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Abstract
This paper addresses the transmission channel impact on human-to-human speech communication quality as well as on ASR
performance. Transmission channels include standard wireline or mobile telephone networks and IP-based networks, which can be
operated via different types of user interfaces. In order to gain control over the transmission channel, a simulation model is developed.
It implements all types of stationary impairments which can be found in the mentioned networks. Human-to-human speech
communication quality in these situations is estimated using a network planning model. Experiments are carried out for assessing ASR
performance over the same channel, with three different types of recognizers: two prototypical recognizers used in a telephone-based
information server, and a standardized set-up developed under the AURORA framework for distributed ASR. It turns out that some
interesting differences exist in behavior between the ASR system performance and speech quality in human-to-human communication.
The differences should be taken into account by both developers of ASR systems and transmission network planners.

1. Introduction
Spoken dialogue systems are often accessed remotely

over telecommunication networks, such as traditional
analogue/digital telephones, mobile phones, or IP-based
networks (voice over Internet Protocol, VoIP). In all of
these cases, transmission channel degradations can have a
severe influence on ASR performance, and subsequently
on speech understanding performance and on overall
dialogue system quality. Depending on the type and the
characteristics of the transmission channel, the
degradations are very diverse in magnitude and nature.

Some of these impairments have been investigated in
detail with respect to their impact on speech recognizer
performance, see e.g. the work performed by Euler and
Zinke (1994), Lilly and Paliwal (1996), or Tucker et al.
(1999). The investigations aim to develop recognition
systems which are robust towards the specific impairment,
e.g. by using preprocessing and adaptation techniques
(Mokbel et al., 1993; Mokbel et al., 1997), or by training
acoustic models with impaired speech data (e.g. Puel and
André-Obrecht, 1997). Robust HMM architectures have
also been proposed, e.g. for impairments which are to be
encountered in GSM cellular networks (interruptions and
impulsive noise) by Karray et al. (1998).

Unfortunately, there are nearly no possibilities to
control the exact characteristics of an individual
transmission line in operating networks. In principle, a
combination of different degradations is to be expected in
this situation. Thus, components of spoken dialogue
systems should be assessed with respect to their
robustness against this combination of degradations. This
can be done efficiently by means of a simulation tool, as it
has been proposed earlier (Möller and Bourlard, 2000;
Möller and Bourlard, 2002). Such a tool allows all
characteristics of the transmission channel to be generated
in a controlled way. In this way, a diagnostic evaluation of

the effects of specific impairments (e.g. of new speech
codecs) on ASR becomes possible.

Speech transmission networks are normally set up to
fulfill the quality requirements of human-to-human speech
communication. It is therefore interesting to compare the
ASR performance degradation to the quality degradation
which occurs when humans converse over the same
transmission channel. The comparison helps to decide
whether the quality requirements according to which
telecommunication networks are designed and set up, and
which purely reflect the human-to-human dialogue, are
also applicable to human-machine interaction.

In the present paper, we perform a comparative
evaluation of three recognizers with respect to their
sensitivity to transmission channel degradations. The
degradations are generated by our simulation tool (see
Section 2), which makes us independent of uncontrolled
real-life networks. They include narrow-band and wide-
band uncorrelated noise, signal-correlated noise, linear
frequency distortions, and non-linear codec distortions.
ASR performance degradation is compared to the
degradation in speech quality between humans, as it is
predicted by a network planning model (Section 3). This
comparison is described in Section 5, and reveals some
interesting differences in behavior between the ASR
system performance and speech quality in human-to-
human communication. The differences should be taken
into account by both developers of ASR systems and
transmission network planners.

2. Transmission Channel Simulation
The use of simulation techniques, in general terms, is

not new in the development of ASR systems. E.g.,
Tarcisio et al. (1999) simulate the transmission channel by
filtering with a measured impulse response and adding
recorded background noise. A similar technique has been
proposed by Giuliani et al. (1999) for modeling hands-free
terminals. When artificially degraded data was included in



the training material, the ASR performance improved
significantly. The simulation of time-variant channel
behavior (mobile GSM channels, ATM channels, voice
over IP) has also been proposed, and partly been used for
assessing ASR performance (e.g. in the ETSI STQ
AURORA DSR working group).

In contrast to measuring specific channel
characteristics, we base our simulation on planning values
which are available already in the network planning phase,
before a network has actually been set up. Such planning
values are commonly used by telecommunication
engineers. Due to their simplified nature, they only give a
rough description of the channels involved in the
transmission (direct speech path, talker and listener echo
paths, sidetone path due to the coupling of one’s own
voice), e.g. via a frequency-weighted one-dimensional
attenuation index (so-called loudness rating) and a
corresponding mean delay time. Specifications for each of
these paths can be found in the respective
Recommendations given by the Telecommunication
Standardization Sector of the International
Telecommunication Union, ITU-T.

We chose a reference connection which is
recommended by the ITU-T for estimating the
transmission channel impact on the overall quality of the
connection, mouth-to-ear, and in a conversational
situation. This reference connection is given in ITU-T
Rec. G.107 (2000). The reference connection has been
transformed into the simulation model which is depicted
in Figure 1, see Möller and Bourlard (2002). It includes all
transmission paths and implements most of the time-
invariant degradations occurring on these paths, namely:
- the attenuation and linear frequency distortion of the

channel, both at the send (SLR) and receive (RLR)
side; they partly stem from the acoustic-electrical
conversion (SLRset, RLRset), and partly from the
purely electrical paths (SLR’, RLR’)

- the channel bandwidth limitation (approx. 300-3400
Hz in the narrow-band case, and 50-7000 Hz in the
wideband case)

- continuous (white) circuit noise as a model for all
potential noise sources, both on the channel (Nc,
narrow-band) and at the receive side (Nfor, wideband)

- non-linear speech coder-decoder pairs (several codecs
standardized by the ITU-T or ETSI and North
American codecs have been implemented so far)

- ambient room noise at the send (Ps) and receive (Pr)
side (modeled by inserting different types of noise in
the send and receive room, in order to include
speaking style variations)

- pure delay of the connection (Ta)
- delay (T) and attenuation (Le) of the talker echo signal

reaching the talker’s ear
- average delay (Tr) and attenuation (WEPL) of multiply

reflected signals reaching the listener’s ear
- the attenuation and frequency distortion (Lst) of the

sidetone path due to the coupling of the talker’s own
voice in the telephone handset

Figure 1 illustrates these elements with triangles
indicating linear filters (SLRset, SLR’ , RLRset, RLR’ ,  Le,
Lst, WEPL), and boxes indicating the channel bandpass
filter (BP), the coder-decoder pair, or the delay lines (T,
Ta and Tr). Indices 1 and 2 indicate the direction of the
transmission. In the experiments described below, we are
not interested in conversational features, but limit
ourselves to the one-way transmission situation. For this
reason, only one direction of the transmission model is
used, and the pure delay, talker and listener echo elements
are set to be without effect. Extensions of the simulation
with respect to time-variant degradations (fading channels,
IP packet loss) are underway, but they have not yet been
addressed in our experiments.

The described transmission channel simulation can be
used in different ways. E.g., the transmission channel
impact on human conversation as well as on humans
interacting with spoken dialogue systems over the phone
can be investigated analytically. This is our aim for the
present paper. On the other hand, the simulation permits to
produce training material for speech recognizers which
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Figure 1. Transmission channel simulation.



shows defined transmission characteristics. In this way,
existing training databases can be multiplied efficiently.

3. Human-to-Human Speech Quality
Speech communication quality between humans is a

multi-dimensional feature (see e.g. Möller, 2000, for a
discussion). It can ultimately only be assessed in realistic
conversation scenarios, by performing auditory tests with
human subjects. This is an expensive and time-consuming
procedure, and therefore network planning experts make
use of quality prediction models. Such models estimate
speech communication quality on the basis of the above
mentioned planning values.

The best-known and most complete network planning
model is the so-called E-model (Johannesson, 1997), now
recommended by the ITU-T in Rec. G.107 (2000). It
predicts speech quality between humans in terms of a one-
dimensional overall quality index (transmission rating
factor, R, or a mean opinion score, MOS) as a function of
the physical channel characteristics. The predicted MOS
should ideally reflect the quality judgments of human test
subjects – on a five-point absolute category rating scale –
after conversing over a connection with the characteristics
given by the planning values. Prediction accuracy of the
model has been investigated in detail (Möller, 2000), and
the predicted MOS values have been found to reach an
agreement with subjective test results which is satisfying
for the purpose of network planning.

As the input parameters of the transmission channel
simulation (Figure 1) are mainly identical to the
parameters the E-model bases its prediction on, we are
able to perform a direct comparison between predicted
speech quality for human-human conversation, and the
recognition accuracy which can be reached over the same
channel. The set-up for these experiments is described in
the following section, and the results are discussed in
Section 5.

4. Speech Data and Recognition Systems
The simulation model described in Section 2 allows us

to realistically generate degradations occurring in real-life
networks, using a schematic which is also underlying the
E-model. The degradations are generated on pre-recorded
clean speech files, so as to carry out recognition
experiments on speech data which are identical with
respect to language and speaker conditions. This,
however, excludes to investigate the effects of background
noise, where an adaptation of the speaking style occurs
(e.g. due to the Lombard reflex). The test utterances were
digitally recorded and then transmitted through the
simulation model (cf. the dashed line in Figure 1). At the
output of the simulator, the degraded utterances were
collected and then processed by a recognizer.

Three different recognizers have been used for the
experiments: The first one is a commercially available
command-and-control recognizer for isolated words,
which is part of a German dialogue system for accessing
restaurant information. The second recognizer is part of a
similar system in the same application domain, but for the
Swiss-French language; it recognizes continuous speech
using a standard n-gram language model. The third system
is a more-or-less standardized HMM recognizer which has
been defined in the framework of the ETSI AURORA
project for distributed ASR in car environments. It has

been built using the HTK toolkit and performs connected
digit recognition for English. Training and test data for
this system are available through ELRA (AURORA 1.0
database), whereas the German and the Swiss-French
recognizer have been tested on specific speech data which
stem from Wizard-of-Oz experiments in the restaurant
information domain.

The Swiss-French recognizer is a large-vocabulary
continuous system for the Swiss-French language. It
makes use of a hybrid HMM/ANN architecture. ANN
weights as well as HMM phone models and phone prior
probabilities have been trained on the Swiss-French
PolyPhone database (Chollet et al., 1996), using 4,293
prompted information service calls (2,407 female, 1,886
male speakers) collected over the Swiss telephone
network. The recognizer’ s dictionary was built from 255
initial Wizard-of-Oz (WoZ) dialogue transcriptions on the
restaurant information task. These dialogues have been
carried out at IDIAP, Martigny, and EPFL, Lausanne, in
the frame of the InfoVOX project. The same transcriptions
were used to set up 2-gram and 3-gram language models.
Log-RASTA feature coefficients (Hermansky, 1994) were
used for the acoustic model, consisting of 12 MFCC
coefficients, 12 derivatives, and the energy and energy
derivatives. A 10th order LPC analysis and 17 critical
band filters were used for the MFCC calculation.

The German recognizer is a partly commercially
available small-vocabulary HMM recognizer for
command and control applications. It can recognize
connected words in a keyword-spotting mode. Acoustic
models have been trained on speech recorded in a low-
noise office environment and band-limited to 4 kHz. The
dictionary has been adapted from the respective Swiss-
French version, and contains 395 German words of the
restaurant domain, including place names (which have
been transcribed manually). Due to commercial reasons,
no detailed information on the architecture and on the
acoustic features and models of the recognizer is available
to the authors.

The AURORA recognizer has been set up using the
HTK software package (version 3.0; see HTK, 2000).
Training and recognition parameters of this system have
been defined in a way to compare recognition results
when applying different feature extraction schemes
(Hirsch and Pearce, 2000). Its task is the recognition of
connected digit strings in English. Digits are modeled as
whole-word HMMs with 16 states per word, simple left-
to-right models without skips between states, and 3
Gaussian mixtures per state. Feature vectors consist of 12
cepstral coefficients and the logarithmic frame energy,
plus their first and second order derivatives.

Because the German and the Swiss-French system are
still in the prototype stage, test data is relatively restricted
for these systems. We think that this is not a severe
limitation, as we are only interested in the relative
performance degradation, and not in absolute figures. The
Swiss-French system was tested with 150 test utterances
which were collected from 10 speakers (6m, 4f) in a quiet
library environment (Ps ~ 35 dB(A)). 15 utterances that
were comparable in dialogue structure (though not
identical) to the WoZ transcriptions were solicited from
each subject. Each contained at least two keyword
specifiers, which are used in the speech understanding
module of the dialogue system. Speakers were asked to
read the utterances aloud in a natural way. The German



system was tested using recordings of 10 speakers (5m,
5f) which were made in a low-noise test cabinet (Ps ~ 35
dB(A)). Each speaker was asked to read the 395 German
keywords of the recognizer’ s vocabulary in a natural way.
All of them were part of the restaurant task context and
were being used in the speech understanding module. In
both cases recordings were made via a traditionally
shaped wireline telephone handset. Training and test
material for the AURORA system consisted of part of the
AURORA 1.0 database which is available through ELRA.
This system has been trained in two different settings: the
first set consisted of the clean speech files only (indicated
‘clean’  in the following), and the second of a mixture of
clean and noisy speech files, where different types of
noise have been added artificially to the speech signals
(so-called multi-condition training, see Hirsch and Pearce,
2000).

The source test speech material (not the training
material) has been transmitted through the simulation
model with 40 different connection settings. The
parameters of each connection are given in Table 1, which
indicates only the parameters differing from the default
setting defined in Table 3 of ITU-T Rec. G.107 (2000).
The connections include different levels of narrow-band
or wideband circuit noise (No. 1-19), several codecs
operating at bit-rates between 32 and 8 kbit/s (No. 20-26),
signal-correlated quantizing noise modeled by means of a
modulated noise reference unit at the position of the codec
(MNRU, see ITU-T Rec. P.810, 1996, for details; No. 27-
32), as well as combinations of non-linear codec
distortions and circuit noise (No. 33-40).

It has to be mentioned that the tested impairments
solely reflect the listening-only situation, and for the sake
of comparison, they did not include background noise. In
realistic dialogue scenarios, however, the simulation
model also permits testing of conversational impairments.

5. Assessment Results
In this section, we will take the viewpoint of a

transmission network planner, who has to guarantee that
the transmission system performs well for both human-to-
human and human-machine communication. A
prerequisite for the former is an adequate speech quality,
for the latter a good ASR performance. Thus, we will
investigate the degradation in recognition performance
due to the transmission channel, and compare it to the
quality degradation which can be expected in human-to-
human communication. This is a comparison between two
unequal partners, which nevertheless have some similar
underlying principles.

Speech quality is a subjective entity, and it is not
completely determined by the acoustic signal reaching the
listener’ s ear. Intelligibility, i.e. the ability to recognize
what is said, forms just one dimension of speech quality.
It also has to be measured subjectively, using auditory
experiments. The performance of a speech recognizer, in
contrast, is not a subjective entity, but it can be measured
instrumentally. As for speech quality, it depends on the
speech signal as well as on the ‘background knowledge’ ,
which is mainly included in the acoustic and language
models of the recognizer.

From a transmission point of view, comparing the
unequal partners seems to be justified. Both are
prerequisites for reasonable communication quality.

Whereas speech quality is a direct, subjective quality
measure, recognizer performance is only one quality
element which contributes to the overall quality of the
human-machine interaction. Unfortunately, there is no
fixed relationship between recognition performance on the
one hand, and human-machine communication quality on
the other. Approaches to set up such a relation have been
proposed by Walker et al. (1997) with the PARADISE
framework, but they are not universal and have to be
determined for each application anew.

For the planner of transmission networks, it is
important that good speech quality as well as good
recognition performance are provided by the network,
because speech transmission channels are increasingly
being used with both human and ASR back-ends. If,
however, the aim is to have a close look at the underlying
recognition mechanisms, it would be better to compare
speech intelligibility to ASR performance, see e.g.
Lippmann (1997). Intelligibility, however, is no longer a
planning aspect of modern telecommunication networks.

In Figures 2 to 7, recognition results are presented in
relation to the amount of transmission channel
degradation, e.g. the noise level, type of codec, etc.
Recognizer performance is first calculated in terms of the
percentage of correctly identified words (%corr), and the
corresponding error rates (substitutions, insertions and
deletions; %corr = 100% - %sub - %del), which are not
reproduced here. Because we are only interested in the
relative recognizer performance with respect to the
performance without transmission degradation (topline),
an adjustment to a normalized performance range
[perfmin;perfmax] has subsequently been performed. We
used a linear transformation for this purpose:

The topline recognition rates – condition No. 0 without
transmission – were 98.8 (clean training) and 98.6 (multi-
condition training) for the AURORA recognizer, and 68.1
for the German recognizer. For the Swiss-French
continuous recognizer, the calculation is carried out twice,
both for all the words in the vocabulary (topline 57.4), as
well as for just the keywords which are used in the speech
understanding module (topline 69.5). The alignment was
performed according to the NIST evaluation scheme,
using the SCLITE software (see NIST, 2001). The
German recognizer carries out a keyword-spotting, so the
evaluation was performed uniquely on keywords. The
AURORA recognizer was always evaluated with respect
to the complete connected digit string.

Obviously, the recognizers differ in their absolute
performance because the applications they have been built
for are different. This fact is tolerable, as we are only
interested in their relative degradation of recognition
performance, as a function of the physically measurable
channel characteristics. All recognition scores are thus
normalized to a range which can be compared to the
quality index predicted by the E-model. The normalization
also helps to draw comparisons between the recognizers.
For human-human communication, the E-model predicts
speech quality in terms of a transmission rating factor R
[0;100], which can be transformed via a non-linear
relationship into estimations of mean users’  quality
judgments on a 5-point ACR scale, the mean opinion
scores MOS [1;4.5] (see ITU-T Rec. G.107, 2000).

minminmax )(
%

% perfperfperf
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corr
corrn +−⋅=
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Figure 3. Comparison of E-model MOS prediction and
adjusted recognition rate, Swiss and AURORA recognizers.

Variable parameter: Nc. Nfor = -64 dBmp.
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Figure 2. Comparison of E-model MOS prediction and
adjusted recognition rate, German recognizer.
Variable parameter: Nc. Nfor = -100 dBmp.
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Figure 4. Comparison of E-model MOS prediction and
adjusted recognition rate.
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Figure 5. Comparison of E-model MOS prediction and
adjusted recognition rate. Variable parameter: Codec.
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Figure 6. Comparison of E-model MOS prediction and
adjusted recognition rate. Variable parameters: Nc and codec.
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Figure 7. Comparison of E-model MOS prediction and
adjusted recognition rate. Variable parameters: Nc and codec.



Test ConditionNo. Nc
(dBm0p)

Nfor
(dBmp)

Codec/MNRU Note
Swiss,
all w.

Swiss,
keyw.

Ger. AUR.,
clean

AUR.,
multi

0 - - - no transmission x x x x x
1 -100 -100 - low noise, no codec x x x x x
2 -100 -100 G.711 low noise x x x x x
3 -70 -100 G.711 low noise x
4 -60 -100 G.711 moderate nb. noise x
5 -50 -100 G.711 moderate nb. noise x
6 -40 -100 G.711 high nb. noise x
7 -30 -100 G.711 high nb. noise x
8 -70 -70 G.711 low noise x
9 -70 -64 G.711 default connection x x x x x

10 -70 -60 G.711 moderate wb. noise x
11 -70 -50 G.711 moderate wb. noise x
12 -70 -40 G.711 high wb. noise x
13 -70 -30 G.711 high wb. noise x
14 -100 -64 G.711 low nb. noise x x x x
15 -60 -64 G.711 moderate nb. noise x x x x
16 -55 -64 G.711 moderate nb. noise x x x x
17 -50 -64 G.711 moderate nb. noise x x x x
18 -40 -64 G.711 high nb. noise x x x x
19 -30 -64 G.711 high nb. noise x x x x
20 -70 -64 G.726 ADPCM coding x x x x x
21 -70 -64 G.728 LD-CELP coding x x x x x
22 -70 -64 G.729 CS-ACELP coding x x x x x
23 -70 -64 IS-54 VSELP coding x x x x x
24 -70 -64 G.726*G.726 ADPCM tandem x x x x x
25 -70 -64 IS-54*IS-54 VSELP tandem x x x x x
26 -70 -64 G.729*IS-54 mixed tandem x x x x x
27 -70 -64 MNRU, Q=30 dB low sign.-corr. noise x x x x x
28 -70 -64 MNRU, Q=20 dB moderate sign.-corr. noise x x x x x
29 -70 -64 MNRU, Q=15 dB moderate sign.-corr. noise x x x x x
30 -70 -64 MNRU, Q=10 dB moderate sign.-corr. noise x x x x x
31 -70 -64 MNRU, Q = 5 dB high sign.-corr. noise x x x x x
32 -70 -64 MNRU, Q = 0 dB high sign.-corr. noise x x x x x
33 -100 -100 IS-54 VSELP, low noise x
34 -70 -100 IS-54 VSELP, low noise x
35 -60 -100 IS-54 VSELP, moderate noise x
36 -50 -100 IS-54 VSELP, moderate noise x
37 -40 -100 IS-54 VSELP, high noise x
38 -30 -100 IS-54 VSELP, high noise x
39 -55 -64 IS-54 VSELP, moderate noise x x x x
40 -40 -64 IS-54 VSELP, high noise x x x x

Table 1: Experimental conditions included in the tests

The comparison reveals some interesting differences.
Figures 2 and 3 show the effects of uncorrelated narrow-
band noise. For the German and the AURORA
recognizers, higher levels of noise seem to be tolerable for
ASR than for human-to-human speech quality predicted
by the E-model. The performance of the Swiss-French
recognizer drops at about the same noise level as the E-
model quality estimation. All ASR performance curves
seem to drop more dramatically than the E-model curve
when noise levels become higher. Thus, a kind of
threshold can be observed, above which recognition
performance degrades dramatically. The exact position of
the threshold depends on the recognizer and – as the
AURORA recognizers show – on the training material as
well.

Figure 4 shows the behavior with respect to signal-
correlated quantizing noise of signal-to-noise level Q (in
dB). The performance of the German and the Swiss-
French recognizer degrade in a similar way than the E-
model predicts, but they are more “robust” than humans,
i.e. the decrease occurs at lower signal-to-noise ratios. The
Swiss-French recognizer reaches its optimum performance
not for the highest SNR, but around 30 dB – probably
because this recognizer has been trained on telephone
speech data with similar levels of quantizing noise. The
performance of the AURORA recognizers degrades more
gradually, both for clean and multi-condition speech data
training. No explanation for this effect could be found so
far. It has to be noted, however, that already low levels of
quantizing noise significantly impact the performance of
this recognizer (difference between 30 and 37 dB SNR, 37



dB corresponding to logarithmic PCM coding according
to ITU-T Rec. G.711).

Degradations originating from low bit-rate speech
codecs are – with few exceptions – better “tolerated” by
the recognizers than by humans, see Figure 5. Especially
the German and the AURORA recognizers seem to be
robust in this respect. The performance of the Swiss-
French recognizer – although trained on telephone speech
– is more affected by such degradations. In particular, this
recognizer seems to be sensible to ADPCM coding
(according to ITU-T Rec. G.726, both in simple operation
and in double tandem). The high degradations of human-
to-human speech quality predicted for the VSELP cellular
codec (IS-54) by the E-model is not reflected in the
recognition performance curves in the same way.

Figures 6 to 8 give an example of how combinations of
different types of impairments – in this case uncorrelated
narrow-band noise and VSELP coding – affect ASR
performance and speech quality. The E-model curves are
nearly parallel in the diagrams, indicating that the effects
of noise and codec are reflected in a more-or-less additive
way on the MOS scale. This is not the case for the Swiss-
French recognizer (‘x’  and ‘o’  in both Figures), where the
curves intersect. On the other hand, the AURORA
recognizer shows parallel curves in both clean and multi-
condition training conditions. The behavior of the German
recognizer could not yet be explained. Especially the –
reproducible – recognition rate at Nc = -50 dBm0p seems
to be an outlier.

6. Conclusions and Outlook
The results have some implications for both

developers of ASR systems as well as telephone network
planners. Although in many cases transmission channels
planned according to human quality considerations will
also yield good ASR performance, the observed threshold
effects for uncorrelated noise have to be taken into
account when moderate-to-low quality transmission is
encountered. In general, codecs operating at low bit-rates
seem to have a lower impact on ASR performance than on
human-to-human speech quality. Thus, networks planned
according to human quality requirements may normally
satisfy also the requirements set by the ASR. The
ADPCM codec, on the other hand, shows that this rule is
not without exception. From the experiments, it can

unfortunately not be excluded that similar weak points
may exist for other (or new) types of codecs.

On the basis of more extensive work in this domain,
quality modeling approaches defined in the telephone
community may become interesting also for application in
the speech technology community. Thus, it might become
possible to predict ASR performance in specific
transmission channel configurations from the ASR
system’ s topline performance. Together with prediction
models for other quality aspects in human-computer
interaction (like PARADISE), valuable information on the
quality and usability of a system can be deduced at an
early stage of system development. This will allow
efficient and economical system set-up, and help to
increase the success of spoken dialogue systems in the
long term.
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