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Abstract

Purpose Artificial neural networks (ANN) might help to di-

agnose coronary artery disease. This study aimed to determine

whether the diagnostic accuracy of an ANN-based diagnostic

system and conventional quantitation are comparable.

Methods The ANN was trained to classify potentially abnor-

mal areas as true or false based on the nuclear cardiology

expert interpretation of 1001 gated stress/rest 99mTc-MIBI im-

ages at 12 hospitals. The diagnostic accuracy of the ANN was

compared with 364 expert interpretations that served as the

gold standard of abnormality for the validation study.

Conventional summed stress/rest/difference scores (SSS/

SRS/SDS) were calculated and compared with receiver oper-

ating characteristics (ROC) analysis.

Results The ANN generated a better area under the ROC

curves (AUC) than SSS (0.92 vs. 0.82, p < 0.0001), indicating

better identification of stress defects. The ANN also generated

a better AUC than SDS (0.90 vs. 0.75, p < 0.0001) for stress-

induced ischemia. The AUC for patients with old myocardial

infarction based on rest defects was 0.97 (0.91 for SRS,

p = 0.0061), and that for patients with and without a history

of revascularization based on stress defects was 0.94 and 0.90

(p = 0.0055 and p < 0.0001 vs. SSS, respectively). The SSS/

SRS/SDS steeply increased when ANN values (probability of

abnormality) were >0.80.

Conclusion The ANN was diagnostically accurate in various

clinical settings, including that of patients with previous myo-

cardial infarction and coronary revascularization. The ANN

could help to diagnose coronary artery disease.

Keywords Artificial intelligence . Diagnostic imaging .

Coronaryarterydisease .Nuclearcardiology .Computer-aided

diagnosis

Introduction

Myocardial perfusion images have been interpreted based

on an integrated understanding of myocardial perfusion

distribution at stress and rest, and the difference between

these two conditions is used to differentiate stress-induced

ischemia and infarction. Although visual interpretation is

always the first step, nuclear cardiology trainees need to

become competent in reading single-photon emission
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computed tomography (SPECT) images [1, 2]. On the oth-

er hand, quantitative analysis has usually consisted of

myocardial segmentation into walls and segments, and

the extent and severity of perfusion defects are expressed

in terms of the size of an abnormal area and defect scores

[3, 4]. Most nuclear cardiology software has taken this type

of quantitative approach, and it has aided the visual evalu-

ation of images. One advantage of quantitative analysis is

that it has led nuclear cardiologists and nuclear medicine

physicians to standardize interpretations among physicians

and hospitals [5]. Perfusion defects and ischemia are quan-

tified not only for diagnosis, but for the prognostic evalu-

ation of future cardiac events [6].

Artificial intelligence including artificial neural net-

works (ANN), deep learning and machine learning has

recently been applied to nuclear cardiology [7–11].

Artificial intelligence learns how to appropriately interpret

images based on a large number of SPECT images with

definitive diagnoses based on nuclear cardiology expert

interpretations as the teacher. The ANN approach includes

an appropriate combination of features of abnormalities,

and it differs from statistical approaches using regional

count distribution, which is typically based on means

and deviations. The ANN approach simulates how experts

learn the art of interpretation. Therefore, stenosis of cor-

onary arteries is not a truth or a standard; the integrated

judgment of abnormalities by experts is the standard.

Based on such repetitive learning processes, artificial in-

telligence could provide support for decision-making [12,

13].

The ANN system trained in Sweden using Swedish da-

tabases has been applied to Swedish and Japanese MPI

SPECT studies related to an ANN diagnosis from myocar-

dial perfusion images (MPI) [9, 10]. Although the diagnos-

tic accuracy was comparable to that of defect scoring

methods, additional clinical experience has revealed that

slight abnormalities seem to be underestimated, and thus

improvements in diagnostic accuracy are needed.

The purpose of this multicenter project was, therefore,

to retrain the ANN system using a new Japanese MPI

database and to develop a high-performance diagnostic

system for coronary artery disease. The diagnostic ability

of the ANN system was further compared with expert

readings of another dataset from a multicenter validation

database.

Methods

Patients for creating a training database

Data from 1001 patients who underwent stress/rest MPI

were accumulated from 12 institutions in Japan. The entry

criteria included confirmed and suspected coronary artery

disease, and a confirmed diagnosis of the presence or ab-

sence of myocardial ischemia and/or infarction. The exclu-

sion criteria comprised patients aged <20 years, arrhythmia

causing inappropriate electrocardiographic gating, left

bundle branch block (to avoid false positive defects), idi-

opathic and other types of severe cardiomyopathy, as well

as moderate or severe valvular heart diseases. Patient data

included age, sex, height, weight, risk factors, results of

coronary angiography or coronary CT angiography

(CCTA), and a history of percutaneous coronary interven-

tion (PCI) or coronary artery bypass grafting (CABG). We

tried to include either stress-induced ischemia or infarction

in at least 50% of the patients when the MPI data were

collected to train the ANN system.

Patients for validation study

After the initial creation of the database, additional patients

were registered using criteria similar to that of the training

database. Data from 364 patients collected from nine hospitals

served as the validation dataset.

Myocardial perfusion imaging

Datasets were derived from all patients using exercise or

adenosine stress MPI with electrocardiographic gating and

non-ga t ing (Table 1) . 99mTc- labe led hexakis -2-

methoxyisobutylisonitrile (MIBI) was used in all partici-

pating institutions, and the second injection dose was 2- to

3-fold higher than the first, resulting in a total administered

dose of 740 to 1110 MBq. All institutional protocols for

stress and image acquisition followed standard exercise

and adenosine stress MPI protocols [1, 14]. All image data

were anonymized in the "Dig i t a l Imag ing and

Communication in Medicine" (DICOM) format at each in-

stitution and uploaded into a custom-designed server. The

only patient information in the image database in the server

was serial number, age and sex.

Training the artificial neural network

The left ventricle (LV) was segmented using a three-

dimensional heart-shaped active-shape model reconstruct-

ed with short-axis slice images [15, 16]. A specific soft-

ware algorithm was used for this analysis (cardioREPO

software, FUJIFILM RI Pharma Co. Ltd., Tokyo, Japan;

EXINI Diagnostics AB, Lund, Sweden). Areas of possible

perfusion abnormalities in stress and rest images (stress

and rest defects, respectively) were segmented using a

method that mimicked analyses by physicians who visually

interpret defects. Candidate regions with abnormalities

were identified using deformable models of circular
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topology based on an active contour framework, and fit to

the image based on edge and intensity information [17].

Stress images were subtracted from rest images to identify

stress-induced ischemia. Appropriate features were ex-

tracted using the characteristics of shape, extent, location,

count, perfusion homogeneity, regional motion, wall thick-

ening and sex. The best combination of features was deter-

mined for stress, rest and difference datasets, and these

features served as inputs for the ANN analysis.

Nuclear cardiology experts at each institution judged

all regions in MPI data as abnormal (true) or normal

(false). The software algorithm identified 5685 candidate

regions, but whether or not an abnormality is true was

determined by nuclear cardiologists and nuclear physi-

cians. The interpreters used original myocardial stress

and rest images and polar maps, but not quantitative data,

such as defect scores for detecting abnormalities. After all

data were accumulated at the core center, six nuclear car-

diology experts reconfirmed the appropriateness of the

judgment without clinical information. Two experts

interpreted the data during this process and, if necessary,

modified the judgment with referral to other expert opin-

ions to reach consensus. The final judgments of the can-

didate regions made at the core center served as the gold

standard with which to train the ANN system.

Based on the initial ANN training, discordance between

visual and ANN findings were again selected and used for

appropriately adjusting diagnostic thresholds. In the final out-

put of the software, the ANN value indicated the probability of

an abnormality under conditions of 0.0 (definitely normal),

0.5 (borderline) and 1.0 (definitely abnormal) for stress de-

fects, rest defects and induced ischemia.

Table 1 Patient demographics in

the training and validation

databases

Items Training database: value,

%, means ± SD (range)

Validation database:

value, %, means ± SD (range)

p

Number of participants 1001 364 –

Age (years) 69 ± 10 71 ± 10 0.0011

Male (%) 75% 73% 0.48

Height (male, cm) 165 ± 7 165 ± 7 0.98

Weight (male, kg) 66 ± 12 67 ± 11 0.48

Body mass index (male, kg/m2) 24 ± 4 24 ± 3 0.64

Height (female, cm) 151 ± 7 151 ± 6 0.12

Weight (female, kg) 54 ± 11 55 ± 10 0.18

Body mass index (female, kg/m2) 24 ± 4 24 ± 4 0.46

Pharmacological stress (%) 70% 82% 0.0001

Number of vessel stenosis ≥75%

(1-, 2- and 3-vessel disease)

391 (156, 123, 112) 225 (78, 82, 65) 0.0001

Hypertension (%) 73% 75% 0.40

Diabetes mellitus (%) 47% 39% 0.019

Dyslipidemia (%) 65% 66% 0.79

History of myocardial infarction (%) 27% 31% 0.17

History of PCI (%) 38% 39% 0.87

History of CABG (%) 4% 3% 0.53

ANN stress defect – 0.63 ± 0.37 –

Presence of stress defect (%) 71% 73% 0.54

ANN ischemia – 0.51 ± 0.34 –

Presence of ischemia (%) 59% 59% 1.00

ANN rest defect – 0.54 ± 0.38 –

Presence of rest defect (%) 57% 56% 0.76

Summed stress score 9.5 ± 9.9 (0–53) 9.5 ± 9.8 (0–52) 1.00

Summed rest score 7.0 ± 8.6 (0–45) 7.1 ± 8.8 (0–49) 0.85

Summed difference score 3.3 ± 3.9 (0–26) 3.1 ± 3.3 (0–21) 0.38

Rest end-diastolic volume (mL) 105 ± 38 (38–325) 107 ± 46 (34–341) 0.42

Rest end-systolic volume (mL) 38 ± 29 (5–250) 37 ± 29 (3–246) 0.57

Rest ejection fraction (%) 67 ± 13 (19–97) 63 ± 14 (25–92) 0.0001

Abbreviations: ANN, artificial neural network (probability of abnormality in this table); CABG, coronary artery

bypass grafting; PCI, percutaneous coronary intervention
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Processing by the artificial neural network in the software

package

Four DICOM stress/rest gated and ungated images were trans-

ferred from the nuclear medicine dedicated computer system

to an on-line connected (off-line acceptable) Windows com-

puter with the aid of a custom-made launcher. After selecting a

patient dataset, all processing steps including LV segmenta-

tion, polar map generation, detection of abnormal regions,

judgment of the abnormality with the ANN system, scoring

based on Japanese Society of Nuclear Medicine (JSNM)

working group normal databases [18, 19], LV functional anal-

ysis including wall motion, volume, ejection fraction and di-

astolic function, and phase dyssynchrony analysis were per-

formed within 10 s (64-bit operating system, Windows 10)

[10, 16, 19–21]. This processing was automatic without oper-

ator interaction, but LV contour detection can be modified if

required. The ANN system displays a list of regions including

the location, extent, severity and ischemia/infarct with the

probability of an abnormality (ANN value) in each region.

Defect scoring

Myocardial perfusion defects were scored using a standard

17-segment model, and abnormalities were defined as normal,

slightly, moderately and severely decreased, and defective

(scores 0, 1, 2, 3, and 4, respectively) in each segment [3, 4].

Scores were validated in automated analysis using

cardioREPO software, and the correlation was good compared

with that determined using QPS (Cedars Sinai Medical

Center, Los Angeles, CA, USA) [10]. The maximum score

was 68 points for summed stress/rest/difference scores (SSS/

SRS/SDS). Normal MPI databases were constructed accord-

ing to the JSNM working group database that includes stress/

rest normal SPECT data with non-attenuation-corrected

Anger camera images [18, 19].

Statistics

Data are shown as means ± standard deviation (SD).

Differences between groups were assessed using the

one-way analysis of variance, Student's t tests and F tests.

A contingency table was analyzed with Fisher exact tests.

Receiver operating characteristics (ROC) were analyzed,

and the area under the curve (AUC) was calculated. The

cutoff was determined using either an ANN value (prob-

ability of abnormality) of 0.50 or the highest value of

(sensitivity + specificity − 1) depending on the analysis.

The statistics software was JMP version 12 (SAS Institute

Inc., Cary, NC, USA), and Mathematica 12 (Wolfram

Research Inc., Champaign, IL, USA) was also used for

some mathematical calculations. A p value <0.05 was

considered significant.

Results

Training database

Table 1 summarizes the characteristic of the training databases

that included stress defects (71%), rest defects (57%) and is-

chemia (59%). Old myocardial infarction (OMI) and revascu-

larization were found in 27% and 42% of the patients, respec-

tively. The AUC of the training database calculated to obtain

results concordant with those of the experts were 0.912 (sen-

sitivity 86%, specificity 77%, accuracy 82%) for stress de-

fects, 0.834 (sensitivity 83%, specificity 74%, accuracy

78%) for rest defects and 0.888 (sensitivity 82%, specificity

77%, accuracy 80%) for ischemia.

Validation database

Background conditions and associated diseases did not signif-

icantly differ between the validation and the training databases

for most of the variables (Table 1). Rates of stress defects, rest

defects and ischemia were similar. However, the validation

database had a higher incidence of pharmacological stress

and of coronary stenosis, and a lower ejection fraction than

the training database.

Interpretation of the ANN system

Figure 1 shows the standard output generated using the ANN.

This patient had 99% stenosis of the circumflex coronary ar-

tery (#11). Six months after stenting he developed chest pain,

which was assessed byMPI. The ANN judged the high lateral

region as abnormal in both stress and subtraction images with

high probability.

ROC analysis for scores and the ANN

The AUC values of the stress defect were 0.815 and 0.916

(χ2 = 34.4, p < 0.0001) for the scoring system and the

ANN, respectively (Fig. 2). Similarly, the AUC was

0.857 vs. 0.926 (χ2 = 21.9, p < 0.0001) for rest defects,

and 0.754 vs. 0.895 (χ2 = 34.2, p < 0.0001) for ischemia,

respectively, indicating a higher AUC for the ANN com-

pared with the scoring method.

Average scores for stress defects were 13.2 ± 10.6 vs.

3.9 ± 4.3 (p < 0.0001, F ratio = 99) in patients with and

without stress defects, respectively (Fig. 3). The values for

stress defects determined using the ANN in patients with

and without stress defects were 0.84 ± 0.24 vs. 0.31 ± 0.29

(p < 0.0001, F ratio = 347). Similarly, although both scores

and ANN values under conditions of rest, stress and ischemia

significantly differed between positive and negative expert

readings (p < 0.0001), the F ratios were higher when deter-

mined by the ANN than the scoring method.
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ROC analysis in subgroups of patients

The ability of the ANN to detect abnormalities in patient sub-

groups with and without OMI or revascularization was

generally good, with an AUC of ≥0.89 (Table 2). The AUC

values for the ANN to detect stress defects in patients with and

without OMI were 0.976 and 0.892, respectively. In patients

with OMI, the AUC values to detect rest defects using SRS and

Fig. 2 Receiver operating characteristics (ROC) analysis of stress defect (a), rest defect (b) and ischemia (c) using the scoring method (upper panel) and

the artificial neural network (ANN; lower panel). All areas under ROC curves (AUC) were higher for the ANN (p < 0.0001)

Fig. 1 Myocardial perfusion

study and artificial neural network

(ANN) analysis of 70-year-old

man after percutaneous coronary

intervention to the left circumflex

coronary artery. Numbers indicate

probability of abnormality. Basal

lateral ischemia is evident in

short-axis images (upper panel),

whereas the ANN system

identified abnormality in stress

(probability) and subtraction

(probability) images with

probabilities of 0.96 and 0.91,

respectively. Other regions with

probability of <0.5 were

considered insignificant
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the ANN were 0.905 and 0.974, respectively. The AUC values

for detecting stress defects with and without a history of revas-

cularization were 0.939 and 0.900, respectively. The AUC in all

subgroups was higher for the ANN than the scoring method.

According to ≥75% of coronary stenosis, we divided the

patients into groups according to their having 0–1-, or 2–3-

vessel disease. The AUC values were 0.895 and 0.785 when

determined using the ANN and SSS, respectively (χ2 = 24.2,

Table 2 Receiver operating

characteristics (ROC) analysis of

subgroups in the validation study

ANN/score AUC Standard error Lower 95% Upper 95% p vs. score

Stress defect with and without OMI

Without OMI ANN 0.892 0.020 0.846 0.925 <0.0001

SSS 0.771 0.030 0.708 0.824

With OMI ANN 0.976 0.014 0.929 0.992 0.0036

SSS 0.890 0.033 0.807 0.940

Rest defect

With OMI ANN 0.974 0.014 0.925 0.991 0.0061

SRS 0.905 0.029 0.831 0.949

Stress defect with and without history of revascularization

No revascularization ANN 0.900 0.020 0.854 0.932 <0.0001

SSS 0.781 0.030 0.716 0.835

Revascularization ANN 0.939 0.019 0.889 0.967 0.0055

SSS 0.863 0.031 0.790 0.913

Ischemia with and without history of revascularization

No revascularization ANN 0.898 0.020 0.853 0.931 <0.0001

SDS 0.771 0.032 0.703 0.827

Revascularization ANN 0.889 0.027 0.823 0.932 0.0002

SDS 0.727 0.042 0.636 0.802

Abbreviations: ANN, artificial neural network; AUC, area under the curve; OMI, old myocardial infarction; ROC,

receiver-operating characteristics; SDS, summed difference score; SRS, summed rest score; SSS, summed stress

score

Fig. 3 Comparison of the scoring method (upper panel) and artificial neural network (ANN; lower panel) based on expert judgments. Positive and

negative judgments significantly differed in all comparisons of stress defects (a), rest defects (b) and ischemia (c)
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p < 0.0001) for patients with 0–1-vessel disease and 0.945 and

0.838, respectively, for patients with 2–3-vessel disease

(χ2 = 11.0, p = 0.0009), indicating that the ANN had better

diagnostic accuracy.

Relationship between scores and ANN values

Figure 4 shows a non-linear relationship between scores and

the ANN values in the validation group. Although the thresh-

old of abnormality using the ANNwas a probability of 0.5, the

scores steeply increased when the ANN probability was ≥0.8.

The SSS was 3.4 ± 3.5 in the range of ANN probability <0.80,

but 15.8 ± 10.3 when in the probability range of ≥0.80

(p < 0.0001) determined by the ANN. The SDS values were

1.8 ± 4.7 and 4.7 ± 3.8 when the ANN probability was <0.8

and ≥0.8, respectively, and the SRS values were 2.3 ± 3.0 and

14.2 ± 9.8 when the ANN probability was <0.8 and ≥0.8,

respectively (p < 0.0001).

Diagnostic accuracy of the ANN compared with expert

interpretation

Diagnostic accuracy using criteria of significant coronary ste-

nosis of ≥75%with either coronary angiography or CCTAwas

examined in a subgroup of patients (n = 220), excluding those

after coronary revascularization. Using these criteria, 0, 1-, 2-

and 3-vessel disease was found in 98 (45%), 44 (20%), 41

(19%) and 37 (17%) patients, respectively. The AUC values

using stress defects for detecting 1-, 2- and 3-vessel disease

were 0.69, 0.67 and 0.69 by expert interpretation, and those by

the ANN were 0.68, 0.66 and 0.72, respectively, showing an

overall AUC of 0.66 (95% CI: 0.60–0.72) by expert interpre-

tation and 0.65 (0.58–0.72) byANN (p = 0.74) for detecting at

least one coronary stenosis.

Discussion

This multicenter study aimed to develop an ANN-based diag-

nosis for myocardial perfusion stress/rest gated and ungated

SPECT images. The diagnostic ability of the ANN became

comparable to that of nuclear cardiology expert interpretation

and was better than conventional semi-quantitative defect

scoring. Concordance was reasonable between experts and

the ANN even for subgroups of patients with infarction and

revascularization because the nuclear cardiologist interpreta-

tion taught the ANN.

Comparison with conventional methods

Basic approaches of artificial intelligence-based diagnos-

tic systems differ from the diagnostic steps based on con-

ventional statistical methods [13]. Normal or standard da-

tabases are created from individuals with a low likelihood

Fig. 4 Relationship between

scoring methods and probability

of abnormality judged by the

ANN. Dotted vertical lines

indicate probability of 0.8, and

blue lines indicate mean values

for probabilities of <0.8 and ≥0.8.

Squares and circles denote

positive and negative stress

defect, respectively by expert

interpretations. Red and black

marks denote positive and

negative ischemia, respectively

by expert interpretations
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of coronary artery disease for statistical analysis, and the

limits of normal distribution are determined for all myo-

cardial data points. Combinations of the average and the

deviation or ratio (%) of threshold counts are used to

measure degrees of abnormalities, which are expressed

as defect scores. Such statistical analysis provides consis-

tent diagnosis using common databases fitted for popula-

tions [22]. It also serves as an aid to clinical diagnosis and

has, therefore, been used in most quantitation software

packages [5, 23–25]. Quantitative diagnosis using a scor-

ing method is convenient for measuring amounts of ische-

mia, and for guiding appropriate indications for coronary

revascularization [6].

Here, we scored defects using a JSNM working group

database of myocardial SPECT images for this purpose

[18, 19], which was compared with ANN-based diagnosis.

On the other hand, the ANN uses a completely different

approach [9, 10, 12]. The software in this study first iden-

tified candidate areas of abnormality from >5000 candidate

regions based on a specific algorithm, and learned the ex-

pert interpretation. Based on the notion that the expert di-

agnosis is true, the most appropriate features were deter-

mined for stress, rest and difference images. In the clinical

setting, MPI diagnosis is not simply based on average

counts on polar maps, but on the integration of myocardial

counts, size and shape of defects, wall motion and systolic

thickening, gender and other parameters. Although experts

might have unintentionally taken these factors into consid-

eration, the ANN was capable of learning this comprehen-

sive diagnostic process.

Artificial intelligence such as a support vector machine

(SVM) and machine learning technologies has generated

promising results for the diagnosis and prognosis of patients

with coronary artery disease. The AUC for SVM (0.92) is

significantly better than total perfusion deficit (0.90) when

the SVM algorithm is applied, and its diagnostic accuracy is

comparable to the overall accuracy of visual readers [8].

Machine learning that included a combination of clinical and

CCTA data predicted 5-year all-cause mortality more effec-

tively than existing clinical or CCTAmetrics alone [11]. Since

artificial intelligence considers a greater number and complex-

ity of variables than humans, it might be applied for wider

indications in the near future.

The meaning of true abnormality

Since the purpose of this project was to create an ANN

with diagnostic ability that was similar to that of experts,

true abnormality was defined by consensus among expert

interpretations. Popular methods for evaluating diagnostic

accuracy to date have used coronary stenosis as the gold

standard by which sensitivity and specificity are calculat-

ed. However, all three coronary territories might not be

judged as abnormal in patients with three-vessel disease.

If the most severe stenosis is a culprit lesion and only one

territory appears abnormal, even experts might judge only

one coronary territory as abnormal. Moreover, some pa-

tients who have been diagnosed with myocardial infarc-

tion might have recovered perfusion to some extent.

Others might have insufficient coronary blood flow sup-

ply even from the revascularized coronary artery. Recent

indications for MPI include not only patients who are

untreated, but also those with many complex pathophysi-

ological conditions such as myocardial ischemia, fibrosis

and modifications after revascularization and medical

therapies. In fact, 30% of patients included in the present

study had OMI and 40% had a history of revasculariza-

tion. Although we did not use coronary stenosis as the

gold standard, the diagnostic ability of the ANN was sig-

nificantly better than scoring, and comparable to that of

experts, indicating a good foundation for further clinical

application.

However, even when coronary stenosis of ≥75% was used

as a diagnostic criterion, the diagnostic accuracy using ROC

analysis was comparable between the expert interpretation

and ANN. The reason for excluding patients with history of

coronary revascularization was that “truth” regarding the pres-

ence of remaining ischemia or defects was not confirmed in

these patients. Although this analysis was not the goal of the

present study, strict criteria of ischemia using coronary steno-

sis and fractional flow reserve could be evaluated in further

studies.

Training and validation databases

The interpretation of myocardial perfusion images during

ANN training could affect final diagnostic accuracy. The di-

agnostic accuracy of the ANN in a previous study of a

Swedish database was 92% for abnormalities at stress and

87% for ischemia [9]. In addition, the same ANN generated

an AUC of ≥0.88 in a Japanese population [10]. After accu-

mulating clinical experience with this software, we found that

a minor degree of ischemia was overlooked in a Japanese

population. We therefore tried to judge even a slight degree

of abnormality as abnormal, which is in agreement with our

clinical practice. The ANN learned this tendency of expert

interpretation during this project. However, the probability

of an abnormality, namely the calculated ANN value in re-

gions with a minor degree of ischemia, might be somewhat

lower than that of a definite perfusion defect or ischemia.

Overall, since a common stress/rest protocol using 99mTc-

MIBI was applied, we suppose that the software can be ap-

plied to routine clinical investigations at many hospitals. The

applicability of the ANN-based system to diagnostic 201Tl and

other SPECT studies using equipment such as cadmium-zinc-

telluride detectors should be separately investigated.
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Value of ANN and scoring methods

The non-linear relationship between ANN values and defect

scoring was a notable feature that seems in agreement with

human decision-making processes. Nuclear cardiologists do

not usually judge findings with defect scores <4 as abnormal,

but will definitely do so when scores are ≥8. Thus, the likeli-

hood of an abnormal probability steeply increasing between 4

and 8 is understandable. Considering this non-linear relation-

ship, the scoring method cannot be replaced by the ANN.

Although 10% ischemia of the left ventricle is used as a guide

to coronary revascularization [6, 26], the ANN does not pro-

vide a comparable threshold of ischemic severity. However,

the ANN can emphasize a possible abnormal region with a

degree of probability, which can suggest a diagnosis.

Avoidance of overlooking positive findings and over-

diagnosing minor abnormalities might be helpful for nuclear

cardiology trainees. Since cardiologists and radiologists are

not always specialists in nuclear cardiology, an ANN-based

suggestion might help enhance confidence in a diagnosis.

Even some nuclear cardiology specialists tend to interpret

findings with high sensitivity (active reading for abnormality),

and others with high specificity (modest reading). The average

reading provided by the ANN could thus be a second opinion

for such specialists.

Lastly, all perfusion processing, defect scoring and func-

tional analysis are automatically calculated by the software

within 10 s. Therefore, if the data transfer protocol from a

nuclear-dedicated computer to Windows PC and connection

to an institutional picture archiving and communication sys-

tem (PACS) are appropriately constructed, the ANN software

system could function in any institution.

Limitation

The territories of the three coronary arteries were not included

in the training process. Although the coronary territory and

polar mapsmight roughly correspond, such as the anteroseptal

region to the left anterior descending coronary artery, strict

correspondence in border zones of coronary territories is dif-

ficult to determine. Although we could not determine

coronary-based accuracy in this study due to its algorithm,

fusion images with CCTA and perfusionmaps with their prob-

ability of ischemia will effectively integrate information from

stenosis and perfusion. As discussed above, we could not

generate a severity score indicating 10% ischemia. To develop

an ANN that can assess ischemic severity comparable to that

of severity scoring, new large-scale training will be required.

The judgment suggested by the ANN system was based on

average readings of the MPI studies at 12 institutions. The

variety of conditions is a limitation from the viewpoint of

specific readings at these institutions, but this could converse-

ly provide the advantage of averaged interpretation.

Conclusion

Based on a new multicenter database trained by nuclear cardiol-

ogy specialists, the diagnostic ability of the ANNwas good with

an AUC of >0.9 overall, including subgroups with and without

MI and coronary revascularization. Further studies of large pa-

tient cohorts are indicated based on these promising outcomes.
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