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IMPORTANCE Application of deep learning algorithms to whole-slide pathology images can

potentially improve diagnostic accuracy and efficiency.

OBJECTIVE Assess the performance of automated deep learning algorithms at detecting

metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of womenwith

breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting.

DESIGN, SETTING, AND PARTICIPANTS Researcher challenge competition (CAMELYON16) to

develop automated solutions for detecting lymph nodemetastases (November

2015-November 2016). A training data set of whole-slide images from 2 centers in the

Netherlands with (n = 110) and without (n = 160) nodal metastases verified by

immunohistochemical staining were provided to challenge participants to build algorithms.

Algorithm performance was evaluated in an independent test set of 129 whole-slide images

(49 with and 80without metastases). The same test set of corresponding glass slides was

also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands

to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session,

simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).

EXPOSURES Deep learning algorithms submitted as part of a challenge competition or

pathologist interpretation.

MAINOUTCOMESANDMEASURES Thepresenceof specificmetastatic foci and the absencevs

presenceof lymphnodemetastasis in a slideor imageusing receiver operating characteristic

curve analysis. The 11 pathologists participating in the simulationexercise rated their diagnostic

confidence asdefinitely normal, probably normal, equivocal, probably tumor, or definitely tumor.

RESULTS The area under the receiver operating characteristic curve (AUC) for the algorithms

ranged from0.556 to 0.994. The top-performing algorithm achieved a lesion-level,

true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI,

64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the

whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999])

performed significantly better than the pathologists WTC in a diagnostic simulation (mean

AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had amean AUC that was

comparable with the pathologist interpreting the slides in the absence of time constraints

(mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI,

0.927-0.998] for the pathologist WOTC).

CONCLUSIONS AND RELEVANCE In the setting of a challenge competition, some deep learning

algorithms achieved better diagnostic performance than a panel of 11 pathologists

participating in a simulation exercise designed tomimic routine pathology workflow;

algorithm performance was comparable with an expert pathologist interpreting whole-slide

images without time constraints. Whether this approach has clinical utility will require

evaluation in a clinical setting.
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F
ulldigitalizationof themicroscopicevaluationof stained

tissue sections inhistopathologyhasbecome feasible in

recentyearsbecauseof advances in slide scanning tech-

nologyandcost reduction indigital storage.Advantagesofdigi-

tal pathology include remote diagnostics, immediate avail-

ability of archival cases, and easier consultations with expert

pathologists.1 Also, the possibility for computer-aided diag-

nostics may be advantageous.2

Computerized analysis based on deep learning (a ma-

chine learning method; eAppendix in the Supplement) has

shown potential benefits as a diagnostic strategy. Gulshan

et al3 and Esteva et al4 demonstrated the potential of deep

learning fordiabetic retinopathyscreeningandskin lesionclas-

sification, respectively. Analysis of pathology slides is also an

important application of deep learning, but requires evalua-

tion for diagnostic performance.

Accurate breast cancer staging is an essential task per-

formedbypathologistsworldwide to informclinicalmanage-

ment. Assessing the extent of cancer spread by histopatho-

logical analysis of sentinel axillary lymph nodes (SLNs) is an

important part of breast cancer staging. The sensitivity of SLN

assessment by pathologists, however, is not optimal. A retro-

spective study showed that pathology review by experts

changedthenodal status in24%ofpatients.5Furthermore,SLN

assessment is tedious and time-consuming. It hasbeen shown

thatdeep learningalgorithmscould identifymetastases inSLN

slides with 100% sensitivity, whereas 40%of the slides with-

outmetastases could be identified as such.6 This could result

in a significant reduction in the workload of pathologists.

The aim of this study was to investigate the potential of

machine learningalgorithmsfordetectionofmetastases inSLN

slides and compare these with the diagnoses of pathologists.

To this end, the Cancer Metastases in Lymph Nodes Chal-

lenge 2016 (CAMELYON16) competition was organized.

Research groups around theworldwere invited toproduce an

automated solution for breast cancermetastases detection in

SLNs.Oncedeveloped, theperformanceof eachalgorithmwas

compared with the performance of a panel of 11 pathologists

participating in a simulation exercise intended to mimic pa-

thology workflow.

Methods

Image Data Sets

Toenable thedevelopment of diagnosticmachine learning al-

gorithms, we collected 399 whole-slide images and corre-

spondingglass slidesof SLNsduring the firsthalf of 2015. SLNs

were retrospectively sampled from 399 patients that under-

went surgery for breast cancer at 2 hospitals in the Nether-

lands: Radboud University Medical Center (RUMC) and Uni-

versityMedicalCenterUtrecht (UMCU).Theneed for informed

consentwaswaivedby the institutional reviewboardofRUMC.

Whole-slide images were deidentified before making them

available. To enable the assessment of algorithm perfor-

mance for slideswith andwithoutmicrometastases andmac-

rometastases, stratified random sampling was performed on

the basis of the original pathology reports.

The whole-slide images were acquired at 2 different cen-

ters using 2 different scanners. RUMC images were produced

with a digital slide scanner (Pannoramic 250 Flash II;

3DHISTECH) with a 20x objective lens (specimen-level pixel

size, 0.243 μm × 0.243 μm). UMCU images were produced

using a digital slide scanner (NanoZoomer-XR Digital slide

scanner C12000-01; Hamamatsu Photonics) with a 40x ob-

jective lens (specimen-level pixel size, 0.226μm × 0.226μm).

Reference Standard

Allmetastases present in the slideswere annotatedunder the

supervisionof expert pathologists. The annotationswere first

manually drawnby2 students (1 fromeachhospital) and then

every slide was checked in detail by 1 of the 2 pathologists

(PB fromRUMCandPvD fromUMCU; eFigure 1 in the Supple-

ment). In clinical practice, pathologistsmayopt to use immu-

nohistochemistry (IHC) to resolve diagnostic uncertainty.

In this study, obvious metastases were annotated without

the use of IHC, whereas for all difficult cases and all cases ap-

pearing negative on hematoxylin and eosin–stained slides,

IHC (anti-cytokeratin [CAM 5.2], BD Biosciences) was used

(eFigure 2 in the Supplement). Thisminimizes false-negative

interpretations. IHC is the most accurate method for metas-

tasis evaluation and has little interpretation variability.7-9

Inclinicalpractice,pathologistsdifferentiatebetweenmac-

rometastases (tumor cell cluster diameter ≥2mm),microme-

tastases (tumor cell cluster diameter from>0.2mmto<2mm)

and isolated tumorcells (solitary tumorcellsor tumorcell clus-

ters with diameter ≤0.2 mm or less than 200 cells). The larg-

est available metastasis determines the slide-based diagno-

sis. Because the clinical value of having only isolated tumor

cells in an SLN is disputed, we did not include such slides in

our studyandalsodidnotpenalizemissing isolated tumorcells

in slides containing micrometastases or macrometastases.

Isolated tumor cells were, however, annotated in slides con-

tainingmicrometastasesandmacrometastasesby thepatholo-

gists and included in the trainingwhole-slide images. The set

of images was randomly divided into a training (n = 270) and

a test set (n = 129; details inTable 1). Both sets included slides

withbothmicrometastatic andmacrometastatic tumor foci as

encountered in routine pathology practice.

Key Points

Question What is the discriminative accuracy of deep learning

algorithms compared with the diagnoses of pathologists in

detecting lymph nodemetastases in tissue sections of women

with breast cancer?

Finding In cross-sectional analyses that evaluated 32 algorithms

submitted as part of a challenge competition, 7 deep learning

algorithms showed greater discrimination than a panel of 11

pathologists in a simulated time-constrained diagnostic setting,

with an area under the curve of 0.994 (best algorithm) vs 0.884

(best pathologist).

Meaning These findings suggest the potential utility of deep

learning algorithms for pathological diagnosis, but require

assessment in a clinical setting.

Research Original Investigation Machine Learning Detection of Breast Cancer Lymph NodeMetastases

2200 JAMA December 12, 2017 Volume 318, Number 22 (Reprinted) jama.com

© 2017 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/26/2022

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.14585&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.14585
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.14585&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.14585
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.14585&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.14585
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.14585&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.14585
http://www.jama.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.14585


Coding Challenge

In the first stage (training) of the CAMELYON16 competition,

participants were given access to 270 whole-slide images

(training data set: 110 with nodal metastases, 160 without

nodal metastases) of digitally scanned tissue sections. Each

SLN metastasis in these images was annotated enabling par-

ticipants to build their algorithms. In the second stage (evalu-

ation) of the competition, the performance of the partici-

pants’ algorithms was tested on a second set of 129 whole-

slide images (test data set: 49 with nodal metastases, 80

without nodal metastases) lacking annotation of SLN metas-

tases. The output of each algorithm was sent to the challenge

organizers by the participants for independent evaluation.

Each team was allowed to make a maximum of 3 submis-

sions. The submission number was indicated in each team’s

algorithm name by Roman numeral. Multiple submissions

were only allowed if the methodology of the new submission

was distinct.

Tasks and EvaluationMetrics

Two taskswere defined: identification of individualmetasta-

ses in whole-slide images (task 1) and classification of every

whole-slide image as either containing or lacking SLNmetas-

tases (task 2). The tasks had different evaluationmetrics and

consequently resulted in 2 independent algorithm rankings.

Task 1: Identification of Individual Metastases

In task 1, algorithms were evaluated for their ability to iden-

tify specific metastatic foci in a whole-slide image. Challenge

participants provided a list of metastasis locations. For each

location participants provided a confidence score that could

range from 0 (indicating certainty that metastasis was

absent) to 1 (certainty that metastasis was present) and could

take on any real-number value in between. Algorithms were

compared using a measure derived from the free-response

receiver operator characteristic curve (FROC).10 The FROC

curve shows the lesion-level, true-positive fraction (sensitiv-

ity) vs the mean number of false-positive detections in

metastasis-free slides only. The FROC true-positive fraction

score that ranked teams in the first task was defined as the

mean true-positive fraction at 6 predefined false-positive

rates: ¼ (meaning 1 false-positive result in every 4 whole-

slide images), ½, 1, 2, 4, and 8 false-positive findings per

whole-slide image. Details on detection criteria for indi-

vidual lesions can be found in the eMethods in the Supple-

ment. All analyses in task 1 were determined with whole-

slide images (algorithms and the pathologist without time

constraint [WOTC]).

Task 2: Classification ofMetastases

Task 2 evaluated the ability of the algorithms to discriminate

between 49 whole-slide images with SLN metastases vs 80

without SLN metastases (control). In this case, identification

of specific foci within images was not required. Participants

provided a confidence score, using the same rating schema as

task 1, indicating the probability that each whole-slide image

contained any evidence of SLN metastasis from breast can-

cer. The area under the receiver operating characteristic

curve (AUC) was used to compare the performance of the

algorithms. Algorithms assessed whole-slide images, as did

the pathologist WOTC. The panel of 11 pathologists with time

constraint (pathologists WTC), however, did their assessment

on the corresponding glass slides for those images because

diagnosing is most commonly done using a microscope in

pathology labs.

Performance of Pathologists

PathologistWithout Time Constraint

To establish a baseline for pathologist performance, 2 experi-

ments were conducted using the 129 slides in the test set,

corresponding to the tasks defined above. In the first experi-

ment, 1 pathologist (MCRFvD, >10 years of experience in

pathology diagnostics, >2 years of experience in assessing

digitized tissue sections) marked every single metastasis on a

computer screen using highmagnification. This task was per-

formedwithout any time constraint. For comparisonwith the

algorithms on task 2, the pathologist WOTC indicated (during

the same session) the locations of any (micro or macro)

metastases per whole-slide image.

Panel of PathologistsWith Time Constraint

Assessment without time constraint does not yield a fair

measure of the accuracy of the routine diagnostic process.

Preliminary experiments with 4 independent pathologists

determined that 2 hours was a realistic amount of time

for reviewing these 129 whole-slide images. To mimic rou-

tine diagnostic pathology workflow, we asked 11 patholo-

gists to independently assess the 129 slides in the test set in

Table 1. Characteristics of theWhole-Slide Images and Glass Slides in the Data Sets Used in the CAMELYON16 Challenge

Data Set
(N = 399 Slides
and Images)a

Hospital Providing
the Slides and Images

Primary Tumor Histotypeb Slides Containing Metastases, No. No. of Lesions
per Slide or Image,
Median (Range)

Total Slides
or ImagesIDC Non-IDC None Macro Micro

Training
(n = 270 images)

RUMC 54 16 100 35 35 2 (1-20) 170

UMCU 30 10 60 26 14 3 (1-27) 100

Test
(n=129 slides
and images)

RUMC 23 6 50 14 15 2 (1-14) 79

UMCU 15 5 30 8 12 3 (1-25) 50

Abbreviations: CAMELYON16, Cancer Metastases in Lymph Nodes Challenge
2016; IDC, infiltrating ductal carcinoma; RUMC, Radboud University Medical
Center; UMCU, University Medical Center Utrecht.
a All analyses in the training set were determined with whole-slide images.

Analyses in the test were determined with whole-slide images by the
algorithms and with glass slides by the panel of 11 pathologists (because
diagnosing is most commonly done using amicroscope in pathology labs).

bPrimary tumor histotypes included IDC and other histotypes (non-IDC).
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a simulation exercise with time constraint (pathologists

WTC) for task 2. A flexible 2-hour time limit was set

(exceeding this limit was not penalized and every patholo-

gist was allowed time to finish the entire set). All patholo-

gists participating in this study were informed of and agreed

with the rationale and goals of this study and participated

on a voluntary basis. The research ethics committee deter-

mined that the pathologists who participated in the review

panel did not have to provide written informed consent.

The panel of the 11 pathologists (mean age, 47.7 years

[range, 31-61]) included 1 resident pathologist (3-year resi-

dent) and 10 practicing pathologists (mean practicing years,

16.4 [range, 0-30]; 0 indicates 1 pathologist who just fin-

ished a 5-year residency program). Three of these patholo-

gists had breast pathology as a special interest area.

The panel of 11 pathologistsWTC assessed the glass slides

using a conventional light microscope and determined

whether there was any evidence of SLN metastasis in each

image. This diagnostic task was identical to that performed

by the algorithms in task 2. The pathologists WTC assessed

the same set of glass slides used for testing the algorithms

(which used digitized whole-slide images of these glass

slides). Pathologists indicated the level of confidence in their

interpretation for each slide using 5 levels: definitely normal,

probably normal, equivocal, probably tumor, definitely

tumor. To obtain an empirical ROC curve, the threshold was

varied to cover the entire range of possible ratings by the

pathologists, and the sensitivity was plotted as a function of

the false-positive fraction (1-specificity). To get estimates

of sensitivity and specificity for each pathologist, the 5 levels

of confidence were dichotomized by considering the confi-

dence levels of definitely normal and probably normal as a

negative finding and all other levels as positive findings.

Algorithm Teams

Between November 2015 and November 2016, 390 research

teams signed up for the challenge. Twenty-three teams sub-

mitted32algorithms for evaluationby the closingdate (forde-

tails, see eTable 3 and eMethods in the Supplement).

Statistical Analysis

All statistical testsused in this studywere2-sidedandaPvalue

less than .05 was considered significant.

For tasks 1 and 2, CIs of the FROC true-positive fraction

scores and AUCs were obtained using the percentile boot-

strapmethod11 for the algorithms, the pathologistsWTC, and

the pathologist WOTC. The AUC values for the pathologists

(WTC and WOTC) were calculated based on their provided

5-point confidence scores.

To compare theAUCof the individual algorithmswith the

pathologists WTC in task 2, multiple-reader, multiple-case

(MRMC)ROCanalysiswasused.TheMRMCROCanalysispara-

digm is frequently used for evaluating the performance of

medical image interpretation and allows the comparison of

multiple readers analyzing the same cases while accounting

for the different components of variance contributing to the

interpretations.12,13 Both the panel of readers and the algo-

rithms as well as the cases were treated as random effects in

this analysis. The pathologists WTC represent the multiple

readers formodality 1 (diagnosingonglass slides;modality rep-

resents the technology with which the dataset is shown to

the readers) and an algorithm represents the reader for mo-

dality 2 (diagnosing on whole-slide images). Cases were the

same set of slides or images seen by the panel and the algo-

rithm. The AUC was the quantitative measure of perfor-

mance in this analysis. The Dorfman-Berbaum-Metz signifi-

cance testingwithHillis improvements14wasperformedto test

thenull hypothesis that all effectswere0. TheBonferroni cor-

rection was used to adjust the P values for multiple compari-

sons in theMRMC ROC analysis (independent comparison of

each of the 32 algorithms and the pathologists WTC).

Additionally, a permutation test15 was performed to as-

sesswhether therewasa statistically significantdifferencebe-

tween the AUC of the pathologists (WTC and WOTC) detect-

ing macrometastases compared with micrometastases.16

This test was also repeated for comparing the performance of

pathologists for different histotypes: infiltrating ductal can-

cer vs all other histotypes. Because the 80 control slides (not

containingmetastases)were the same inbothgroups, theper-

mutationwasonlyperformedacross the slides containingme-

tastases. This testwasperformed for each individual patholo-

gist and, subsequently, Bonferroni correction was applied to

the obtained P values.

No prior data were available for the performance of algo-

rithms in this task. Therefore, no power analysis was used to

predetermine the sample size.

The iMRMC(FoodandDrugAdministration), version3.2,17

wasused forMRMCanalysis. An in-housedeveloped script in

Python (Babak Ehteshami Bejnordi, MS; Radboud University

Medical Center), version 2.7,18was used to obtain the percen-

tilebootstrapCIs for theFROCandAUCscores.Acustomscript

waswritten toperformthepermutation tests andcanbe found

at the same location.

Results

The pathologist WOTC required approximately 30 hours for

assessing 129 whole-slide images. No false-positives were

produced in task 1 (ie, nontumorous tissue indicated as

metastasis) by the pathologist WOTC, but 27.6% of indi-

vidual metastases were not identified (lesion level, true-

positive fraction, 72.4% [95% CI, 64.3%-80.4%]) that mani-

fested when IHC staining was performed. At the slide level

in task 2, the pathologist WOTC achieved a sensitivity of

93.8% (95% CI, 86.9%-100.0%), a specificity of 98.7% (95%

CI, 96.0%-100.0%), and an AUC of 0.966 (95% CI, 0.927-

0.998). The pathologists WTC in the simulation exercise

spent a median of 120 minutes (range, 72-180 minutes) for

129 slides. They achieved a mean sensitivity of 62.8% (95%

CI, 58.9%-71.9%) with a mean specificity of 98.5% (95% CI,

97.9%-99.1%). The mean AUC was 0.810 (range, 0.738-

0.884) (eTables 1-2 in the Supplement show results for indi-

vidual pathologists WTC). eFigure 3 in the Supplement

shows the ROC curves for each of the 11 pathologists WTC

and the pathologist WOTC.
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The results of the pathologists WTC were further ana-

lyzed for their ability to detect micrometastases vs macrome-

tastases (eResults in the Supplement). The panel of 11

pathologists had a mean sensitivity of 92.9% (95% CI, 90.5%-

95.8%) and mean AUC of 0.964 (range, 0.924-1.0) for detect-

ing macrometastases compared with a mean sensitivity of

38.3% (95% CI, 32.6%-52.9%) and a mean AUC of 0.685

(range, 0.582-0.808) for micrometastases. Even the best per-

forming pathologist in the panel missed 37.1% of the cases

with only micrometastases.

Algorithm Performance

Of the 23 teams, the majority of submitted algorithms

(25 of 32 algorithms) were based on deep convolutional neu-

ral networks (eAppendix in the Supplement). Besides deep

learning, a variety of other approaches were attempted by

CAMELYON16 participants. Different statistical and structural

texture features were extracted (eg, color scale-invariant fea-

ture transform [SIFT] features,19 local binary patterns,20

features based on gray-level co-occurrence matrix21) com-

bined with widely used supervised classifiers (eg, support

vector machines,22 random forest classifiers23). The perfor-

mance and ranking of the entries for the 2 tasks are shown

in Table 2. Overall, deep learning–based algorithms per-

formed significantly better than other methods: the 19 top-

performing algorithms in both tasks all used deep convolu-

tional neural networks as the underlying methodology

(Table 2). Detailed method description for the participating

teams can be found in the eMethods in the Supplement.

Task 1: Metastasis Identification

The results of metastasis identification, as measured by the

FROC true-positive fraction score, are presented in Table 2

(eTable 4 in the Supplement provides a more detailed sum-

mary of the results for the FROC analysis). The best algo-

rithm, from team Harvard Medical School (HMS) and

Massachusetts Institute of Technology (MIT) II, achieved an

overall FROC true-positive fraction score of 0.807 (95% CI,

0.732-0.889). The algorithm by team HMS and Massachu-

setts General Hospital (MGH) III ranked second in task 1, with

an overall score of 0.760 (95% CI, 0.692-0.857). Figure 1

presents the FROC curves for the top 5 performing systems

in task 1 (for FROC curves of all algorithms, see eFigure 4 in

the Supplement). Figure 2 shows several examples of metas-

tases in the test set of CAMELYON16 and the probabilitymaps

produced by the top 3 ranked algorithms (eFigure 5 in the

Supplement).

Task 2:Whole-Slide Image Classification

The results for all automated systems, sorted by their perfor-

mance, are presented in Table 2. Figure 3A-B show the ROC

curves of the top 5 teams along with the operating points of

thepathologists (WOTCandWTC).eFigure6 intheSupplement

shows theROCcurves for all algorithms.All 32algorithmswere

compared with the panel of pathologists using MRMC ROC

analysis (Table 2).

The top-performing algorithm by team HMS and MIT II

used a GoogLeNet architecture,24 which outperformed all

other CAMELYON16 submissions with an AUC of 0.994 (95%

CI, 0.983-0.999). This AUC exceeded the mean performance

of the pathologists WTC (mean AUC, 0.810 [range, 0.738-

0.884]) in the diagnostic simulation exercise (P < .001, calcu-

lated using MRMC ROC analysis33) (Table 2). The top-

performing algorithm had an AUC comparable with that of

the pathologist WOTC (AUC, 0.966 [95% CI, 0.927-0.998]).

Additionally, the operating points of all pathologists WTC

were below the ROC curve of this method (Figure 3A-B). The

ROC curves for the 2 leading algorithms, the pathologist

WOTC, themean ROC curve of the pathologists WTC, and the

pathologists WTC with the highest and lowest AUCs are

shown in Figure 3C-D.

The second-best performing algorithm by team HMS and

MGH III used a fully convolutional ResNet-10125 architecture.

This algorithm achieved an overall AUC of 0.976 (95% CI,

0.941-0.999), and yielded the highest AUC in detecting mac-

rometastases (AUC, 1.0). An earlier submission by this team,

HMS and MGH I, achieved an overall AUC of 0.964 (95% CI,

0.928-0.989) and ranked third. The fourth highest–ranked

team was CULab (Chinese University Lab) III with a 16-layer

VGG-net architecture,26 followed by HMS and MIT I, with a

22-layer GoogLeNet architecture. Overall, 7 of the 32 submit-

ted algorithms had significantly higher AUCs than the

pathologists WTC (see Table 2 for the individual P values cal-

culated using MRMC ROC analysis).

The results of the algorithms were further analyzed for

comparing their performance in detecting micrometastases

and macrometastases (eResults and eTable 5 in the Supple-

ment). The top-performing algorithms performed similarly to

the best performing pathologists WTC in detecting macrome-

tastases. Ten of the top-performing algorithms achieved a

better mean AUC in detecting micrometastases than the AUC

for the best pathologist WTC (0.885 [range, 0.812-0.997] for

the top 10 algorithms vs 0.808 [95% CI, 0.704-0.908] for the

best pathologist WTC).

Discussion

The CAMELYON16 challenge demonstrated that some deep

learning algorithms were able to achieve a better AUC than a

panel of 11 pathologistsWTC participating in a simulation ex-

ercise for detection of lymph node metastases of breast can-

cer. To our knowledge, this is the first study that shows that

interpretation of pathology images can be performedbydeep

learningalgorithmsat anaccuracy level that rivalshumanper-

formance.

To obtain an upper limit on what level of performance

could be achieved by visual assessment of hematoxylin and

eosin–stained tissue sections, a single pathologist WOTC

evaluated whole-slide images at high magnification in

details and marked every single cluster of tumor cells. This

took the pathologist WOTC 30 hours for 129 slides, which is

infeasible in clinical practice. Although this pathologist was

very good at differentiating metastases from false-positive

findings, 27.6% of metastases were missed compared with

the reference standard obtained with the use of IHC staining
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Table 2. Test Data Set Results of the 32 Submitted Algorithms vs Pathologists for Tasks 1 and 2 in the CAMELYON16 Challengea

Codenameb

Task 1:
Metastasis
Identification

Task 2:
Metastases
Classification

P Value for Comparison
of the Algorithm
vs Pathologists WTCd

Algorithm Model

Comments
FROC Score
(95% CI)c

AUC
(95% CI)c

Deep
Learning Architecture

HMS and MIT II 0.807
(0.732-0.889)

0.994
(0.983-0.999)

<.001 � GoogLeNet24 Ensemble of 2 networks; stain
standardization; extensive data
augmentation; hard negative mining

HMS and MGH III 0.760
(0.692-0.857)

0.976
(0.941-0.999

<.001 � ResNet25 Fine-tuned pretrained network;
fully convolutional network

HMS and MGH I 0.596
(0.578-0.734)

0.964
(0.928-0.989)

<.001 � GoogLeNet24 Fine-tuned pretrained network

CULab III 0.703
(0.605-0.799)

0.940
(0.888-0.980)

<.001 � VGG-1626 Fine-tuned pretrained network;
fully convolutional network

HMS and MIT I 0.693
(0.600-0.819)

0.923
(0.855-0.977)

.11 � GoogLeNet24 Ensemble of 2 networks;
hard negative mining

ExB I 0.511
(0.363-0.620)

0.916
(0.858-0.962)

.02 � ResNet25 Varied class balance during training

CULab I 0.544
(0.467-0.629)

0.909
(0.851-0.954)

.04 � VGG-Net26 Fine-tuned pretrained network

HMS and MGH II 0.729
(0.596-0.788)

0.908
(0.846-0.961)

.04 � ResNet25 Fine-tuned pretrained network

CULab II 0.527
(0.335-0.627)

0.906
(0.841-0.957)

.16 � VGG-Net26 &
ResNet25

Fine-tuned pretrained network;
cascaded a VGG-Net that operated
on low magnification images and a
ResNet model that refined the results

DeepCare I 0.243
(0.197-0.356)

0.883
(0.806-0.943)

>.99 � GoogLeNet24 Fine-tuned pretrained network

Quincy Wong I 0.367
(0.250-0.521)

0.865
(0.789-0.924)

>.99 � SegNet27 Fine-tuned pretrained network

Middle East Technical
University I

0.389
(0.272-0.512)

0.864
(0.786-0.927)

>.99 � 4-layer CNN Custom confidence filtering for
postprocessing

NLP LOGIX I 0.386
(0.255-0.511)

0.830
(0.742-0.899)

>.99 � AlexNet28 Used a second-stage random forest
classifier to generate slide scores

Smart Imaging II 0.339
(0.239-0.420)

0.821
(0.753-0.894)

>.99 � GoogLeNet24 Used an ensemble of the output from
the team’s first entry and the
GoogLeNet model

University of Toronto I 0.382
(0.286-0.515)

0.815
(0.722-0.886)

>.99 � VGG-Net26 Combined the output of multiple CNNs
trained on different magnifications by
computing their mean

Warwick-Qatar
University I

0.305
(0.219-0.397)

0.796
(0.711-0.871)

>.99 � U-Net29 Used stain normalization

Radboudumc I 0.575
(0.446-0.659)

0.779
(0.694-0.860)

>.99 � VGG-Net26 Extensive data augmentation;
second-stage CNN to generate
slide-level scores

Hochschule für Technik
und Wirtschaft-Berlin I

0.187
(0.112-0.250)

0.768
(0.665-0.853)

>.99 � CRFasRNN30 Fine-tuned pretrained network

University of Toronto II 0.352
(0.292-0.511)

0.762
(0.659-0.846)

>.99 � VGG-Net26 Combined the output of multiple CNNs
trained on different magnifications by
using an additional CNN

Tampere I 0.257
(0.171-0.376)

0.761
(0.662-0.837)

>.99 Random
Forests23

Used a large set of intensity and texture
features

Smart Imaging I 0.208
(0.119-0.306)

0.757
(0.663-0.839)

>.99 SVM22 &
Adaboost31

Cascaded SVM and Adaboost classifiers
using texture features

Osaka University I 0.347
(0.234-0.463)

0.732
(0.629-0.824)

>.99 � GoogLeNet24

CAMP-TUM II 0.273
(0.194-0.379)

0.735
(0.633-0.819)

>.99 � GoogLeNet24 Hard negative mining

University of
South Florida I

0.179
(0.116-0.242)

0.727
(0.611-0.823)

>.99 Random
Forests23

Used various intensity and texture
features

NSS I 0.165
(0.116-0.195)

0.727
(0.635-0.81)

>.99 Rule-based Multiple thresholds on several
nucleus-based features

Tampere II 0.252
(0.149-0.350)

0.713
(0.612-0.801)

>.99 � 7-layer CNN Self-designed network architecture

CAMP-TUM I 0.184
(0.127-0.243)

0.691
(0.580-0.787)

>.99 � Agg-Net32 Multiscale approach for analyzing
the images

Minsk Team I 0.227
(0.181-0.264)

0.689
(0.568-0.804)

>.99 � GoogLeNet24 Separate models for different data sets;
hard negative mining

VISILAB I 0.142
(0.080-0.203)

0.653
(0.551-0.748)

>.99 Random
Forests23

Used Haralick texture features21

(continued)
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to confirm the presence of tumor cells in cases for which

interpretation of slides was not clear. This illustrates the

relatively high probability of overlooking tumor cells in

hematoxylin and eosin–stained tissue sections. At the slide

level, a high overall sensitivity and specificity for the

pathologist WOTC was observed.

To estimate the accuracy of pathologists in a routine di-

agnostic setting, 11 pathologists WTC assessed the SLNs

ina simulatedexercise.The setting resembleddiagnosticprac-

tice in theNetherlands,whereuseof IHC ismandatory forcases

with negative findings on hematoxylin and eosin–stained

slides. Compared with the pathologist WOTC interpreting

the slides, these pathologists WTC were less accurate, espe-

cially on the slides which only contained micrometastases.

Even the best-performing pathologist on the panel missed

more than 37% of the cases with only micrometastases.

Macrometastasesweremuch less oftenmissed. Specificity re-

mainedhigh, indicating that the taskdidnot lead toahigh rate

of false-positives.

The best algorithm achieved similar true-positive frac-

tion as the pathologist WOTC when producing a mean of

1.25 false-positive lesions in 100 whole-slide images and

performed better when allowing for slightly more false-

positive findings. On the slide level, the leading algorithms

performed better than the pathologists WTC in the simula-

tion exercise.

All of the 32 algorithms submitted to CAMELYON16 used

a discriminative learning approach to identify metastases in

whole-slide images. The common denominator for the algo-

rithms in the higher echelons of the ranking was that they

used advanced convolutional neural networks. Algorithms

based on manually engineered features performed less well.

Despite the use of advanced convolutional neural net-

work architectures, such as 16-layer VGG-Net,26 22-layer

GoogLeNet,24 and 101-layer ResNet,25 the ranking among

teams using these techniques varied significantly, ranging

from 1st to 29th. However, auxiliary strategies to improve

Figure 1. FROC Curves of the Top 5 Performing Algorithms

vs PathologistWOTC for theMetastases Identification Task (Task 1)

From the CAMELYON16 Competition
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CAMELYON16 indicates Cancer Metastases in Lymph Nodes Challenge 2016;
CULab, Chinese University Lab; FROC, free-response receiver operator
characteristic; HMS, Harvard Medical School; MGH, Massachusetts General
Hospital; MIT, Massachusetts Institute of Technology; WOTC, without time
constraint. The range on the x-axis is linear between 0 and 0.125 (blue) and base
2 logarithmic scale between 0.125 and 8. Teams were those organized in the
CAMELYON16 competition. Task 1 was measured on the 129 whole-slide images
in the test data set, of which 49 containedmetastatic regions. The pathologist
did not produce any false-positives and achieved a true-positive fraction of
0.724 for detecting and localizing metastatic regions.

Table 2. Test Data Set Results of the 32 Submitted Algorithms vs Pathologists for Tasks 1 and 2 in the CAMELYON16 Challengea (continued)

Codenameb

Task 1:
Metastasis
Identification

Task 2:
Metastases
Classification

P Value for Comparison
of the Algorithm
vs Pathologists WTCd

Algorithm Model

Comments
FROC Score
(95% CI)c

AUC
(95% CI)c

Deep
Learning Architecture

VISILAB II 0.116
(0.063-0.177)

0.651
(0.549-0.742)

>.99 � 3-layer CNN Self-designed network architecture

Anonymous I 0.097
(0.049-0.158)

0.628
(0.530-0.717)

>.99 Random
Forests23

Laboratoire d'Imagerie
Biomédicale I

0.120
(0.079-0.182)

0.556
(0.434-0.654)

>.99 SVM22 Used various color and texture
features

Pathologist WOTC 0.724
(0.643-0.804)

0.966
(0.927-0.998)

Expert pathologist who assessed
without a time constraint

Mean pathologists WTC 0.810
(0.750-0.869)

The mean performance of 11
pathologists in a simulation exercise
designed to mimic the routine workflow
of diagnostic pathology with a flexible
2-h time limit

Abbreviations: AUC, area under the receiver operating characteristic curve;
CAMELYON16, CancerMetastases in LymphNodes Challenge 2016; CAMP-TUM,
Computer AidedMedical Procedures and Augmented Reality-Technical University
ofMunich; CNN, convolutional neural network; CULab, Chinese University Lab;
FROC, free-response receiver operator characteristic; HMS, HarvardMedical
School; MGH,Massachusetts General Hospital; MIT,Massachusetts Institute of
Technology;WOTC,without time constraint;WTC, with time constraint.
a For algorithms, contact information, and detailed a description of each
algorithm, see eTable 3 and eMethods in the Supplement. For a glossary
of deep learning terminology, see eAppendix in the Supplement.

bAlgorithms are shown ranked highest (top of Table) to lowest (bottom of

Table) according to their performance on task 2. The submission number was
indicated in each team’s algorithm name by Roman numeral. Teams were
allowed amaximum of 3 submissions.

c The percentile bootstrapmethod was used to construct 95% CIs for FROC
true-positive fraction scores (FROC scores) and AUCs.

dThe results of the significant test with MRMC ROC analysis for the comparison
of each individual algorithmwith the pathologists WTC. The P values were
adjusted for multiple comparisons using the Bonferroni correction, in which
the P values are multiplied by the number of comparisons (32; comparison of
the 32 submitted algorithms with the panel of pathologists).
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Figure 2. ProbabilityMaps Generated by the Top 3 Algorithms From the CAMELYON16 Competition

A Test set B HMS and MIT II C HMS and MGH III D CULab III
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Forabbreviations, see the legendofFigure3.Thecolor scalebar (top right) indicates
theprobabilityforeachpixeltobepartofametastaticregion.Foradditionalexamples,
see eFigure 5 in theSupplement. A, Four annotatedmicrometastatic regions in

whole-slideimagesofhematoxylinandeosin–stainedlymphnodetissuesectionstaken
fromthetestsetofCancerMetastasesinLymphNodesChallenge2016(CAMELYON16)
dataset. B-D, Probabilitymaps fromeach teamoverlaid on theoriginal images.
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system generalization and performance seemed more impor-

tant.Forexample,teamHMSandMITimprovedtheirAUCintask

2 from0.923 (HMSandMITI) to0.994(HMSandMITII)byadd-

ing a standardization technique34 to help them deal with stain

variations. Other strategies include exploiting invariances to

augment trainingdata (eg, tissuespecimensare rotation invari-

ant)andaddressingclass imbalance(ie,morenormal tissuethan

metastases) by different training data sampling strategies (for

further examples of properties that distinguish the best-

performingmethods, see eDiscussion in the Supplement).

Previous studies on diagnostic imaging tasks in which

deep learning reached human-level performance, such as de-

tection of diabetic retinopathy in retinal fundus photo-

graphs, used a reference standard based on the consensus

of human experts.3 This study, in comparison, generated a

reference standard using additional immunohistochemical

Figure 3. ROC Curves of the Top-Performing Algorithms vs Pathologists forMetastases Classification (Task 2) From the CAMELYON16 Competition
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AUC indicates area under the receiver operating characteristic curve;
CAMELYON16, Cancer Metastases in Lymph Nodes Challenge 2016;
CULab, Chinese University Lab; HMS, Harvard Medical School;
MGH, Massachusetts General Hospital; MIT, Massachusetts Institute of
Technology; WOTC, without time constraint; WTC, with time constraint;
ROC, receiver operator characteristic. The blue in the axes on the left panels
correspond with the blue on the axes in the right panels. Task 2 was
measured on the 129 whole-slide images (for algorithms and the pathologist
WTC) and corresponding glass slides (for 11 pathologists WOTC) in the test data
set, which 49 containedmetastatic regions. A, Amachine-learning system
achieves superior performance to a pathologist if the operating point of the

pathologist lies below the ROC curve of the system. The top 2 deep
learning–based systems outperform all the pathologists WTC in this study.
All the pathologists WTC scored glass slide images using 5 levels of confidence:
definitely normal, probably normal, equivocal, probably tumor, definitely tumor.
To generate estimates of sensitivity and specificity for each pathologist,
negative was defined as confidence levels of definitely normal and probably
normal; all others as positive. B, Themean ROC curve was computed using the
pooledmean technique. This mean is obtained by joining all the diagnoses of
the pathologists WTC and computing the resulting ROC curve as if it were 1
person analyzing 11 × 129 = 1419 cases.
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staining, yielding an independent reference againstwhichhu-

man pathologists could also be compared.

Limitations

This study has several limitations, most related to the con-

duct of these analyses as part of a simulation exercise rather

than routine pathology workflow. The test data set on which

algorithmsandpathologistswereevaluatedwasenrichedwith

cases containingmetastases and, specifically, micrometasta-

ses and, thus, is not directly comparablewith themixof cases

pathologists encounter in clinical practice. Given the reality

that most SLNs do not contain metastases, the data set cura-

tion was needed to achieve a well-rounded representation of

what is encountered in clinical practice without including an

exorbitant number of slides. To validate the performance of

machine learning algorithms, such as those developed in the

CAMELYON16competition, aprospective study is required. In

addition, algorithmswere specifically trained todiscriminate

between normal and cancerous tissue in the background of

lymph node histological architecture, but they might be un-

able to identify rare events such as co-occurring pathologies

(eg, lymphoma, sarcoma, or infection). Thedetectionof other

pathologies in the SLN, which is relevant in routine diagnos-

tics,wasnot included in this study. In addition, algorithmrun-

time was not recorded nor included as a factor in the evalua-

tion, but it might influence the suitability for use in, for

example, frozen section analysis.

In this study, every pathologist was given 1 single hema-

toxylin and eosin–stained slide per patient to determine the

presenceor absenceof breast cancermetastasis. In a real clini-

cal setting, sections frommultiple levels are evaluated for ev-

ery lymph node. Also, in most hospitals pathologists request

additional IHCstaining inequivocal cases. Especially for slides

containing only micrometastases, this is a relevant factor af-

fecting diagnostic performance.

In addition, the simulation exercise invited pathologists

WTC to review a series of 129 hematoxylin and eosin–

stained slides in about 2 hours to determine the presence of

macroscopic or microscopic SLN metastasis. Although fea-

sible in the context of this simulation, this does not repre-

sent the work pace in other settings. Less time constraint on

task completion may increase the accuracy of SLN diagnos-

tic review. In addition, pathologists may rely on IHC stain-

ing and the knowledge that all hematoxylin and eosin–slides

with negative findings will undergo additional review with

the use of IHC.

Conclusions

In the setting of a challenge competition, some deep learn-

ing algorithms achieved better diagnostic performance than

a panel of 11 pathologists participating in a simulation exer-

cise designed to mimic routine pathology workflow; algo-

rithm performance was comparable with an expert patholo-

gist interpreting slides without time constraints. Whether

this approach has clinical utility will require evaluation in a

clinical setting.
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