
BioMed Central

Page 1 of 16

(page number not for citation purposes)

BMC Genomics

Open AccessResearch article

Diagnostic and prognostic gene expression signatures in 177 soft 
tissue sarcomas: hypoxia-induced transcription profile signifies 
metastatic potential
Princy Francis*1, Heidi Maria Namløs2, Christoph Müller2, Patrik Edén3, 
Josefin Fernebro1, Jeanne-Marie Berner4, Bodil Bjerkehagen4, 
Måns Åkerman5, Pär-Ola Bendahl1, Anna Isinger1, Anders Rydholm6, 
Ola Myklebost2,7 and Mef Nilbert1

Address: 1Department of Oncology, Institute of Clinical Sciences, Lund University, Lund, Sweden, 2Department of Tumor Biology, Rikshospitalet 
– Radiumhospitalet Health Centre, Oslo, Norway, 3Department of Theoretical Physics, Lund University, Lund, Sweden, 4Department of Pathology, 
Rikshospitalet – Radiumhospitalet Health Centre, Oslo, Norway, 5Department of Pathology, Institute of Clinical Sciences, Lund University, Lund, 
Sweden, 6Department of Orthopedics, Institute of Clinical Sciences, Lund University, Lund, Sweden and 7Department of Molecular Bioscience, 
University of Oslo, Norway

Email: Princy Francis* - princy.francis@med.lu.se; Heidi Maria Namløs - heidina@ulrik.uio.no; 
Christoph Müller - christoph.muller@medisin.uio.no; Patrik Edén - patrik@thep.lu.se; Josefin Fernebro - josefin.fernebro@onk.lu.se; Jeanne-
Marie Berner - j.m.c.berner@labmed.uio.no; Bodil Bjerkehagen - bodil.bjerkehagen@labmed.uio.no; Måns Åkerman - mans.akerman@skane.se; 
Pär-Ola Bendahl - par-ola.bendahl@med.lu.se; Anna Isinger - anna.isinger@onk.lu.se; Anders Rydholm - anders.rydholm@ort.lu.se; 
Ola Myklebost - ola.myklebost@biokjemi.uio.no; Mef Nilbert - mef.nilbert@onk.lu.se

* Corresponding author    

Abstract

Background: Soft tissue sarcoma (STS) diagnosis is challenging because of a multitude of histopathological subtypes, different

genetic characteristics, and frequent intratumoral pleomorphism. One-third of STS metastasize and current risk-stratification is

suboptimal, therefore, novel diagnostic and prognostic markers would be clinically valuable. We assessed the diagnostic and

prognostic value of array-based gene expression profiles using 27 k cDNA microarrays in 177, mainly high-grade, STS of 13

histopathological subtypes.

Results: Unsupervised analysis resulted in two major clusters – one mainly containing STS characterized by type-specific genetic

alterations and the other with a predominance of genetically complex and pleomorphic STS. Synovial sarcomas, myxoid/round-

cell liposarcomas, and gastrointestinal stromal tumors clustered tightly within the former cluster and discriminatory signatures

for these were characterized by developmental genes from the EGFR, FGFR, Wnt, Notch, Hedgehog, RAR and KIT signaling

pathways. The more pleomorphic STS subtypes, e.g. leiomyosarcoma, malignant fibrous histiocytoma/undifferentiated

pleomorphic sarcoma and dedifferentiated/pleomorphic liposarcoma, were part of the latter cluster and were characterized by

relatively heterogeneous profiles, although subclusters herein were identified. A prognostic signature partly characterized by

hypoxia-related genes was identified among 89 genetically complex pleomorphic primary STS and could, in a multivariate analysis

including established prognostic markers, independently predict the risk of metastasis with a hazard ratio of 2.2 (P = 0.04).

Conclusion: Diagnostic gene expression profiles linking signaling pathways to the different STS subtypes were demonstrated

and a hypoxia-induced metastatic profile was identified in the pleomorphic, high-grade STS. These findings verify diagnostic utility

and application of expression data for improved selection of high-risk STS patients.
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Background
Soft tissue sarcomas (STS) account for ~1% of all malig-
nancies and represent a heterogeneous group of mesen-
chymal tumors, the clinical management of which is
challenging and requires multidisciplinary efforts that
take the combined information from clinical investiga-
tions, imaging, histopathology, and cytogenetic and
molecular genetic analyses into account. STS comprise
more than 30 histological subtypes, although malignant
fibrous histiocytoma (MFH)/undifferentiated pleomor-
phic sarcoma (UPS), liposarcoma, leiomyosarcoma, syn-
ovial sarcoma (SS), and malignant peripheral nerve
sheath tumor (MPNST) account for three-fourth of the
tumors [1]. Some STS subtypes are characterized by spe-
cific chromosomal translocations causing novel gene
fusions e.g. SS18-SSX in SS and TLS-CHOP in myxoid/
round-cell liposarcoma. However, a large group of STS,
e.g. MFH/UPS, leiomyosarcoma, and dedifferentiated/
pleomorphic liposarcoma, lack known specific recurrent
alterations and are characterized by a multitude of rear-
rangements, amplifications, deletions, and somatic alter-
ations, including mutations in TP53, deletions of RB1 and
CDKN2A, and amplifications of MDM2 and CDK4 [2,3].

Gene expression studies have revealed diagnostic profiles
and upregulation of specific pathways in sarcomas with
type-specific genetic defects, e.g. SS, dermatofibrosarcoma
protuberans, clear-cell sarcoma, Ewing sarcoma, rhab-
domyosarcoma and gastrointestinal stromal tumors
(GIST) [4-14] and have provided potential targets for
novel therapies [15-18]. From a diagnostic point of view,
the above mentioned tumor types can be identified from
their underlying gene fusions, but the expression data
reveal novel genes and pathways including multiple
downstream targets of the resultant chimeric transcription
factors, which provide a basis for the understanding of key
biological changes in STS development. In contrast,
molecular classification of the predominant, genetically
complex STS subgroups, e.g. MFH/UPS, leiomyosarcoma,
and dedifferentiated/pleomorphic liposarcoma, has been
difficult with extensive pleomorphism that has precluded
identification of recurrent profiles [9,10,12,14,19,20].
STS are highly malignant and metastases develop unpre-
dictably in one-third of the cases, therefore, new prognos-
tic markers would be of great clinical value. However,
there have been only two reports of expression profiles
associated with poor outcome in STS, both in leiomyosa-
rcomas [21,22]. With the aim to establish diagnostic
expression profiles for STS and to assess whether gene
expression profiling can provide prognostic information,
we used 27 k cDNA microarrays to characterize the expres-
sion patterns in a mixed series of 177 STS, with particular
focus on high-grade pleomorphic tumors.

Results
Diagnostic Signatures

Unsupervised analyses

When the 177 STS were subjected to unsupervised cluster
analysis, based on the 6140 spots that passed the filter cri-
teria, the dendrogram split into two major branches (Fig-
ure 1). One branch (referred to as S for simple/specific)
consisted mainly of STS with simple, type-specific genetic
defects and contained 31/32 SS, all 4 myxoid/round-cell
liposarcomas, all 3 GIST and all 3 fibrosarcomas, in addi-
tion to 5/8 MPNST, 3/40 leiomyosarcomas, 5/60 MFH/
UPS, 2/4 STS not otherwise specified (NOS) and the sin-
gle epithelioid sarcoma. Herein, SS, GIST, myxoid/round-
cell liposarcomas, and MPNST formed tight subclusters.
The other branch (referred to as C for complex) consisted
mainly of genetically complex, often pleomorphic STS
subtypes and contained 55/60 MFH/UPS, 37/40 leiomy-
osarcomas, all dedifferentiated/pleomorphic liposarco-
mas, myofibroblastic sarcomas, and extraskeletal
osteosarcomas along with the remaining 3 MPNST, 2 STS
NOS, 1 SS and the single giant-cell MFH and malignant
mesenchymoma. A subset of 11 leiomyosarcomas formed
a distinct tight subcluster within C. When the 17 xenograft
samples were included, a similar pattern of unsupervised
clustering was observed and all 3 xenografts derived from
tumors included in the study clustered next to their
respective patient samples [see Additional file 1] suggest-
ing that expression patterns of xenografts well reflect those
of patient tumor material. A separate unsupervised cluster
analysis of the 19 liposarcomas (16 tumors and 3
xenografts) separated the 5 myxoid/round-cell liposarco-
mas (characterized by the TLS-CHOP fusion) from the 14
dedifferentiated/pleomorphic liposarcomas (with com-
plex genetic alterations) [see Additional file 2].

Supervised analyses and discriminatory gene lists

Discriminatory gene lists were generated by ranking genes
based on their Golub-scores and performing 1000 ran-
dom permutations to establish false-discovery rates (FDR)
[see Additional files 3 and 4]. As expected, the strongest
expression signals (with gene lists containing between
900 and 4000 genes with FDR of 11%) characterized STS
subtypes with specific genetic defects, e.g. SS, GIST and
myxoid/round-cell liposarcoma. The MFH/UPS, leiomy-
osarcoma, and MPNST were characterized by discrimina-
tory gene expression signals containing 90 – 300 genes
with FDR of 11%. Weak signals with high FDR character-
ized the fibrosarcoma (50% FDR for top 200) and dedif-
ferentiated/pleomorphic liposarcoma (66% FDR for top
150), whereas myofibroblastic sarcoma and extraskeletal
osteosarcoma were small heterogeneous groups without
discriminatory profiles.
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Synovial Sarcoma

The SS were characterized by the strongest expression sig-
nature containing 4000 differentially expressed genes
with a FDR of only 11%. Multiple developmental path-
ways that interact to regulate embryonic development and
organogenesis were upregulated in SS. These genes
included ERBB2, FGFR1, FGFR3, FGF18, and FRAG1 from
the EGF and FGF receptor signaling pathways, members
of the Hedgehog (Hh) signaling pathway like PTCH,
SMO, BMP7, FOXM1 and CSNK1E, retinoic acid receptor
(RAR) pathway genes like RARA, RARG, MDK, MEIS1 and
PRAME, and genes involved in Notch receptor signaling
like NOTCH1, JAG1 and the transducin-like enhancer of
split genes. EASE (Expression Analysis Systematic
Explorer) identified overexpression of the Wnt receptor
signaling pathway including AXIN2, LEF1, TCF7, WISP2
and the frizzled homologs, and the TGF-β signaling path-
way including RUNX3, SMAD6, TGFB1, TGFB2 and the
bone morphogenetic proteins. One of the largest func-
tional groups of upregulated genes was that involved in
chromatin remodeling including several histones and
SWI/SNF related matrix associated actin dependent regu-
lator of chromatin (SMARC) genes. A large number of
neural differentiation genes like EFNA1, NCAM1,
NEDD5, NPDC1 and OLFM1, ribosomal protein genes,
many forkhead box transcription factors and the SS chro-
mosome X breakpoint genes SSX1 and SSX3 were also
highly expressed [see Additional files 5 and 6].

Gastrointestinal stromal tumor

The GIST, with activating mutations in the KIT gene were
characterized by a distinct expression profile of 900 genes
(11% FDR), including top overexpressed genes involved

in the KIT receptor signaling pathway, e.g. KIT, and
PRKCQ (SCF, PIK3CB and PIK3R1 were also overex-
pressed but a bit further down the list beyond the 11%
FDR cut-off), and other developmental pathways, e.g.
BMP4,  FGF2, IGF2, SFRP1 and TLE4, as well as neurogen-
esis and neural differentiation genes like SMPD1, HOXA4,
CIT, HOXA9, SIM2, NPTX1, NEDD5 and DCTN1. Other
groups of highly expressed genes identified in the EASE
analysis were those involved in protein transport, lipid
metabolism and kinase activity [see Additional files 7 and
8].

Myxoid/round-cell liposarcoma

A distinct expression signature of about 1000 differen-
tially expressed genes (11% FDR) characterized the
myxoid/round-cell liposarcomas. Herein, several lipid
metabolism genes, including DGKD, EBPL, FABP5, LPL,
MGLL and PPARG were upregulated, as were many devel-
opmental genes, ribosomal subunit genes and genes
involved in amino acid and carboxylic acid metabolism
[see Additional files 9 and 10].

Malignant peripheral nerve sheath tumor

Golub-score analysis identified a 100-gene signature
(11% FDR) characterized by overexpression of develop-
mental pathway genes like FRAG1, WISP2, RARRES3,
SPRY1 and SMO from, e.g. the Wnt, RAR and Hh signaling
pathways. Moreover, genes related to neural development
such as NEDD4, NPDC1, GSTP1, and DSCR1, and several
ribosomal protein genes were also highly expressed [see
Additional files 11 and 12].

Unsupervised cluster analysis of the 177 STS samples resulted in two major subclustersFigure 1
Unsupervised cluster analysis of the 177 STS samples resulted in two major subclusters: C dominated by pleomorphic STS sub-
types with complex genetic alterations and S mainly containing STS of distinct histopathological subtypes with specific fusion 
genes or mutations.
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Leiomyosarcoma

A 200-gene signature (11% FDR) characterized by overex-
pression of muscle-specific genes like ACTN3, CALD1,
MBNL1, MLC1, MYH11, MYL4, SLMAP, TPM2 and
TAGLN3 was identified in the leiomyosarcomas. EASE
analysis also identified upregulation of carbohydrate
metabolism and energy pathway genes [see Additional
files 13 and 14].

Malignant fibrous histiocytoma/undifferentiated pleomorphic 

sarcoma

A 300-gene signature (11% FDR) was identified for the
MFH/UPS samples and the top upregulated functional
groups included cathepsins and genes related to protein
degradation, inflammatory response, cell motility, prolif-
eration, cell-cycle control, and intracellular signaling [see
Additional files 15 and 16].

Discriminatory gene lists with high FDR

The gene lists for dedifferentiated/pleomorphic liposar-
coma and fibrosarcoma had large numbers of false posi-
tives among the ranked genes. However, the
dedifferentiated/pleomorphic liposarcomas were charac-
terized by a weak discriminatory 150-gene signature,
which when used in a supervised cluster analysis grouped
5/12 dedifferentiated/pleomorphic liposarcomas tightly
with 2 MFH/UPS, 2 leiomyosarcomas and 1 fibrosar-
coma. Despite the high FDR, CDK4, MDM1, MDM2, OS4
and SAS, were among the top overexpressed and are along
with several other highly expressed genes, e.g. NUP107,
SLC26A10, SLC35E3, TMBIM4, TSFM and YEATS4,
located in the 12q14 and 12q15 amplicons. EASE analysis
also identified the above-mentioned gene group on chro-
mosome 12q14-q15. Interestingly, also the MFH/UPS,
the leiomyosarcomas and the fibrosarcoma that clustered
tightly with the dedifferentiated/pleomorphic liposarco-
mas showed amplification of CDK4 and MDM2 when
analyzed by array comparative genomic hybridization
(data not shown) or Southern blot analysis [23]. In addi-
tion, genes involved in receptor activity, signaling and
lipid metabolism (some of which have previously been
reported in liposarcoma) such as ACAA2, ARSA, DHRS3,
PDE3A, and PPARA, were upregulated [see Additional
files 17 and 18].

Golub-score analysis identified a relatively poor discrimi-
natory signal of 200 genes for the fibrosarcomas, which
regardless of high FDR contained several of the upregu-
lated genes previously associated with fibrosarcoma, e.g.
BMI1, H1F0, LEF1, RBM4, ITM2A, IGFBP2 and PTGS2
[10]. Upregulation of developmental genes like BMP7,
SMO, VANGL2, SFRP1, PRRX1, MDK, OLFM, IGFBP3,
IGFBP5 and TGFBR3 in the fibrosarcoma samples suggests
similarity to SS, GIST, myxoid/round-cell liposarcoma
and MPNST explaining its classification within subcluster

S in Figure 1 [see Additional files 19 and 20]. This shows
that FDR, though important, cannot be taken at face value
without the risk of losing biologically relevant informa-
tion, especially in the case of STS where high FDR may
result not only from heterogeneity and errors in diagnosis
but also due to common pathogenic pathways resulting in
similarities or overlap of expression profiles between dif-
ferent STS subtypes.

Myxoid/round-cell liposarcoma vs. Dedifferentiated/pleomorphic 

liposarcoma

In an independent analysis (including 16 tumor and 3
xenograft samples), the 5 myxoid/round-cell liposarco-
mas were compared to the 14 dedifferentiated/pleomor-
phic liposarcomas. A 800-gene signature (11% FDR)
distinguished the two groups [see Additional file 2].
Developmental genes including members of the Wnt
receptor signaling pathway, e.g. DAAM1, FZD8, MYC,
PRICKLE1, SFRP1 and WISP2, and neurogenesis genes,
e.g. CPNE6, EFNA5, FEZ2, LHX2, MDK and NTNG1 were
upregulated in the myxoid/round-cell liposarcomas as
compared to the dedifferentiated/pleomorphic liposarco-
mas, as were several ribosomal protein genes and genes
involved in adhesion and amino acid metabolism. Genes
highly expressed in the dedifferentiated/pleomorphic
liposarcomas included cell-cycle genes like CCNA2,
CCNB2, CDC2, KIFC1, KIF23 and PTTG1, motility genes
like AMFR, ANXA1, CKB, CNN2 and FN1 and homeosta-
sis-related genes. A smaller number of lipid metabolism
genes were overexpressed in the myxoid/round-cell
liposarcomas compared to the dedifferentiated/pleomor-
phic liposarcomas with genes such as DGKD, EBPL,
FABP5, FDFT1, LPL and PPARG upregulated in the former
group, while ADM, ANXA1, ANXA4, CRYL1, GRN,
PLA2G4A, PLA2G12A, PLD1 and PLTP were overexpressed
in the latter [see Additional files 2 and 21]. Similar results
were obtained even with the exclusion of the 3 xenograft
samples further supporting the notion that xenografts
reflect gene expression patterns of patient tumor material
and can with some caution be included in gene expression
studies of STS to increase sample size for rare tumor types.

Prognostic Signature

About 50% of the patients diagnosed with STS succumb
to their disease owing partly to the high metastatic poten-
tial of these tumors but risk-assessment is rather difficult
with very few reliable prognostic factors [24]. The differ-
ent STS subtypes are associated with variable outcome
with a favorable prognosis for patients with myxoid
liposarcomas and a high risk of metastases for patients
with MFH/UPS and SS [25]. Since the majority (76%) of
the tumors in our series were high-grade, pleomorphic
STS, we chose to evaluate the presence of a prognostic sig-
nature within subcluster C among the most heterogene-
ous samples. After excluding local recurrences, metastases,
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samples treated with preoperative chemotherapy, the sin-
gle SS and 3 MPNST (that were outliers from cluster S), the
11 leiomyosarcomas with a distinct profile, and the dedif-
ferentiated/pleomorphic liposarcomas with the MDM2-
CDK4 double amplification, 89 primary STS remained for
the analysis. Exclusion of the leiomyosarcomas and
liposarcomas that formed subclusters within C was done
in order to detect the more subtle prognostic signal
among the most pleomorphic samples (Table 1).

Supervised analysis

Golub-score analysis with 1000 random permutations
identified a 200-gene prognostic signature (35% FDR)
distinguishing tumors that metastasized (n = 39) from
those that remained metastasis-free (n = 50) (Figure 2). In
order to obtain a more robust list of discriminators, a con-
sensus gene list of 244 genes with median rank less than
700 was generated, as described in the methods section,
with the majority of the genes from the Golub-score
ranked list being present in the consensus list. Hierarchi-
cal clustering based on the consensus list split the 89 sam-
ples into two clusters with metastases developing in 6/36
(16%) in the low-risk cluster compared to 33/53 (62%) in
the high-risk cluster (Figure 3). The genes overexpressed in
the metastasizing tumors included HYOU1, HIF1A, HIG2,
DDIT4, TFRC, ERO1L, PLOD2, and ADM suggesting an
expression program triggered by hypoxia. Hypoxia causes
stabilization of the HIF-1 transcription factor that medi-
ates the induction of several genes including those pro-
moting anaerobic glycolysis [26] and the most significant
functional group identified in the EASE analysis included
glycolytic enzymes and glucose transporters like ENO1,
ENO2, PYGL, FUT1, HK2, GLUT1, GYS1, PDK1, CA2,
CA12, PGK1 and LDHB, many of which are known mark-
ers for hypoxia. The overexpression of hypoxia-induced
genes in metastasizing primary tumors provides a basis
for further studies of hypoxia in STS to clarify its role in
metastasis and to verify potential prognostic and thera-
peutic utility. In addition, several genes involved in cell
proliferation, adhesion and motility e.g. SYMPK, ACTN1,
BYSL, VCL, NRCAM, YARS and TLN1 were among the dis-
criminators [see Additional file 22].

Support vector machine (SVM) leave-one-out cross-validation and 

statistical analyses

Development of metastasis correlated with tumor size (P
= 0.006, Mann-Whitney's U and Kruskal-Wallis tests) and
necrosis (P = 0.013, Pearson χ2 test), but not with vascular
invasion (P = 0.166, Pearson χ2 test). The SVM leave-one-
out cross-validation correctly classified 64% of the sam-
ples (area under receiver operating characteristic (ROC)
curve = 0.64, P = 0.007) into two groups with metastasis
developing in 58% (25/43) of the patients in the high-risk
group, compared to 30% (14/46) in the low-risk group (P
= 0.008, Pearson χ2 test) and significantly predicted

metastasis-free survival (P = 0.01, logrank test, Figure 4).
The corresponding hazard ratio (HR) from a univariate
Cox-regression analysis was 2.4 (P = 0.01) and in a multi-
variate analysis including the established prognostic fac-
tors size, necrosis and vascular invasion, the profile
predicted outcome with a HR of 2.2 (P = 0.04) (Table 2).

Discussion
From a clinical diagnostic perspective, most STS with spe-
cific fusion proteins can be correctly classified based on
the combined data from histopathology, immunostain-
ings, and cytogenetic and/or molecular genetic analyses.
This stands in contrast to the genetically complex STS sub-
types, the diagnosis of which is hampered by suboptimal
reproducibility due to extensive histopathological hetero-
geneity, pleomorphism and lack of type-specific genetic
defects. Distinct and homogenous expression profiles
have been reported in SS, dermatofibrosarcoma protuber-
ans, clear-cell sarcoma, myxoid/round-cell liposarcoma
and GIST [4-13]. Furthermore, the discriminatory profiles
that often contain genes located downstream of the type-
specific pathogenic gene fusions or mutations have pro-
vided novel targets for molecular therapy [15-18]. Gene
expression profiles have provided clues to the histogenesis
of some STS subtypes, suggested similarities between oth-
ers and allowed distinction between pathologically insep-
arable lesions, e.g. neural crest origin of SS, close relation
between clear-cell sarcoma and melanoma, and distinct
expression profiles for well-differentiated and dedifferen-
tiated liposarcomas [9,11,27]. Current data from the more
pleomorphic STS, however, indicate that their expression
profiles are indeed heterogeneous and in these tumor
types the primary goal may rather be to identify novel, yet
unidentified subgroups, and to clarify deregulated genes
and pathways.

Unsupervised cluster analysis of the 177 STS identified
two major subclusters; S containing STS with specific
fusion genes or mutations, e.g. SS, myxoid/round-cell
liposarcoma and GIST, and subcluster C with genetically
complex, often pleomorphic STS subtypes, e.g. MFH/UPS,
leiomyosarcoma and dedifferentiated/pleomorphic
liposarcoma (Figure 1). This is in line with results from
previous gene expression and proteomic profiling studies
[10,19,28].

Discrimination scoring identified genes and pathways dif-
ferentially regulated in the STS subtypes, with considera-
ble amount of overlap with previously published gene
lists despite the differences in tumor material and array
platforms [4,5,7,9,10,12,19,20]. Expression profiles in
the distinct subtypes were strong with low FDR whereas
the pleomorphic ones had relatively heterogeneous pro-
files with higher FDR. Identification of diagnostic markers
that clearly distinguish different subtypes requires gene
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Table 1: Summary of the clinicopathological data of the 177 and 89 STS samples

Factor Diagnostic signature n = 177 Prognostic signature n = 89

Sex (male/female) 88/89 50/39

Age, median (range) years 66 (11 – 94) 69 (33 – 93)

Histological subtypes

Malignant fibrous histiocytoma (MFH) 61¤ 54

Leiomyosarcoma 40 27

Synovial sarcoma 32 0

Liposarcoma 16* 0

Malignant peripheral nerve sheath tumor 8 0

Myofibroblastic sarcoma 5 5

STS not otherwise specified 4 2

Extraskeletal osteosarcoma 3 1

Fibrosarcoma 3 0

Gastrointestinal stromal tumors 3 0

Epithelioid sarcoma 1 0

Malignant mesenchymoma 1 0

Grade

II 6 1

III 32 12

IV 139 76

Tumor size

Median (range) cm 8 (1–40) 9 (2–30)

< 5 cm 41 19

5 – 10 cm 74 38

>10 cm 62 32

Tumor location

Extremity 144 78

Trunk wall 19 7

Retroperitoneum 7 3

Other 7# 1

Tumor depth

Superficial 37 22

Deep 118 63

Unclassified 22 4

Necrosis

Absent 48 23

Present 106 66

Unclassified 23 0

Vascular invasion

Absent 121 72

Present 31 17

Unclassified 25 0

Treatment

Surgery alone 107 58

Postoperative radiotherapy 51 22

Postoperative chemotherapy 3 2

Postoperative radio- and chemotherapy 10 7

Preoperative radio- or chemotherapy 6 0

Surgery

Wide 90 57

Marginal 66 28

Intralesional 15 4

Unclassified 6 0

¤Includes 47 storiform, 13 myxoid, and 1 giant-cell MFH
* Includes 4 myxoid/round cell liposarcomas, 6 dedifferentiated liposarcomas, and 6 pleomorphic liposarcomas
# Includes localizations in the abdomen, the mediastinum, and the head and neck
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lists with very low FDR, but inherent heterogeneity, lack
of clear-cut boundaries between subtypes, misdiagnoses
and common pathogenic genes and pathways make it
rather difficult to generate such strong diagnosis-specific
expression profiles in the pleomorphic STS. Some studies
chose to exclude samples that did not cluster according to
histopathological diagnosis thereby reducing FDR by
increasing homogeneity within the subgroups [7,10]. In
the current study, outliers were included but lenient cut-
offs were employed allowing some amount of false posi-
tives in the gene lists, which were then analyzed using
EASE to identify functionally correlated genes. The risk of
signifying false positives was reduced by focusing on
upregulated pathways and functional groups rather than
on individual genes. This approach helped identify bio-
logically relevant genes in dedifferentiated/pleomorphic
liposarcoma and fibrosarcoma despite high FDR and
upregulation of similar functional groups in SS, GIST,

myxoid/round-cell liposarcoma, MPNST and fibrosar-
coma.

Although alternative SSX fusions and various lines of dif-
ferentiation can be demonstrated in SS [29,30], they dis-
play homogenous and distinct expression profiles that
enable clear distinction from other STS subtypes
[4,9,10,12,19,20] and our finding of 4000 differentially
expressed genes is in line with these results. In the unsu-
pervised clustering, all but one SS were part of subcluster
S, within which 5 formed a tight subcluster, together with
3 MPNST samples on a separate branch, away from the
main SS subcluster (Figure 1). Supervised clustering based
on the 4000 genes also showed close clustering of SS to
MPNST [see Additional file 5]. Previous studies have
shown that SS and MPNST share similar patterns of gene
expression with upregulation of neuroectodermal differ-
entiation genes thereby suggesting a neural crest origin
[4,7,9] and several neural differentiation genes were also

Plot showing FDR within the Golub-score ranked prognostic genes distinguishing the primary tumors that developed metasta-sis from those that remained metastasis-freeFigure 2
Plot showing FDR within the Golub-score ranked prognostic genes distinguishing the primary tumors that developed metasta-
sis from those that remained metastasis-free. The number of ranked genes is plotted along the x-axis and FDR along the y-axis.
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upregulated in the present study. The SS18-SSX fusion
product controls gene expression by association with
chromatin remodeling complexes through interactions
with SWI/SNF complexes and histones [31-33]. Interest-
ingly, chromatin-remodeling genes including several his-

tones and SMARC genes constituted one of the largest
functional groups upregulated in the SS. Moreover, the
genes identified herein verified the significance of devel-
opmental pathways including the FGF, EGF, TGF-β, Wnt,
Notch, retinoic acid and Hh receptor signaling pathways,

Table 2: Univariate and multivariate analysis in the prognostic subset of 89 primary tumors

Metastasis-free survival

Factors Total Number Metastasis-free/Metastasis developed Univariate analysis Multivariate analysis

HR (95% CI) P -value HR (95% CI) P -value

Number of samples 89 50/39

Tumor size

Median (range) cm 9 (2 – 30) 7.5 (2 – 28)/10 (3 – 30) 1.1 (1.02 – 1.12) 0.012 1.2 (1.01–1.14) 0.021

Necrosis

Absent 23 18/5 1.0

Present 66 32/34 2.9 (1.12 – 7.50) 0.028 1.6 (0.55–4.52) 0.402

Vascular invasiona

Absent 72 43/29 1.0

Present 17 7/10 2.4 (1.11 – 5.17) 0.026 2.2 (0.98–5.00) 0.055

Cross-validated classifiera

low-risk group 46 32/14 1.0

high-risk group 43 18/25 2.4 (1.20 – 4.73) 0.013 2.2 (1.04–4.62) 0.04

aProportional hazards assumptions assume constant mortailty ratios and are therefore not met. Thus, the estimated HRs should be interpreted as 
averages over time. The effects are considerably larger initially and level off with time.

Supervised clustering of the 89 primary pleomorphic STS samples based on the 244-gene prognostic signatureFigure 3
Supervised clustering of the 89 primary pleomorphic STS samples based on the 244-gene prognostic signature.
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the targeted inhibition of which may provide novel thera-
peutic options.

MPNST may morphologically mimic SS [34] and in the
unsupervised analysis, 5/8 MPNST clustered within sub-
cluster S, and 3 with a subset of SS. Several developmen-
tal, neural differentiation and ribosomal protein genes
were found to be overexpressed in both MPNST and SS.
Fibrosarcomas, like the MPNST, have been shown to clus-
ter with the SS [7,10]. The fibrosarcomas in this study
were part of subcluster S and a weak expression signature
including many developmental genes distinguished these
tumors from the remaining STS.

GIST constitute a distinct STS subtype, ~80% of which
carry KIT gene activating mutations [35]. These tumors
demonstrate distinct expression profiles [5], with upregu-
lation of genes within the KIT signaling pathway. In addi-
tion, several genes involved in neurogenesis and neural
differentiation were overexpressed, as were muscle-spe-
cific genes like smoothelin and myosin, which may reflect

the suggested origin of GIST from the interstitial pace-
maker cells of Cajal [36].

Liposarcomas account for about 20% of STS and within
this subtype, the myxoid/round-cell liposarcomas charac-
terized by the TLS-CHOP or EWS-CHOP fusions [37]
formed a distinct cluster closely related to a subset of SS
and MPNST within subcluster S with upregulation of sev-
eral developmental and ribosomal protein genes (Figure
1). One of the top most upregulated genes was the lipid
metabolism gene PPARG that regulates adipocyte differ-
entiation and constitutes a potential therapeutic target
[38,39]. The dedifferentiated/pleomorphic liposarcomas
contain complex genetic alterations and were scattered
among the pleomorphic samples in the unsupervised
clustering. Most dedifferentiated liposarcomas are charac-
terized by amplifications of MDM2 and CDK4 as part of
the 12q amplicons involved in the formation of ring-chro-
mosomes [40,41]. A relatively weak discriminatory signa-
ture mainly characterized by overexpression of the 12q
amplicon genes distinguished a small subset of the dedif-

Kaplan-Meier estimates of metastasis-free-survival for patients included in the prognostic subset (5 cases with metastasis at diagnosis were excluded) classified as high-risk or low-risk by the SVM cross-validated classifierFigure 4
Kaplan-Meier estimates of metastasis-free-survival for patients included in the prognostic subset (5 cases with metastasis at 
diagnosis were excluded) classified as high-risk or low-risk by the SVM cross-validated classifier.
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ferentiated/pleomorphic liposarcomas [see Additional
file 17]. PPARA and other lipid metabolism genes were
also overexpressed. Comparison between myxoid/round-
cell and pleomorphic/dedifferentiated liposarcomas
revealed overexpression of ribosomal proteins and devel-
opmental genes related to Wnt signaling and neurogene-
sis in the former group, whereas genes related to cell-cycle,
homeostasis, and a greater number of lipid metabolism
genes were upregulated in the latter. Skubitz et al. demon-
strated separation of myxoid liposarcoma from non-
myxoid liposarcoma using a set of ribosomal genes [42].

Our series included a large proportion of pleomorphic,
undifferentiated STS with the hope of gaining novel
insights into the origin of these genetically complex
tumors and establishing a more refined classification.
About one-third of the leiomyosarcomas clustered tightly
within subcluster C and a 200-gene signature with overex-
pression of genes related to muscle structure and function
was identified in these tumors (Figure 1). This is in line
with previous results from gene expression and proteomic
profiling demonstrating that while the more pleomorphic
leiomyosarcomas cluster with the MFH, another more dis-
tinct subset cluster separately [19,28]. MFH was intro-
duced as a separate diagnostic entity in the 1960s, but
constitutes a heterogeneous group of poorly differentiated
tumors with poor diagnostic reproducibility [1]. In our
series, one-third of the tumors represented MFH/UPS, all
but 5 of which fell within subcluster C (Figure 1). A 500-
gene signature grouped together about half of the MFH/
UPS [see Additional file 15] including several genes from
the extracellular matrix and inflammatory response,
reflecting the fibrous and histiocytic features of these
tumors, as well as others involved in the regulation of cell-
cycle, proliferation, adhesion, motility and protein degra-
dation.

Novel prognostic and therapeutic markers would be of
great clinical value in STS since risk stratification is cur-
rently difficult and adjuvant treatments are toxic and
hampered by low efficacy. We identified a 244-gene prog-
nostic signature in 89 primary, high-grade STS mainly rep-
resenting MFH/UPS and leiomyosarcoma. This signature
was characterized by upregulation of several hypoxia-
related genes (e.g. HIF1A and its targets) and genes
involved in cell proliferation, adhesion and motility in
metastasizing STS. Our data are the first to suggest a prog-
nostic profile modulated at least in part by hypoxia in a
large series of highly malignant STS of mixed types. The
cross-validated classifier predicted metastasis with an
accuracy of 64% and provided prognostic information
independent of currently used prognostic factors from the
SIN-system, namely tumor size, vascular invasion, and
necrosis [43]. Gene expression profiles that correlate with
poor outcome have previously been recognized in Ewing

sarcoma and leiomyosarcoma [21,22,44], Ren et al. iden-
tified a 92-gene signature in 11 leiomyosarcomas that sep-
arated high-grade metastatic tumors from low-grade well-
differentiated ones, whereas Lee et al. took a different
approach and predicted metastasis in a set of 30 primary
leiomyosarcomas and local recurrences using the expres-
sion profile of 335 genes that initially distinguished pri-
mary leiomyosarcomas from metastases [21,22].
However, none of the reported genes were among our 244
discriminators, which may not only be because they were
established in a set of leiomyosarcomas using different
approaches whereas our signature was established in a
larger mixed series of pleomorphic primary STS, but also
due to the difficulties in identifying prognostic signals
which are considerably weaker than the diagnostic ones.

An adverse prognostic impact of hypoxia has been dem-
onstrated in several malignancies and tumor oxygenation
studies in STS have suggested an association of hypoxia
with tumor grade, presence of mitoses and metastatic
development [45-48]. A recent study demonstrated that
HIF1A expression was an independent prognostic factor
in STS [49]. Hypoxic tumors display high rates of glucose
uptake and glycolysis regulated by HIF1 that induces
expression of glucose transporters like GLUT1 and glyco-
lytic enzymes like ENO1, HK2, LDHB and PGK1[50],
which were overexpressed in the metastasizing tumors.
CA9 expression, an intrinsic cellular marker for hypoxia,
has been suggested to correlate with poor survival in high-
grade STS [51], and GLUT1 expression and enhanced glu-
cose metabolism in STS have been linked to proliferative
activity and tumor grade [52-55]. Detwiller et al. demon-
strated that the expression pattern of a selection of 107
hypoxia-related genes allowed distinction of mixed STS
samples from normal tissue, and several of the overex-
pressed genes therein were among our discriminators
[56].

Conclusion
In summary, diagnostic gene expression profiles were
identified for different subtypes with distinct profiles in
STS with specific fusion genes or mutations, whereas the
diagnostically difficult pleomorphic STS were challenging
also with regards to expression profiling. The SS, GIST,
myxoid/round-cell liposarcomas, MPNST and fibrosarco-
mas shared similarities in expression profiles with over-
representation of developmental genes involved in
differentiation and morphogenesis. On the other hand,
genes involved in cell-cycle, proliferation, adhesion,
motility, protein degradation, homeostasis and immune-
response seemed to play an important role in the pleo-
morphic subtypes. The novel genes and pathways identi-
fied provide important information about tumor origin
and constitute potential therapeutic targets. Our identifi-
cation of a prognostic profile in the latter group is highly
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promising, and provides information independent of the
currently used prognosticators. Moreover, it is intriguing
that upregulation of hypoxia-related genes predicts meta-
static potential in high-grade, pleomorphic and geneti-
cally complex STS and calls for further evaluation of
HIF1A and its target genes in STS.

Methods
Patients and tumor material

Tumor samples were obtained from 177 patients operated
between 1972 and 2003 at the Lund University Hospital,
Lund (n = 122), the Norwegian Radium Hospital, Oslo (n
= 47) and the Karolinska Hospital, Stockholm (n = 8).
Ethical permission for the study was obtained from the
Lund University research ethics committee and the
Regional Ethics Committee of Southern Norway. The
tumor samples consisted of 154 primary tumors, 16 local
recurrences and 7 metastases, and the latter samples were
included after assuring that neither local recurrences nor
metastases formed separate clusters (data not shown). The
177 samples represented 13 subtypes, among which
MFH/UPS, leiomyosarcoma and SS together constituted
75% (Table 1). All tumors were reviewed by the Scandina-
vian Sarcoma Group (SSG) review board of pathologists
and many tumors had in addition been reviewed by one
of two reference pathologists (BB & MÅ), who also
belonged to the SSG board of pathologists. The diagnoses
were based on the combined information from histopa-
thology, immunohistochemical staining, and cytogenetic
and/or molecular genetic analyses. The SS18-SSX gene
fusion was confirmed in 24/32 synovial sarcomas (13
with SS18-SSX1, 10 with SS18-SSX2 and 1 with SS18-
SSX4), and the TLS-CHOP fusion in 2/4 myxoid/round-
cell liposarcomas. The 8 MPNST were all derived from
patients free of neurofibromatosis. Malignancy grading
was based on a IV-tiered scale, and in line with our aim to
improve diagnosis of high-grade tumors, 97% of the
tumors were classified as high-grade (grades III and IV).
Only a small minority of the patients received preopera-
tive treatment with radiotherapy (n = 1) or chemotherapy
(n = 5). The study is aimed at tumors located in the
extremities and the trunk wall, but 14/177 (8%) abdomi-
nal/retroperitoneal tumors were included since they con-
tributed with data on rare tumor types and did not cluster
separately (data not shown). Besides the 177 patient sam-
ples, 17 xenografts (including 6 MFH/UPS, 4 MPNST, 3
SS, 2 pleomorphic liposarcomas, 1 myxoid/round-cell
liposarcoma and 1 GIST) were included, but were not
used for the generation of discriminatory gene lists. Anal-
ysis of a prognostic expression profile was performed in
89 primary pleomorphic tumors, mostly including MFH/
UPS and leiomyosarcomas. The prognostic system used
for clinical decisions included evaluation of necrosis and
vascular invasion. Necrosis was classified at histopatho-
logical examination either if identified macroscopically or

when identified microscopically at careful examination.
Necrosis was identified in 66/89 (74%) tumors in the
prognostic subset, thus at a high rate. Vascular invasion
also carefully examined for prognostic purposes was iden-
tified in 17/89 (19%) of the tumors (Table 1). All 89
patients had undergone primary surgery without preoper-
ative radio- or chemotherapy and only 9 patients were
treated with postoperative chemotherapy. Metastasis
developed in 39 (44%) patients after median 9 (range 0–
65) months and the mean follow-up for the survivors was
7 (range 1–16) years.

RNA extraction and cDNA microarray analysis

RNA extractions from 47 tumors and the 17 xenografts
were carried out at the Norwegian Radium Hospital,
whereas the remaining 130 samples were extracted at the
Lund University Hospital, and all 194 samples were
labeled and hybridized in Lund. The cDNA microarray
slides used were produced at the Swegene DNA Microar-
ray Resource Center, Department of Oncology, Lund Uni-
versity and contained 27649 spots with sequence-verified
IMAGE clones from the Research Genetics IMAGE clone
library. The clone information was linked to gene names
using build 180 of the Unigene database [57] and ~16000
unique Unigene clusters were represented on the array.
The RNA extraction, cDNA synthesis, labeling, hybridiza-
tion and subsequent image and data processing were car-
ried out as previously described [58]. Background
correction, filtering, transformations and analyses were
performed using a local installation of the web-based Bio-
Array Software Environment (BASE) [59,60]. A prelimi-
nary filtering step eliminated all spots of poor quality like
those flagged 'not found' or 'bad' in GenePix™ Pro 4.1.1.4
version (Axon instruments Inc., Foster City, CA), spots
with diameter lesser than or equal to 60 µm, spots with
more than 10% pixel saturation and signal-to-noise ratio
less than 1.5 in either channel. The background corrected
intensity values were then normalized using the pin-based
LOWESS method to compensate for dye bias and local
background effects [61]. Here, intensity dependent adjust-
ments (LOWESS fits) were performed within groups of 16
blocks to correct for spatial bias. Multiple print batches of
slides were used, with 41 samples hybridized in replicates
on different batches. All repeats clustered next to the first
sample run irrespective of the differences in print batch
(data not shown), hence replicate assays were merged in a
weighted fashion, as previously described [58]. Within
each slide, expression values for spots associated to the
same gene symbol were merged in a similar weighted
fashion. A student's t-test identified ~2500 genes (P =
0.05) that differed in expression between samples
extracted in Norway and Sweden and ~1800 genes (P =
0.05) that differed between tumors and xenografts sug-
gesting the presence of technical and biological bias
within the data set. In order to eliminate the technical bias
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introduced by the RNA extractions carried out at different
laboratories, centering was applied independently to the
64 (tumors and xenografts) Norwegian and 130 Swedish
samples. The xenograft samples, wherever used in the
analysis, were centered separately a second time to com-
pensate for the inherent biological differences that exist
between tumors and xenografts. Following independent
centering of the mentioned sample groups, the student's
t-test failed to identify significant genes that distinguished
the groups confirming that very little, if any, of the bias
remained. Moreover, in later steps no apparent clustering
was observed based on RNA extraction or depending on
whether the sample was from a tumor or xenograft. The
data were then transformed using an error model, as pre-
viously described, to reduce the importance of poor-qual-
ity spots in later analysis steps [58]. Filters for variation
and presence of expression across hybridizations were set
to reject all spots with a standard deviation of modified
expression value smaller than 0.2 and a presence in less
than 70% of the samples. Unsupervised agglomerative
hierarchical clustering was performed with the help of the
TMeV application from the TM4 microarray software suite
[62], using the average-linkage method and the Pearson
correlation distance metric [63].

Golub-score analyses, named after the widely referenced
paper by Golub et al. [64], and random permutations were
performed as previously described [58] on 177 and 142
(excluding SS and GIST) tumor samples in order to gener-
ate discriminatory gene lists for the different subtypes. The
SS and GIST, which revealed distinct expression patterns,
were excluded in order to identify the more subtle differ-
ences in genetic profiles of the remaining STS subtypes.
Approximately 6000 genes were ranked on their Golub-
scores – a high score for a gene implicating minor varia-
tion in expression within the subtype but large variation
between the subtypes, in turn implicating high discrimi-
nating power. 1000 random permutations were per-
formed to assess the discriminating power of the scores
and to establish FDR. Furthermore, the 19 liposarcoma
samples (16 tumors and 3 xenografts) were analyzed
independently to identify a genetic signature distinguish-
ing the myxoid/round-cell liposarcomas from the dedif-
ferentiated/pleomorphic liposarcomas.

Golub-score analysis was also used to identify a metastatic
signature within a subset of 89 primary, mainly high-
grade, pleomorphic tumors. To obtain a more robust list
of prognostic discriminators, a consensus gene list was
created. The 89 samples, 39 of which metastasized, were
randomly split into two halves preserving the ratio of
metastasizing samples and each half was used to create
two Golub-score ranked gene lists. The above step was
iterated 100 times to obtain 200 gene lists in total, from
which a consensus gene list was established by ordering

genes according to median rank. The top 244 genes
(median rank < 700) were used to cluster the samples in
TMeV. Thereafter, leave-one-out cross-validation using
the SVM option in TMeV was performed on the 89 sam-
ples based on all ~5500 genes that passed the above-men-
tioned filter criteria in order to obtain an unbiased
classification that was later used in the univariate and
multivariate analyses.

The discriminatory gene lists were further analyzed using
the EASE software [65] to functionally classify the genes
and facilitate biological interpretations [66]. The top
ranked genes were classified into groups within the cate-
gorical systems of the Gene Ontology (GO) Consortium
(GO Biological Process and GO Molecular Function), the
KEGG pathway, biochemical process, cellular role and
chromosomal regions. The EASE analyses in SS and
myxoid/round-cell liposarcomas employed the top 4000
and 1000 genes (with 11% FDR) respectively. Gene lists
with less stringent cut-offs were used for the GIST (top
1500 with 25% FDR), MFH/UPS (top 500 with 16%
FDR), leiomyosarcomas (top 500 with 26% FDR) and
MPNST (top 500 with 27% FDR), which allowed more
genes into the gene lists making it possible to identify
functional correlations between the discriminatory genes
and similarities in expression profiles between the differ-
ent subtypes. Focusing on upregulated pathways and
functional groups rather than on individual genes reduces
the risk of signifying biologically irrelevant genes, espe-
cially in gene lists with high FDR. All functional groups
mentioned had an EASE score < 0.05.

Statistical analyses

The χ2 test for association, the Mann-Whitney's U test, and
the Kruskal-Wallis test were used to assess associations of
tumor size (as a continuous variable), necrosis (present vs.
absent), vascular invasion (present vs. absent), and the
SVM cross-validated classification with the development
of metastasis. Metastasis-free survival curves were con-
structed by the Kaplan-Meier method and compared by
the log-rank test. Univariate and multivariate Cox-regres-
sion analyses were performed to estimate HRs and to
assess the independence of the cross-validated classifica-
tion from the above-mentioned prognostic factors. Pro-
portional hazards assumptions were checked using
Schoenfeld's test [67]. Areas under ROC curves were com-
pared using an algorithm suggested by DeLong et al. [68].
A two-tailed P-value of less than 0.05 was considered sig-
nificant for all tests. Stata 9.2 was used for the statistical
analyses (Stata Corporation, 2003, College Station, TX).
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Unsupervised cluster analysis of the 194 STS samples including 17 

xenografts. Figure A shows the unsupervised cluster analysis of the 194 

STS samples where 2/3 synovial sarcoma xenografts and the single GIST 

and myxoid/round-cell liposarcoma xenografts clustered with their respec-

tive tumor histotypes, whereas all 6 MFH xenografts were part of the ple-

omorphic STS subcluster (the xenografts are indicated by red arrows). 
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the 3 xenografts derived from tumors included in the study (red arrows) 

that clustered next to their respective patient samples (blue arrows).
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Independent analysis of the 19 liposarcoma samples including 16 patient 

samples and 3 xenografts. Figure A shows unsupervised cluster analysis of 

the 19 liposarcoma samples. The plot in figure B shows FDR within the 

Golub-score ranked genes distinguishing the myxoid/round-cell liposarco-

mas from the dedifferentiated/pleomorphic liposarcomas. The number of 

ranked genes is plotted along the x-axis and FDR along the y-axis. Figure 

C shows supervised clustering of the 19 liposarcoma samples based on the 

top 1000 genes discriminating the myxoid/round-cell liposarcomas from 

the dedifferentiated/pleomorphic liposarcomas.
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FDR plots for the diagnostic signatures. FDR plots for the diagnostic sig-

natures with the number of ranked genes plotted along the x-axis and FDR 

along the y-axis. Random permutation tests with 1000 permutations were 

performed to assess the discriminating power or robustness of the Golub-

score ranked genes. For each rank, the average number of genes in a per-

mutation list above that rank was divided by the number of genes in the 

true list to get the FDR.
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Numbers and percentages of false positives among the top ranked genes. 

A table showing the numbers and percentages of false positives among the 

Golub-score ranked genes for the different discriminatory gene lists.
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Supervised clustering based on the SS signature. Supervised clustering of 

177 STS samples based on the top 4000 synovial sarcoma discriminating 

genes.
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Top 4000 genes discriminating the synovial sarcomas from the remaining 

STS subtypes. The SS discriminators.
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Supervised clustering based on the GIST signature. Supervised clustering 

of 177 STS samples based on the top 1500 GIST discriminating genes.
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Top 1500 genes discriminating the GIST from the remaining STS sub-

types. The GIST discriminators.
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Supervised clustering based on the myxoid/round-cell liposarcoma signa-

ture. Supervised clustering of 142 STS samples based on the top 1000 

myxoid/round-cell liposarcoma discriminating genes.
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Supervised clustering based on the dedifferentiated/pleomorphic liposar-

coma signature. Supervised clustering of 142 STS samples based on the 

top 150 dedifferentiated/pleomorphic liposarcoma discriminating genes 
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