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[1] Global land evapotranspiration (E) between 1982 and 2011 was estimated by using a
canopy conductance-based process E model (Air Relative Humidity-Based Two-Source
model) [Yan et al., 2012]. To analyze the impact of precipitation forcing on E, an ensemble of
six E data sets was derived from a driving ensemble of six precipitation data sets (i.e., Global
Historical Climatology Network, Global Precipitation Climatology Centre, Climate Research
Unit, Global Dataset of Meteorological Forcings, Global Precipitation Climatology Project,
and Delaware). The result shows that ensemble average E over global land had an annual
mean of 64.8 ± 0.8� 103 km3 yr�1 and a significant linear trend of 4.6mm per decade
(p< 0.01). Significant partial correlations were found between the ensemble average E and its
three controlling variables (i.e., precipitation (Pr), vegetation leaf area index (Lai), and
potential evaporation (Ep)). These correlations explained 95% of the interannual variation of
global land Ewith Pr as the dominant forcing contributing 37% variation of E; i.e., global land
E was slightly sensitive to Pr than Lai and Ep. Pr, Lai, and Ep all showed increases of 8.8mm
(p< 0.01), 0.4m2m�2 (p< 0.01), and 2.0mm (p< 0.1) per decade, respectively, which
characterized a favorable environment for the increase of E over past 30 years. Both negative
Multivariate El Niño–Southern Oscillation (ENSO) Index (MEI) and Southern Oscillation
Index (SOI) displayed an increasing trend. The La Niña phase tended to be dominant from
1982 to 2011 and caused a significant increase of landPr and further enhanced landE. Impacts
of ENSO and corresponding Pr variation require attention to increase the understanding of the
interannual variation of global land E.
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1. Introduction

[2] Through biophysical processes including vegetation
transpiration and soil evaporation, global land actual evapo-
transpiration (E) connects land surface water, energy, and
carbon cycles and links the atmosphere to vegetation and soils
in terrestrial ecosystems. As a key component in global
land water cycle, E returns about 60% of annual land precipi-
tation to the atmosphere [Oki and Kanae, 2006] and consumes

more than half of absorbed solar energy [Trenberth and
Fasullo, 2009].
[3] Knowledge of E is crucial to understanding how the

water cycle has been impacted by climate change. Due to
the lack of direct observations of land E at the global scale,
many E models of varied complexity have been formulated
based on different physical principles. These include surface
conductance-based Emodels [Leuning et al., 2008;Mu et al.,
2011; Zhang et al., 2010; Yan et al., 2012], energy-balance
E models [Su, 2002; Kustas and Norman, 1999], coupled-
stomata models for transpiration and photosynthesis [Ryu
et al., 2011; Priestley and Taylor, 1972], equation-based E
model (GLEAM) [Miralles et al., 2011b], and empirical E
models [Wang and Liang, 2008; Zeng et al., 2012; Jung
et al., 2010], such as the model tree ensemble approach
(MTE) [Jung et al., 2010] based on a set of explanatory vari-
ables (i.e., remote sensing data and surface meteorological
data). These models have been evaluated with flux E data
from subsets of the 400 available flux stations worldwide.
Current estimation of global E from this suite of remote sens-
ing-based models, as well as reanalysis (e.g., Modern Era
Retrospective Analysis for Research and Applications
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(MERRA)) and off-line land surface models (e.g., Second
Global Soil Wetness Project (GSWP-2)), ranges widely from
58� 103 to 85� 103 km3 yr�1 by GSWP-2 [Dirmeyer et al.,
2006] and from 68� 103 to 80� 103 km3 yr�1 by the
LandFlux-EVAL project [Mueller et al., 2011]. Along with
these considerable differences, opposite trends in the change
of the pattern of variation have been found in the period from
1984 to 2007 in different studies [e.g., Jung et al., 2010;
Vinukollu et al., 2011]. Nevertheless, short-term analyses of
global land E consistently show a decline from 1998 to
2008 [Jung et al., 2010; Vinukollu et al., 2011; Zhang
et al., 2010; Zeng et al., 2012]. The first objective of the
present study is to further examine E from 1998 up to 2011
to determine whether this decline continues.
[4] Intensification of global hydrologic cycle with warming

temperatures has been confirmed based on evidence from pre-
cipitation and runoff data sets [Huntington, 2006; Alkama
et al., 2011]. Both climate models and satellite precipitation
observations indicate that global (land and ocean) total atmo-
spheric water, precipitation, and ocean evaporation have had
similar, increasing trends (1.2 to 1.4% decade�1) due to global
temperature increase from 1987 to 2006 [Wentz et al., 2007]
and from the Pacific decadal variability as well [Gu and
Adler, 2012]. However, intense and opposite precipitation
anomalies can be seen over land and ocean due to El Niño–
Southern Oscillation (ENSO) events [Dai and Wigley, 2000;
Trenberth et al., 2007].
[5] ENSO is regarded as the most important coupled

ocean-atmosphere phenomenon causing climate (rainfall,
temperature, vegetation, drought, flood, etc.) variability
throughout the world on interannual time scales [Dai et al.,
1997; Wolter and Timlin, 1998]. Warm ENSO events
(El Niño) tend to decrease global land precipitation [Gu
et al., 2007], but drought occurs during the warm El Niño
and cold La Niña events of the ENSO phenomenon in differ-
ent areas of the world [Vicente-Serrano et al., 2011].
Reference evapotranspiration has a higher value up to
17%–30% in La Niña years than that in El Niño years in
warm climates of Iran [Sabziparvar et al., 2011] and in the
Maipo River basin of Chile [Meza, 2005]. In addition,
Poveda et al. [2001] pointed out that satellite normalized
difference vegetation index (NDVI) exhibits strong negative
anomalies during El Niño years in Colombia.
[6] Our second objective is to investigate whether ENSO

events affect land E and contribute to the decline of E from
1998 to 2008 in addition to the soil moisture stress addressed
by Jung et al. [2010]. Precipitation representing water supply
Ep indicating atmosphere evaporation demand and vegeta-
tion Lai showing canopy status are key drivers of E from
the Penman-Monteith E model [Monteith, 1965]. Thus,
ENSO-related precipitation anomalies should affect land E.
However, the impact of ENSO on land E remains unknown
except at small-river-basin scale [Twine et al., 2005].
[7] The third objective in this study is to answer whether

different precipitation data set affect the estimated trend of
global land E. As global land E is more sensitive to Pr than
net radiation perturbations [Schlosser and Gao, 2010]
and uncertainty in Pr mostly translates to uncertainty in E
[Nasonova et al., 2011], it is essential to analyze the impact
of ENSO-induced precipitation anomalies on interannual
variation of land E. However, due to large uncertainties of
current land precipitation data sets [Mueller et al., 2013],

precipitation trends should be interpreted with caution
especially when deriving from a single precipitation data
set [Jung et al., 2010].
[8] To reduce the error of single Pr data set, we built an en-

semble of Pr including six Pr member data sets that further
produces six E ensemble members through Air Relative
Humidity-Based Two-Source (ARTS) E model, which
makes it possible to analyze the impact of Pr on E and finally
give a reasonable estimation of ensemble average E with re-
duced error associated with input Pr of ensemble members.
Thus, Pr uncertainty was mainly captured in this study while
the rest of driving data sets came from a single reanalysis data
set and not an ensemble.
[9] This study is the first long-term diagnostic analysis of

the ENSO impact on global land E. An ensemble of global
land E was generated at a monthly temporal scale and a
0.5° spatial scale for 1982–2011 using ARTS Emodel driven
with six precipitation climate products and NASA MERRA
reanalysis data. To provide a general picture of E variation
associated with El Niño and La Niña events, interannual
variation of E was analyzed against precipitation variation
and two acceptable ENSO climate indices showing the
strength of ENSO. Such knowledge will facilitate improved
understanding of impact of global climate change on land
water cycle.

2. Methods

[10] The Air Relative Humidity-Based Two-Source
(ARTS) E model [Yan et al., 2012] was adopted to estimate
global land E. With assumption of no water stress, ARTS E
model first calculates total E (E0) as a sum of vegetation tran-
spiration Ec and soil evaporation Es. Similarly, the available
energy A is partitioned into two parts: canopy part (Ac) and
the soil part (As). Further correction of E0 for soil water stress
is conducted by using a soil water balance model. Evaluation
against eddy covariance measurements at 19 flux sites,
representing a wide variety of climate and vegetation types, in-
dicated that monthly estimated E has an error statistics of root-
mean-square error = 0.59mm d�1, bias =�0.05mm d�1, and
R2=0.77. These are values comparable to other E models
[Yan et al., 2012].More detailed description of ARTSEmodel
can be found in Yan et al. [2012].

2.1. Canopy Transpiration Ec and Canopy
Conductance Gc

[11] The canopy transpiration (Ec) model is based on the
Penman-Monteith model [Monteith, 1965], but the available
energy (A) and surface conductance (Gs) terms are replaced
by the canopy-absorbed available energy (Ac) and canopy
conductance (Gc):

Ec ¼
ΔAc þ ρCpDGa

Δþ γ 1þ Ga=Gc

� � ; (1)

Gc ¼ gsmax � Rh � Lai; (2)

where Ac is the canopy available energy, Δ is the gradient of
the saturated vapor pressure to air temperature, γ is the psy-
chrometric constant, ρ is the density of air, Cp is the specific
heat of air at constant pressure, Ga is the aerodynamic
conductance, Gc is the canopy conductance accounting for
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transpiration from the vegetation, andD = es� ea is the vapor
pressure deficit of the air, in which es is the saturation water
vapor pressure at air temperature and ea is the actual water va-
por pressure, Rh is the air relative humidity, and gsmax is the
maximum stomatal conductance assumed to have a value of
12.2mm s�1 [Kelliher et al., 1995].

2.2. Soil Evaporation Es

[12] Es equation is modified from the air relative humidity-
based model of evapotranspiration (ARM-ET) [Yan and
Shugart, 2010]:

Es ¼ 1:35Rh

ΔAs

Δþ γ
; (3)

2.3. Total EvapotranspirationE0 forWell-Watered Surface

[13] E0 represents evapotranspiration for well-watered surface:

E0 ¼
ΔAc þ ρCpDGa

Δþ γ 1þ Ga=Gc

� �þ 1:35Rh

ΔAs

Δþ γ
: (4)

2.4. Soil Water Correction Using Soil Water
Balance Model

[14] As E0 equals actual E only for a well-watered surface, a
correction to E0 is required for a water-stressed surface. Thus,
a soil water balance model developed by Thornthwaite and
Mather [1955] is adopted in ARTS E model to scale E0 to
actual E.

3. Data Sets and Preprocessing

3.1. MERRA Reanalysis Data

[15] Modern Era Retrospective Analysis for Research and
Applications (MERRA) was developed by NASA using a
major new version of the Goddard Earth Observing System
Data Assimilation System Version 5 (GEOS-5), which
focuses on historical analyses of the hydrological cycle aided
by the NASA modern Earth Observing System (EOS) suite
of satellite observations in a climate framework. MERRA
produces temporally and spatially consistent analyses of
atmosphere, land surface, and ocean surface variables at a
spatial resolution of 0.5° latitude� 0.7° longitude from
1979 to present with significant improvements in precipita-
tion and water vapor climatology [Reichle et al., 2011;
Bosilovich et al., 2011]. It is ideal for investigating climate
variability [Rienecker et al., 2011].

3.2. Six Global Land Precipitation Data Sets

[16] The Global Historical Climatology Network (GHCN)
monthly precipitation data set was created for climate moni-
toring at National Climatic Data Center (NCDC) of National
Oceanic and Atmospheric Administration (NOAA). Monthly
precipitation anomalies with respect to the 1961–1990
climate value were calculated from over 20,590 stations
from 1900 to present. Station anomalies were then averaged
within each 5° by 5° grid box to obtain the gridded GHCN
precipitation product [Peterson and Vose, 1997; Menne
et al., 2012].

[17] The Global Precipitation Climatology Centre (GPCC),
operated by National Meteorological Service of Germany un-
der the auspices of the World Meteorological Organization
(WMO), has generated a Full Data Reanalysis Product cover-
ing the period from 1901 to 2010 with a resolution of 0.5° by
using an empirical interpolation method SPHEREMAP
[Willmott et al., 1985] from an available GPCC station data-
base (67,200 stations with at least 10 years of data) compiled
from all available sources [Rudolf et al., 2011].
[18] The Climate Research Unit (CRU) at the University of

East Anglia developed CRU 3.1 monthly climatic mean and
time series of terrestrial surface climate for the period
1901–2009, which comprises seven climate elements (precip-
itation, mean temperature, diurnal temperature range, wet-day
frequency, vapor pressure, cloud cover, and ground-frost
frequency) [New et al., 2000]. The spatial coverage extends
over all land areas, excluding Antarctica. The construction
method ensures that strict temporal fidelity is maintained.
Monthly CRU time series data show month-by-month varia-
tions in climate variables and allow the comparison of varia-
tions in climate with variation in other phenomena [New
et al., 2000]. A 0.5° latitude/longitude gridded data set was
adopted in this study.
[19] The Global Dataset of Meteorological Forcings

(GDMP) was developed for land surface modeling by the
Department of Civil and Environmental Engineering at the
Princeton University. The data set includes precipitation, air
temperature, surface pressure, specific humidity, wind speed,
and downward long wave and short wave at surface and is
currently available at a 1.0° monthly resolution for 1948–2008.
It combines observations with the National Centers for
Environmental Prediction–National Center for Atmospheric
Research (NCEP-NCAR) reanalysis to correct known biases
in the reanalysis precipitation and near-surface meteorology
[Sheffield et al., 2006].
[20] The Global Precipitation Climatology Project (GPCP)

managed by NASA Goddard Space Flight Center was
established by the World Climate Research Program
(WCRP). It combines available satellite estimates including
microwave estimates, infrared (IR) precipitation estimates,
and additional low-Earth orbit estimates with monthly
GPCC Precipitation Monitoring Product into a final merged
product (V 2.2) covering global land and ocean at a
2.5°� 2.5° scale from 1979 to 2010 [Huffman et al., 2009].
[21] The Delaware terrestrial precipitation monthly time

series (V 3.01) was developed at the Department of
Geography at the University of Delaware. Monthly total pre-
cipitation measured by rain gauge was compiled from several
updated sources such as GHCN2 for the years 1900–2010
with the resultant number of stations ranging from about
4100 to 22,000 globally. Based on a relatively dense network
of stations, a background precipitation climatology was built
and was then interpolated to a 0.5° by 0.5° grid resolution
with aid of monthly total precipitation by using climatologi-
cally aided interpolation method [Willmott and Robeson,
1995] to increase the accuracy of spatially interpolation.

3.3. Global Inventory Modeling and Mapping Studies
(GIMMS) Leaf Area Index Data

[22] A new global 15 day LAI data set at 8 km spatial
resolution for the period July 1981 to December 2011 was
generated from advanced very high resolution radiometer
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Global Inventory Modeling and Monitoring Study (GIMMS)
NDVI3g data set using an Artificial Neural Network (ANN)
model. The ANN model for generating the LAI data set was
trained with overlapping GIMMS NDVI3g and best quality
Moderate Resolution Imaging Spectroradiometer LAI data.
The full temporal coverage GIMMS LAI3g data set was then
generated using GIMMS NDVI3g data and the ANN model.
The new GIMMS LAI3g data set was evaluated through direct
comparison with field data and indirectly through (a) intercom-
parisons with similar satellite data products at biome and site
scales, (b) testing for reproducing known relationships between
LAI and climatic variables (temperature and precipitation), (c)
canonical correlation analysis with ENSO/Arctic Oscillation
indices, and (d) comparison to simulations from multiple dy-
namic vegetation models. These exercises resulted in
establishing the validity and uncertainty of these new data sets.
Further details can be found in Zhu et al. [2013].

3.4. ISLSCP II Global Gridded Soil Data

[23] Global 1° gridded surfaces of selected soil characteris-
tics including maximum soil available water content
(MAWC) for a soil depth of 0 ~ 150 cm was developed by
the International Satellite Land Surface Climatology Project
(ISLSCP) Initiative II project based on the International
Geosphere-Biosphere Programme (IGBP)–Data and
Information Services (DIS) soil data [Global soil data
task, 2000].

3.5. GSWP-2 E Data

[24] The Second Global Soil Wetness Project (GSWP-2) as
a recent environmental modeling research activity of the
Global Land-Atmosphere System Study (GLASS) produced
first global gridded multimodel analysis of land surface state
variables and fluxes spanning 10 years (1986–1995) on a 0.5°
grid and a monthly time scale. The resulting analysis
consisting of multimodel means and standard deviations
has been applied to studies of global terrestrial energy and
water balance and major components of E [Dirmeyer et al.,
2006; Dirmeyer, 2011].

3.6. Multivariate ENSO Index (MEI) Data

[25] ENSO events and their strength have been monitored
by using MEI index derived from six main observed
variables over the tropical Pacific. These are sea level
pressure, zonal and meridional components of the surface
wind, sea surface temperature, surface air temperature, and
total cloudiness fraction of the sky collected from the
International Comprehensive Ocean-Atmosphere Data Set.
Spatial filtering is initially applied to the individual fields
and the first unrotated principal component (PC) of six
filtered fields is regarded as MEI. Monthly MEI is computed
for each of 12 sliding bimonthly periods (e.g., December/
January, January/February). To keep the MEI comparable,
all monthly MEI values are standardized based on a
comparison with the 1950–1993 climate values [Wolter and
Timlin, 1998].

3.7. Southern Oscillation Index (SOI) Data

[26] The SOI index also indicates the development and in-
tensity of El Niño or La Niña events in the Pacific Ocean. It is
a standardized anomaly of the mean sea level pressure differ-
ence between Tahiti and Darwin stations, which is usually
calculated on a monthly basis at Australian Bureau of
Meteorology. Further multiplication by 10 is their conven-
tion. Sustained negative values of the SOI greater than�8 of-
ten indicate El Niño episodes while sustained positive values
of the SOI greater than +8 are typical of a La Niña episode
[Nicholls, 1988].

3.8. Data Preprocessing

[27] All model forcings including six precipitation data
sets, GIMMS Lai, MERRA reanalysis meteorological data
(i.e., net radiation, air temperature, specific humidity, wind
speed, roughness length, and displacement height), and
maximum soil available water content were resampled to a
0.5o� 0.5o grid resolution by using a bilinear interpolation
method and were then applied to driving the ARTS E model
on a monthly time scale. GHCN Pr data sets only include
anomalies and there is no available gridded GHCN Pr climate
value. Thus, the CRU Pr climate value for the period 1961 to
1990 was instead added to GHCN Pr anomalies to build
GHCN monthly Pr.
[28] To analyze interannual variation of E, monthly

values of E were summed to yearly values and hence
annual mean (equation (5)) and yearly bias (equation (6))
of E were calculated for six ensemble members, respec-
tively. Further sum of averaged annual mean E and yearly
bias E of six ensemble members produced a yearly series
of ensemble average E over past 30 years (equation (7)),

Figure 1. Interannual variation of (a) global land ARTS en-
semble average E and (b) six ensemble members’ E derived
from respective driving precipitation data sets and corre-
sponding slope k of linear trend from 1982 to 2011.
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which was then evaluated with GSWP-2 E data and previ-
ous studies:

EAnnualMean ¼ ∑
N y

Year¼1

∑
12

Month¼1

E

0

@

1

A

0

@

1

A=Ny; (5)

EYearlyBias ¼ ∑
12

Month¼1

E

0

@

1

A� EAnnualMean; (6)

EEnsembleAverage ¼

�

∑
6

Member¼1

EAnnualMean

�

=6

þ ∑
Nm

Member¼1

EYearlyBias

0

@

1

A=Nm;

(7)

where Ny is 30, 29, 28, 27, 29, and 29 years indicating the
length of GHCN, GPCC, CRU, GDMP, GPCP, and
Delaware Pr-derived E data sets, respectively. As a result,
member number Nm is 1, 4, 5, and 6 for year 2011, 2010,
2009, and 1982 to 2008, respectively. Similarly, the ensem-
ble of six precipitation data sets was processed.
[29] To analyze impact of atmosphere evaporation demand

on E as a driving factor, Ep was calculated according to
Priestley and Taylor [1972] (PT) equilibrium E model:

Ep ¼ 1:26
ΔA

Δþ γ
; (8)

where variables have the same meanings to ARTS Emodel in
section 2.2.

4. Results

4.1. Temporal and Spatial Variations of ARTS E

[30] The interannual variation of global ARTS ensemble
average E from 1982 to 2011 (Figure 1a) clearly shows a sig-
nificant increase with a trend of 0.46mmyr�1 (p< 0.01),
which coincides well with an increasing linear trend of
0.41mmyr�1 (p< 0.01) given by MTE E model but for a
shorter period of 1982–2008 [Jung et al., 2010]. Zeng
et al. [2012] reported a higher, also increasing rate of
1.1 ± 0.2mmyr�1 (p< 0.01) for E from 1982 to 2009.
[31] E variation can be explicitly split into two periods

(Figure 1a). During the first period (1982-1997), E had an in-
creasing trend of 0.4 (p = 0.14) and 0.71mmyr�1 (p< 0.01)
indicated by ARTS and MTE models, respectively.
Similarly, Yan et al. [2012], Vinukollu et al. [2011], and
Zeng et al. [2012] reported an increasing trend of E over
the 1980s and the 1990s. Whereas, during the second period
(1998–2011) ARTS E shows no significant change due to
two higher positive anomalies of 12.97 and 13.67mmyr�1

occurred in the beginning (1998) and the end (2010) of the
period, respectively (Figure 1a).
[32] However, a decreasing trend of 0.2 (p = 0.66) and

0.16mmyr�1 (p= 0.75) was found over the interval of
1998–2008 by ARTS E and MTE E (Figure 1a). Earlier,
Jung et al. [2010] based on an analysis of satellite microwave
TRMM soil-moisture data found this trend and attributed it to
limited moisture supply. However, the decreasing trend was
not significant (p> 0.60) as shown here by both E models
and other studies [Vinukollu et al., 2011; Zeng et al., 2012].
Thus, it can be regarded as a fluctuation accompanied with

Figure 2. Distribution of global trend of ARTS ensemble average E and its significance of linear trend for
period of (a, b) 1982–2011, (c, d) 1982–1997, and (e, f) 1998–2011, respectively.
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a lower negative E anomaly of about �6.0mmyr�1 that oc-
curred in 2002. Beyond this interval, ARTS E shows contin-
ued increase with a positive anomaly of 13.67mmyr�1 in
2010. The decrease of E over 1998–2008 was temporary
and does not reverse the increasing trend of E since 1982.
[33] Six E models, derived from respective Pr driving data

set, all display similar interannual variation but different
magnitude of anomalies (Figure 1b). Similar to the ARTS
ensemble average E (Figure 1a), five E ensemble members
had a significant increasing trend for the period of 1982–2011
(p< 0.05) except EGPCP driven with GPCP Pr. The climatic
trend of six E members ranged from 0.3mmyr�1 for EGPCP

member to 0.59mmyr�1 for ECRU member. In addition, the
increase from 1982 to 1997 and decrease from 1998 to 2011
of E were all insignificant for six ensemble members similar
to ARTS ensemble average E (Figure 1a).
[34] With regard to spatial pattern of E for the whole

research interval of 1982–2011 (Figures 2a and 2b), the
ARTS ensemble average E had an overall increasing trend
for most of the global land area while significant decreasing
trend still existed in western North America, Amazon,
Middle East, Northeast of China, etc. However, during the
first period of 1982–1997, most land area shows an insignif-
icant trend of E (Figures 2c and 2d). Conversely, during
the second period of 1998–2011, more land areas (e.g.,
Australia and Amazon) had a decreasing trend of E
while tropical Africa showed an increasing trend of E
(Figures 2e and 2f).

4.2. Analysis of Driving Factors Resulting in the
Intensified E

[35] In ARTS E model, E0 represents total evapotranspira-
tion under plentiful supply of water which is further scaled to
actual E by using a soil water balance model. Thus, E0 and Pr

determine the actual E. On a global scale, both E0 and ensem-
ble average Pr had a close linear correlation (p< 0.01) with
ARTS ensemble average E from 1982 to 2011, and further-
more, E0 and Pr can explain 73% and 40% variation of E,
respectively (Figure 3). In other words, global land E was
predominantly controlled by E0 rather than Pr. As E0 actually
included contributions of atmosphere demand and vegetation
Lai in ARTS E model, E0 can substitute for Ep and Lai as a
comprehensive variable combined with Pr for analyzing
impacts of model forcings on E.
[36] The interannual variations of global land Pr and E0

from 1982 to 2011 (Figure 4) also show a significant increase
with a trend of 0.88 (p< 0.01) and 0.51mmyr�1 (p< 0.01),
respectively, which produced an increasing trend of
E= 0.46mmyr�1 (p< 0.01). Trends in Ewere consistent with
increasing trends in Pr and E0. Jung et al. [2010] also showed
that Pr and E had consistent trends in research domain from
1998 to 2008. Figure 4 also indicates that the trend of E was
lower than that of two driving factors, especially Pr, which
might be due to that ecosystem had an reduced response to
severe changes of Pr through its complex ecohydrological
processes (e.g., soil water bank).
[37] The comparisons of anomalies of ensemble average

Pr, E0, and E (Figure 4) indicate that there probably existed
a complementary relationship between E0 and Pr in determin-
ing E on a global scale especially when anomalies of E0 and
Pr were large. For instance, annual precipitation was low in
1987 with a negative anomaly of Pr=�38.46mmyr�1, but
E0 only had a minor anomaly of �1.94mmyr�1, which
resulted in an anomaly of E=�8.52mmyr�1, falling within
anomalies of Pr and E0. In another case with plentiful precip-
itation in 2000, even though E0 had a negative anomaly of
�5.55mmyr�1, the complementary effect due to plentiful
precipitation with a positive anomaly of Pr= 29.85mmyr�1

produced an anomaly of E= 5.23mmyr�1. Note that E can-
not exceed E0 at any grid due to limitation by soil water
balance model.

Figure 3. Scatterplot of anomalies of ensemble average (a)
E versus E0 and (b) E versus Pr.

Figure 4. Interannual variations of global land E0, ensem-
ble average Pr and ARTS E from 1982 to 2011 and corre-
sponding slope K of linear trend.
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[38] Figure 4 indicates that there were three sets of years of
1997–1998, 1999–2000, and 2001–2002 representing differ-
ent combination of Pr, E0, and E anomalies. The years
1997–1998 featured positive anomalies of annual mean Pr,
E0, and E; 1999–2000 had positive anomalies of Pr, negative
anomalies of E0, and a normal E while 2001–2002 featured
negative anomalies of annual mean Pr, E0, and E. Their
spatial patterns show that there was plentiful Pr in tropical re-
gions for 1999–2000 (Figure 5e) compared with 1997–1998
(Figure 5d). Conversely, E0 shows an opposite pattern com-
pared with Pr; there was less E0, e.g., energy limitation, in
tropical areas for 1999–2000 (Figure 5h) compared with
1997–1998 (Figure 5g). As a result of energy limitation, there
was less E in tropical areas for 1999–2000 (Figure 5b) com-
pared with 1997–1998 (Figure 5a), which indicates that those
regions that were contributing more to the global land Pr

anomalies were located in energy-limited regions (e.g., tropi-
cal regions in Figure 6e) and that is why there was not much
Pr contribution to E during 1999–2000.
[39] In addition, 2001–2002 shows a different spatial pat-

tern (Figures 5c, 5f, and 5i); Pr and E0 had negative anoma-
lies in more regions (Figures 5f and 5i) than those for
1997–1998. Thus, limited E0 demand and Pr supply resulted
in more regions with negative anomalies of E for 2001–2002
(Figure 5c) compared with 1997–1998 (Figure 5a).
[40] Figure 4 shows the comparisons of anomalies of E, E0,

and Pr globally. The complimentary relationship occurred in
21 years (70% of the years studied) and exceptions still
existed in 9 years (30%), e.g., annual E needed not be a com-
plimentary anomaly relative to Pr and E0. For instance, Pr and

E0 all had a negative anomaly of �4.99 and �4.44mmyr�1

in 1982, respectively. This resulted in a weak negative anom-
aly of E=�3.08mmyr�1. Similarly, positive anomalies of
Pr= 26.0mmyr�1 and E0 = 16.95mmyr�1 in 2010 favored
weak positive anomalies of E= 13.67mmyr�1. The above
analysis further reveals that ecosystem tended to have a weak
response of E with respect to dramatic changes of the two
driving factors (i.e., Pr and E0) on a global scale.
[41] The global variations of Pr, E0, and E agreed with

common knowledge that both favorable Pr and E0 will
produce a positive anomaly of E, or vice versa. In addition,
complementary effects might reduce the amplitude of E
anomaly when one factor had an opposite anomaly.
[42] To determine whether E0 or Pr controls E as a major

limitation factor, Pearson correlation coefficients of E versus
E0 and E versus Pr were calculated. Figures 6a and 6c shows
that E was mainly determined by E0 on global scale and Pr

controlled E primarily in water-stressed areas such as deserts.
Thus, E0was the major limitation factor of E over global land
compared with Pr (Figure 6e). In contrast, it is well known
that Ep often controlled E in tropical areas and Northern
Hemisphere high-latitude areas (Figure 6b), which is consis-
tent with Wang et al. [2010]. Thus, when conducting tradi-
tional forcing analysis by comparing Ep and Pr, one can
derive a different map of major limiting factors (Figure 6f)
that indicates more global land were controlled by Pr. There
seems a paradox between Figures 6e and 6f. In fact,
Figure 6f only considers the nonvegetation factors while
Figure 6e reflects the impact of real vegetation on E by
considering the canopy conductance; i.e., interannual

Figure 5. Pattern of (a–c) E, (d–f) Pr, and (g–i) E0 anomalies for 1997–1998, 1999–2000, and 2001–2002.
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variation of E was principally controlled by canopy conduc-
tance-based E0 in vegetation-covered land while in bare land,
Pr controlled E through soil evaporation. In addition,
intercorrelation analysis applied to E0 and Pr (Figure 6d)
shows that E0 and Pr had negative relationships mainly in
tropical areas and Northern Hemisphere high-latitude areas
while significant positive relationships were often found in
arid regions of southwest North America, southern South
America, southern Africa, western Asia, and Australia.
[43] Global vegetation Lai and MERRA Ta (Figure 7) had

an increasing trend of 0.04m2m�2 yr�1 (p< 0.01) and
0.024°C yr�1 (p< 0.01), respectively, while PT Ep had an in-
creasing trend but insignificant in statistics (p = 0.09).
Similarly, HadCRUT3 Ta data set shows a linear trend of
0.027°C yr�1 (p< 0.01) from 1979 to 2005 [Brohan et al.,
2006]. Global increase of Lai (Figure 7) implied enhanced
vegetation activity over the past three decades, which is con-
sistent with previous studies of global greening since 1982
mainly because of improved critical climatic constraints to
plant growth [de Jong et al., 2012; Nemani et al., 2003].
[44] ARTS ensemble average E had significant Pearson

correlation with vegetation Lai (R2= 0.46, p< 0.01), Pr

(R2 = 0.40, p< 0.01), and PT Ep (R2 = 0.22, p< 0.01), re-
spectively. From the view of vegetation regulation, water
supply, and atmosphere demand that determined E, all
driving factors, i.e., Lai, Pr, and PT Ep, had an increasing
trend in the 1982 to 2011 period (Figures 7 and 4). Thus,
the recent increasing trend of global E can be primarily attrib-
uted to increasing vegetation Lai, water supply, and atmo-
sphere evaporation demand.

4.3. Uncertainties of Precipitation Variation and Its
Impact on E

[45] Figure 8a shows that four Pr ensemble members (i.e.,
GHCN, GPCC, CRU, and GDMP) significantly increased by
0.87~1.53mmyr�1 for 1982–2011, while GPCP and
Delaware Pr had an insignificant increase with a trend of 0.34
and 0.36mmyr�1 (p> 0.05), respectively. Nickl et al. [2010]
reported an increased trend of Pr (at rates of approximately
0.75 to 2.1mmyr�1) over a decade from 1992 to 2002 estimated
fromGPCC, CRU, andDelawarePr data sets. Figure 8a also im-
plies that there existed large uncertainties in current Pr data sets.
Six Pr ensemble members had a wide range of annual mean
values from 99.2±2.1 to 112.7±2.2� 103km3yr�1 (Table 1).
[46] Comparison of standard deviation (STDEV) of en-

semble average Pr and E calculated from corresponding six
ensemble members (Figure 8b) indicates that ARTS E had
an increasing trend of STDEV= 0.02mmyr�1 that was lower
than that of Pr (trend of STDEV= 0.05mmyr�1), which have
been seldom addressed by previous researches. As uncer-
tainties of Pr, shown by the trend of STDEV for Pr, increased
by 0.05mmyr�1 that was obviously lower than the increas-
ing trend of 0.46mmyr�1 for ARTS ensemble average E,
thus it can be concluded that uncertainties in Pr ensemble
members could not substantially affect the increasing trend
of global land E estimation.

4.4. Evaluation of ARTS Ensemble Average E

[47] We estimated an ensemble average E of 64.8 ± 0.8� 103

km3 yr�1, comparable to recent estimates of 65± 3� 103

Figure 6. Pearson’s correlation significance of (a) E versus E0, (b) E versus PT Ep, (c) E versus Pr, and (d)
E0 versus Pr. (e) Map where E0 demand or Pr supply limitation controls interannual variation of E. (f)
Traditional map using Ep instead of E0 as demand factor.
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[Jung et al., 2010], 65.5� 103 [Oki and Kanae, 2006],
62.8� 103 [Mu et al., 2011], 63� 103 [Ryu et al., 2011],
67� 103 [Trenberth et al., 2007], 69� 103 [Vinukollu et al.,
2011], and 67.9� 103 km3 [Miralles et al., 2011a]. Schlosser
and Gao [2010] also reported a GSWP-2 model-mean
value of 65.1 ± 0.8� 103 km3 yr�1 for global land excluding
Antarctic.
[48] Six E ensemble members also had different an-

nual E values with a narrow range of 63.7� 103 to
68.3� 103 km3 yr�1 (Table 1), which falls within the
model range (49� 103 to 82� 103 km3 yr�1) estimated by
the GSWP-2 project [Schlosser and Gao, 2010] and the re-
cent model range (60� 103 to 85� 103 km3 yr�1) reported
by the Water and Global Change project [Haddeland
et al., 2011]. As ensemble average Pr for global land was
102.8 ± 2.1� 103 km3 yr�1 (Table 1), the annual land E-to-
Pr ratio was 0.63, which is close to reported values of 0.66

[Dirmeyer, 2011], 0.60 [Zhang et al., 2010], and
0.58 ± 0.9 [Alton et al., 2009]. ARTS ensemble average E
(Figure 9) shows higher E over 1300mm yr�1 mainly dis-
tributed in tropical American, African, and Asian areas
due to plentiful supply of precipitation and heat. Whereas
lower E less than 300mmyr�1 often occurred in cold re-
gions of Northern Hemisphere due to limited heat resources
and in arid regions of Australia, Sahara, western and central
Asia, etc., due to limited precipitation. Further comparison
of ARTS E versus GSWP-2 E at grid scale (Figure 10) indi-
cates a significant linear correlation (p< 0.01) with a slope
k = 0.98. Significant correlation also existed on monthly
comparisons (not shown). Above evaluations of ARTS en-
semble average E show a reasonable spatial pattern of E.

5. Discussion and Conclusion

[49] According to theMonteith [1965] evaporation theory,
land E is actually determined by water supply, atmosphere
demand, and vegetation regulation that were expressed by
Pr, Ep, and Lai, respectively, in this study, and their effects
on E was further analyzed to understand the increasing trend
of E since 1982. Statistics of interannual variation indicate

Figure 7. Interannual variations of global land (a) GIMMS
Lai, (b) PT Ep, and (c) Ta from 1982 to 2011.

Figure 8. (a) Interannual variation of ensemble members’
Pr for 1982–2011 and corresponding slope k and significance
P of linear trend and (b) STDEV of ensemble average Pr and
E calculated from ensemble members. Number of used en-
semble members in a specific year is shown on top of x axis.
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that significant Pearson correlations were found between E
versus Lai, Pr, and Ep with a determining coefficient R2 of
0.46, 0.40, and 0.22, respectively, which shows that vegeta-
tion as the dominant forcing explained 46% variation of E.
However, as the relationship between E and its three control-
ling variables is typical of multivariable correlation analysis
and Pearson correlation fits better for bivariate analysis, thus
partial correlation, due to its ability of measuring the degree
of association between two random variables with the influ-
ence of the remaining variables eliminated, was adopted in
this study. The result indicates significant partial correlations
existed between E versus Pr, Lai, and Ep with a determining
coefficient R2 of 0.37, 0.33, and 0.24, respectively; i.e., these
three forcings explained 95% interannual variation of global
land E in which Ep only contributed 24% variation of Ewhile
Pr contributed 37% variation of E. The statistics show that
global land Ewas slightly more sensitive to Pr than other per-
turbations, which is consistent with the result of Schlosser
and Gao [2010] and a feedback process described by
Dirmeyer et al. [2009] that Pr very strongly determines soil
moisture globally and hence soil moisture moderately con-
trols land E.
[50] As water supply to E fundamentally comes from Pr

and ENSO controls the interannual variation of global (land
and ocean) Pr by shifting precipitation patterns in the tropics
and subtropics due to changes of sea surface temperature in
Pacific [Trenberth, 2011; Curtis and Adler, 2000], variation
of global land Pr can be largely attributed to ENSO activities
often characterized with ENSO climate index [Gu and Adler,
2011; Dai and Wigley, 2000; Trenberth and Caron, 2000].
Interannual variation of MEI and SOI (Figure 11a) indicates
that �MEI and SOI significantly increased (p< 0.05) from
1982 to 2011; i.e., El Niño impact was weakening while La
Niña impact was intensifying and hence resulting in more
land Pr than normal, which was proved by the increasing
trend of ensemble average Pr and a significant correlation

between MEI and land Pr with R2 = 0.51 (p< 0.01) shown
in Figure 11a. As Pr acts as a controlling factor of the trend
of E, thus it can be concluded that ENSO favored the increas-
ing trend of global land E during the last 30 years, which has
seldom been mentioned in previous studies.
[51] In addition, interannual variation of ensemble average

Pr agreed to common knowledge that the global land annual
Pr decreases significantly in El Niño years but increases evi-
dently when La Niña events occur [Gong and Wang, 1999;
Mason and Goddard, 2001; Gu et al., 2007]. However,
ENSO indices did not agree well with Pr for the strongest
ENSO event during 1997–2001 (Figure 11a), which may
be due to the ENSO event itself undergoing long-period var-
iations [Gu et al., 2007; Vimont et al., 2003]. Besides, volca-
nic eruptions such as the Mount Pinatubo in 1991 also caused
an obvious drop in land precipitation accompanying a wide-
spread drought [Trenberth, 2011; Gu and Adler, 2011].
[52] In addition, previous studies have illustrated the re-

gional precipitation such as the Amazonia in South
America is closely associated with the cycle of El Niño and
La Niña. Long-term historical climate records of Amazonia
in South America shows that the “average El Niño” is drier
and warmer than normal in Amazonia, while the “average
La Niña” is wetter and cooler [Foley et al., 2002].
Similarly, Fu et al. [2007] reported that the average annual
precipitation is 494.8mm in La Niña years and only
408.8mm in El Niño years with a difference of 18.8% over
the long-term average in the Yellow River basin of China.
[53] However, whether ENSO affects global land E is still

not clear. We found that significant correlations existed
between MEI and global land E excluding two outliers
in 1997 and 1998 (Figure 11b) and between SOI and E
(Figure 11c). We can get to a conclusion that ENSO could
be a controlling factor of the interannual variability of E.
[54] We found that global land Ta and Pr all tended to

increase since 1982 (Figures 7c and 8a), which seems to

Table 1. Ensemble Average and STDEV of E and Pr and Associated Annual Mean of Six Ensemble Members for Global Land Excluding

Antarctica and Greenland (Unit: 10
3
km

3
yr

�1
)

Ensemble Average GHCN GPCC GPCP CRU GDMP Delaware

E 64.8 ± 0.8 65.3 ± 0.8 64.2 ± 0.8 68.3 ± 0.8 63.7 ± 0.8 64.6 ± 0.8 63.8 ± 0.8
Pr 102.8 ± 2.1 103.4 ± 2.1 103.7 ± 2.4 112.7 ± 2.2 101.1 ± 2.6 102.5 ± 2.6 99.2 ± 2.1

Figure 9. Spatial distribution of ARTS ensemble average E (1982–2011).
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contradict the general concept of more Pr causing the de-
crease of Ta. In fact, Trenberth and Fasullo [2009] attribute
the global warming to increasing absorbed solar radiation
resulting from increasing greenhouse gases and water vapor
that offsets, to a large degree, the increasing radiative emis-
sions from global warming. Especially, water vapor in the
air as the dominant greenhouse gas roughly doubles the Ta
change due to its positive feedback effect [Randall et al.,
2007]. Thus, global warming does not necessarily corre-
spond with a decline of land Pr. However, Dai et al. [2004]
and Trenberth [2011] point out that higher temperatures have
globally increased potential evapotranspiration and hence
contribute to greater evaporation assuming no water stress.
Similarly, increasing trend of PT Ep was found in this study
mainly arising from higher temperatures (Figure 7).
[55] In addition, we found that there was a big change for

MEI, Pr, E0, and E from the first period of 1982–1997 to the
second period of 1998–2011; Pr, E0, and E all had a higher av-
erage value in the second period than that in the first period,
which coincided with a negative average MEI=�0.05 in the
second period of 1998-2011 featuring La Niña effect and a
positive average MEI= 0.55 in the first period mainly
suffering El Niño impact, respectively (Figure 11a). Similar
studies show that 1997–1999 ENSO cycle was unique because
during the transition from the warm 1997/1998 El Niño phase
into the cold 1998/1999 La Niña phase, corresponding precip-
itation patterns were simultaneously strong and the 1997/1998
El Niño was the strongest event over last 20 years before 1999
[Gong and Wang, 1999; Curtis and Adler, 2000; Curtis et al.,
2001]. We found that in the transition year 1998 occurred
the obvious positive anomaly of land E=12.97mmyr�1.
Recent 2009–2010 ENSO cycle also demonstrated a transition
from the 2009–2010 El Niño phase to the 2010–2011 La Niña
phase that resulted in the highest positive anomaly
E=13.67mmyr�1of 2010 during the last 30 years. It is our
assessment that abnormal higher land E probably occurred
during an obvious transition from El Niño phase to La Niña
phase resulting in higher E0 and Pr.
[56] According to the threshold of SOI = ±0.8 representing

ENSO episode [Nicholls, 1988] and SOI time series over past

30 years (Figure 11a), typical El Niño years (i.e., 1987, 1992,
1994, and 2002) and La Niña years (i.e., 1999, 2000, 2010,
and 2011) were selected. Further calculation of average
anomalies of E, Pr, Ep and E0 indicates a distinctive
spatial pattern in El Niño and La Niña years, respectively.
ENSO-induced land Pr anomaly (Figures 12c and 12d) had
a spatial pattern consistent with previous results [Dai and
Wigley, 2000; Curtis and Adler, 2003]. El Niño years
(Figures 12a, 12c, 12e, and 12g) featured positive anomalies
of E in southern South America, Mexico, and western Asia

Figure 10. Comparison of ARTS ensemble E versus
GSWP-2 E.

Figure 11. (a) Interannual variation of MEI multiplied by
�1, SOI multiplied by 0.1, and global land Pr and scatterplot
of anomalies of ensemble average (b) E versus�MEI and (c)
E versus SOI� 0.1.
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because of more Prwhile negative anomalies of Ewere found
in Australia and southern Africa due to decreased Pr and Ep.
These areas mainly suffered water supply limitation of Pr

(Figure 12c). Although tropical Amazon and Asia islands
experienced a decreased Pr in El Niño years, they still had a
positive anomaly of E because El Niño-induced increase
of Ep and E0 satisfied its needs of heating resource.
Conversely, tropical Africa rainforest had a decreasing E
due to reduced Ep and E0 (Figures 12e and 12g).
[57] However, La Niña years (Figures 12b, 12d, 12f, and

12h) indicate an almost reversed spatial pattern of E, Pr, Ep,
and E0 compared with that in El Niño years. For instance,
Amazon experienced a negative anomaly of E resulting from
a decreased Ep and E0 while tropical Africa rainforest had an
increasing E due to an enhanced Ep and E0 (Figures 12f and

12h). Australia and southern Africa had positive anomalies
of E mainly due to plentiful Pr plus increased Ep and E0. In
all, the response of E to ENSO events was essentially deter-
mined by whether its major limitation factor was Ep demand
or Pr supply (Figures 6e and 6f). Besides, soil moisture mem-
ory affects E in some water-stressed areas as soil moisture
memory can last up to a short period of 90 days [Dirmeyer
et al., 2009].
[58] Jung et al. [2010] initially reported the recent decline in

the global land E trend from 1988 to 2008 due to limited soil
moisture supply. However, as Pr has a strong correlation
(99% significance) with soil moisture globally [Dirmeyer
et al., 2009], we focused on the impact of precipitation on
the decline instead of soil moisture. Our modeled results first
proved the decline in ensemble average E and Pr trend over

Figure 12. Pattern of (a, b) E, (c, d) Pr, (e, f) PT Ep, and (g, h) E0 annual anomalies during El Niño and La
Niña events.
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1988 to 2008, but we found the decline was not only due to
limited water supply of Pr but also due to decreased E0
(Figure 4). In fact, E0 reached its summit in 1998 correspond-
ing with strong El Niño while Pr reached its summit in 1999/
2000 associated with strong La Niña; then both E0 and Pr kept
decreasing until 2009, which jointly produced the decline of E
(Figure 4). Note that E0 represents E assuming no water stress
under current vegetation and atmosphere conditions.
[59] In addition, the decline was fundamentally due to nat-

ural climate variability of ENSO (Figure 11a); The longest
1999–2000 La Niña event since 1982 gave a higher positive
anomaly of Pr= 26.1mmyr�1 and the following La Niña
event that occurred in 2007–2009 brought a lower positive
anomaly of Pr= 10.2mmyr�1. Between these two La Niña
events were several El Niño events featuring weak land pre-
cipitation, i.e., ENSO-induced decreasing of Pr resulted in
the limited water supply and hence the decline of E from
1988 to 2008. Thus, ENSO was the fundamental reason for
the decline of E while Pr and soil moisture featuring limited
water supply were the direct reason, which answers the con-
cern of Jung et al. [2010] whether the decline of E is repre-
sentative of natural climate variability.
[60] Furthermore, Jung et al. [2010] argued whether the

decline of E is permanent indicating reorganization of the
land water cycle. We found that decline of E was temporary
because E continued to increase to another summit in 2010
(Figure 1a) and MEI, Pr, E0, and E all featured an enhanced
land water cycle during the period of 1998–2011 compared
with the first period of 1982–1997. Variation of Pr indicates
wetter climate in 2010 and 2011 (Figure 4) consistent with
climate analysis based on GHCN and GPCC precipitation re-
cord [Blunden and Arndt, 2012].
[61] Fundamentally, ENSO is the largest signal in the

interannual variation of ocean-atmosphere system [Wang
et al., 1999]. It originates from the tropical Pacific but affects
the global climate through teleconnection effect via changes
in the circulation patterns. Numerous studies have identified
ENSO-induced climate variability of precipitation, tempera-
ture, reference evapotranspiration, water balance, and drought
[Yang and DelSole, 2011; Ropelewski and Halpert, 1986;
Meza, 2005; Twine et al., 2005; Coelho and Goddard,
2009]. Besides, we found that ENSO impacted the interannual
variation of global land E through the similar mechanism
of teleconnection.
[62] Currently, large difference still exists among global es-

timations of E given by different studies [Jung et al., 2010;
Trenberth et al., 2007; Vinukollu et al., 2011; Miralles et al.,
2011a] because of uncertain forcing and model mechanism
[Schlosser and Gao, 2010; Yan et al., 2012]. As the model
range of global E estimates is larger than any bias caused by
uncertainties in the model forcings [Vinukollu et al., 2011;
Schlosser and Gao, 2010], model mechanism should be im-
proved with first priority. For example, the E models, due to
using air humidity as a surrogate to soil moisture, may not re-
flect the decline in E in the 2000s due to soil moisture limita-
tion that mainly occurred in the Southern Hemisphere
[Vinukollu et al., 2011]. ARTS E model as a revised
Penman-Monteith model [Monteith, 1965] explicitly con-
siders canopy conductance derived from remote sensing Lai,
energy balance and water balance [Yan et al., 2012].
Although ARTS E model considers the snow melting effect,
snow sublimation effect will be studied in our future work

because snow sublimation, dominating E in high latitudes in
winter and in the mountainous regions of midlatitudes,
occupies 2% of global land E [Miralles et al., 2011b].
[63] However, Jiménez et al. [2011] argued that whether

model forcing adds less uncertainty than E different parame-
terizations depends on what processes are analyzed and over
what regions. Thus, there are currently international efforts
trying to get a better understanding of the whole E estimation,
such as the Global Energy and Water Cycle Experiment
coordinated evaluation of E estimates by the LandFlux-
EVAL initiative [Jiménez et al., 2011; Mueller et al., 2011].
[64] As water balance was actually driven by Pr data in

ARTS E model and different Pr products had some differ-
ences (Figure 8a) and even different spatial pattern of trends
(not shown) due to different numbers of observing stations
[Blunden and Arndt, 2012], different interpolation method
[Willmott and Robeson, 1995], and merging of satellite pre-
cipitation production in GPCP [Huffman et al., 2009], we
adopted the ensemble method to obtain ensemble average
Pr and E to reduce the impact of input error of Pr. The ensem-
ble average Pr had an increasing trend consistent with precip-
itation climate analysis by Blunden and Arndt [2012].
[65] Similarly, large differences found in radiation dada af-

fect global estimation of E [Vinukollu et al., 2011; Yan et al.,
2012]. Two satellite radiation products, i.e., International
Satellite Cloud Climatology Project and Surface Radiation
Budget (SRB) radiation products, show temporal inconsis-
tencies due to changes in satellite sensors and retrieval algo-
rithms [Vinukollu et al., 2011]. In addition, the negative bias
of SRB net radiation partly resulted in a lower globalE estimate
of 58.4� 103 km3 yr�1 [Yan et al., 2012]. However, as
interannual variation of global E was more sensitive to Pr and
Lai than Ep perturbations already reflecting the impact of net ra-
diation, uncertainties in radiation data of MERRA reanalysis
cannot substantially affect the main conclusions of this study.
[66] To reduce uncertainty in E estimates, improving

model and forcing continues to be essential [Mueller et al.,
2011; Vinukollu et al., 2011; Yan et al., 2012]. For example,
GLEAM E model [Miralles et al., 2011b] considers more
processes including the rainfall interception and snow subli-
mation and incorporates Advanced Microwave Scanning
Radiometer–EOS microwave-derived land surface tempera-
ture, vegetation optical depth to capture vegetation phenol-
ogy [Jones et al., 2011], and soil moisture which may
result in a better representation of the water supply process
as well as evaporation stress.
[67] However, it is our assessment that to build ensemble av-

erage E, based on ensemble of forcing data and Emodels, was
an available method to obtain a reasonable estimation of global
land E with deviation statistics. This study preliminarily built
an ensemble of six precipitation data sets and then analyzed
an ensemble of six independent E products estimated from
one single ARTS E model over the period of 1982 to 2011.
Further ensemble analysis of more E models and forcings in-
cluding radiation will be conducted in the next step of work.
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