other parameters were kept constant for all of the algorithms
with the following values: 0.2 for the a�nity threshold scalar,
which provides a means of a�nity between antigens and

the training data, 10 for the clonal rate for each of the ARB
clones, 2 for the hypermutation rate, which identi
es the total
mutated clones that are created by a best-matching memory
cell, 3 for the number of the nearest neighbors, and “all” for
the number of instances to compute the a�nity threshold.
Additionally, we used four threads for the parallelism in the
AIRS2-Parallel algorithm.

We obtained the best results in the CLONALG algorithm
with the parameter 30 for the antibody pool size, 0.1 for the
clonal factor, 10 for the number of generations, 0.1 for the
remaining pool ratio of the total antibodies to allocate to the
remaining antibody pool, 1 for the seed, 20 for the selection
pool size, which is the total number of antibodies for each
antigen exposure in the complete antibody pool, and 2 for
the total replacement that is used for the new antibodies
stored in the remaining pool. We used the parameter 1 for
the number of the nearest neighbors, 0.1 for the clonal scale
factor, 50 for the initial population size, 1 for the minimum-

tness threshold, 1 for the number of partitions, 1 for the seed,
and 5 for the total generations in the CSCA classi
er.

�e patients with no headaches could not be diagnosed
by the algorithms due to the limited number (only one) of
samples having “no headache.” To increase the diagnosis of
“no headache” accuracy, more samples are needed.

We reached the best result accuracy of 99.6471% by using
the AIRS2-Parallel algorithm. All of the classi
ers obtained
an accuracy of more than 94% except for the Immunos-2
algorithm which produced the worst result, which means it
is not possible to be used for the classi
cation of headaches.
�e comparison of the algorithms is shown in Table 10.
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5. Conclusion and Discussion

Computerized diagnosis is one of the important areas in
terms of medical applications. �ese applications [17–19]
provide quick and easy information to physicians. �is is
especially the case with web-based applications [20], which
have enabled people to become more connected to each
other. Hence, in this study we developed an expert web-based
headache-diagnosis system to collect and share patients’ data
from di	erent cities and used arti
cial immune system algo-
rithms to classify their headache types. Finally, we examined
the diagnostic time and accuracy for the classi
cation of
migraine, tension type, and cluster type headaches.

Although the classi
cation performance is based on an
algorithm, the density and majority of the data samples are
also among the major factors. In the case of our study, the
sample size can be mentioned as a limitation, which means
that if we had gathered more samples especially for cluster
type headaches our algorithmwould have runmore precisely.
�is lack of sample variability decreases the likelihood of
detecting some headache types, such as migrainous infarc-
tion. Also, “probable” headache types are the most compli-
cated types to be diagnosed by doctors because they are
related to many di	erent headache types.

Many computer-based headache-diagnosis studies have
been conducted with the aim of detecting certain headache
types. Researchers have used di	erent methods. For instance,
while Pryse-Phillips et al. [4] developed a decision-tree
algorithm just for the diagnosis of migraines, we identi
ed
all types of primary headaches including migraine. Maizels
and Wolfe [21] correctly identi
ed the episodic migraine,
tension type, and cluster type headaches. On the other hand,
Sarchielli et al. developed an application [22] for primary
headaches and also diagnosed chronic headaches [23]. How-
ever, Simić et al. [5], who included just 80 participants in their
study, made use of rule-based, fuzzy-logic diagnosis so�ware.
Although it was successful at diagnosing migraines and ten-
sion type headaches similar to our study, it could not diagnose
cluster type headaches. In another study, Krawczyk et al. [6]
gathered 80% consistencywith a study of the variousmachine
learning methods. However, we obtained at least 94%
of accuracy, with the best result gathering a 99.65%, excluding
the Immunos-2 algorithm.

It can be understood from this study that it is possible
to classify headaches by using arti
cial immune system algo-
rithms. Also, using a web-based diagnosis system is very con-
venient for patient tracking and information sharing from the
physician’s point of view.

Appendix

(i) True Positive (TP)

(a) Proportion of correctly classi
ed as class
�/actual total in class �

(b) Equivalent to Recall

(ii) False Positive (FP)

Proportion of incorrectly classi
ed as class
�/actual total of all classes, except �

(iii) Precision

Proportion of the examples which truly have
class �/total classi
ed as class �

(iv) �-measure

(a) 2 × Precision × Recall/(Precision + Recall),

(b) that is, A combined measure for precision and
recall

(v) ROC area (also known as area under curve) is the
probability that a randomly chosen positive instance
in the test data is ranked above a randomly chosen
negative instance.
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