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Abstract

In this paper, we carry out an in-depth investigation of diagnostic measures for assessing the influence
of observations and model misspecification in the presence of missing covariate data for generalized
linear models. Our diagnostic measures include case-deletion measures and conditional residuals.
We use the conditional residuals to construct goodness-of-fit statistics for testing possible
misspecifications in model assumptions, including the sampling distribution. We develop specific
strategies for incorporating missing data into goodness-of-fit statistics in order to increase the power
of detecting model misspecification. A resampling method is proposed to approximate the p-value
of the goodness-of-fit statistics. Simulation studies are conducted to evaluate our methods and a real
data set is analysed to illustrate the use of our various diagnostic measures.
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1. Introduction

Missing data are common in various settings, including surveys, clinical trials and longitudinal
studies. Methods for handling missing data strongly depend on the mechanism that generated
the missing values as well as distributional and modelling assumptions at various stages.
Therefore, the resulting estimates and tests may be sensitive to these assumptions. For this
reason, sensitivity analyses are commonly performed to check the sensitivity of the parameters
of interest with respect to the model assumptions.

Diagnostic measures such as residuals and Cook’s distance have been widely used to identify
influential observations in various regression models, such as generalized linear models
(GLMs) (Cox & Snell, 1968; Cook & Weisberg, 1982; Davison & Tsai, 1992; Zhu et al.,
2001). In addition, diagnostic measures, such as residuals, can be used to construct goodness-
of-fit statistics to detect any systematic discrepancies between the data and the fitted values
obtained from the model (Stute, 1997; Lin et al., 2002). However, to the best of our knowledge,
virtually no literature exists for developing diagnostic measures such as residuals, Cook’s
distance and goodness-of-fit statistics in GLMs with missing covariate data.

The aim of this paper is to systematically investigate various diagnostic measures for GLMs
with missing at random (MAR) covariates as well as not missing at random (NMAR)
covariates, often referred to as non-ignorably missing covariates. MAR also includes missing
completely at random (MCAR) covariates as a special case. Data are said to be MCAR if the
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failure to observe a value does not depend on any data, either observed or missing, whereas
data are said to be MAR if, conditional on the observed data, the failure to observe a value
does not depend on the data that are unobserved. The missing data mechanism is NMAR if the
failure to observe a value depends on the value that would have been observed (Ibrahim et

al., 2005). We propose two case-deletion measures, namely Cook’s distance and the Q-
displacement, based on the conditional expectation of the complete-data log-likelihood
function in the expectation–maximization (EM) algorithm (Zhu et al., 2001). We formally
define conditional residuals and examine their properties under different missing data
mechanisms, such as MAR and NMAR, and then we develop conditional residual processes
to construct goodness-of-fit statistics. Moreover, we develop specific strategies for
incorporating missing covariate data into the goodness-of-fit statistics in order to increase the
power of detecting model misspecification.

The model assessment methodology we develop here is crucial for missing data problems and
the first of its kind. It is important as:

i. it often turns out that covariates with missing values may in fact lead to cases with
influential observations and one cannot just delete the cases with missing values and
carry out a complete case analysis to examine which cases are influential;

ii. developing methods for assessing MAR and NMAR models as part of a sensitivity
analysis is one of the most important problems in missing data, and the diagnostic
and goodness-of-fit methodology we develop here is perfectly suited for this problem;

iii. model assessment and goodness-of-fit in the presence of missing data is a very
important problem whose development is quite different from methods based on
complete data, as one needs to appropriately define residuals and other quantities in
the context of missing data, and these statistics have very different small and large
sample properties and operating characteristics than statistics based on complete data
methods.

To motivate the proposed methodology, we consider data on 191 patients from two Eastern
Cooperative Oncology Group clinical trials (Ibrahim et al., 1999), which is discussed in more
detail in section 5. The primary interest here was to find how the number of cancerous liver
nodes (response) when entering the trials is predicted by six other baseline characteristics: time
since diagnosis of the disease (in weeks); two biochemical markers (each classified as normal
or abnormal), alpha-fetoprotein and anti-hepatitis B antigen; associated jaundice (yes, no);
body mass index (weight in kilograms divided by the square of height in metres); and age (in
years). From these six covariates, three had missing data and the remaining covariates were
completely observed. The three with missing data were time since diagnosis of the disease,
alpha-fetoprotein and anti-hepatitis B antigen, with 8.9%, 5.8% and 18.3% missingness
percentages, yielding a total missingness percentage of 29%. Table 1 shows all the potentially
influential cases, where cases 10, 15, 65 and 160 have abnormally large response values and
case 131 has an extreme covariate value in time since diagnosis compared with the rest of the
cases. In this paper, we will develop a formal methodology to assess such cases. In section 5,
we revisit this data set and use our proposed methodology to determine whether these cases
are influential or not.

The rest of this paper is organized as follows. In section 2, we review the model assumptions
for GLMs with missing covariates and the EM algorithm for calculating maximum likelihood
estimates (MLEs). In section 3, we develop new diagnostic measures, including case-deletion
diagnostics and conditional residuals and examine their properties. We construct goodness-of-
fit statistics based on conditional residuals. We present several simulation studies in section 4,
and analyse the liver cancer data set in section 5. We conclude the paper with some final remarks
in section 6. Proofs are collected in the Appendix.
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2. Preliminaries

Consider n independent observations (x1, z1, y1), …, (xn, zn, yn), where yi is the response
variable, xi is a p1-dimensional vector of completely observed covariates, and zi is a p2-
dimensional vector of partially observed covariates. Moreover, let zm,i and zo,i denote the
missing and observed components of zi respectively. Let ri be a p2-dimensional random vector,
whose kth component, rik equals 1, if zik is observed for subject i, and 0, if zik is missing, where
zik is the kth component of zi. Under the NMAR setting, we need to specify the joint distribution
of (xi, zi, ri, yi) for each i. It is common to decompose p(xi, zi, ri, yi|η) into a product of three
conditional distributions as follows:

(1)

where η denotes the vector of all unknown parameters as defined below.

Modelling (xi, zi, ri, yi) usually involves three levels of assumptions. We assume a GLM for
the conditional distribution of yi given (xi, zi) (Ibrahim, 1990; Ibrahim & Lipsitz, 1996; Lipsitz
& Ibrahim, 1996; Little & Rubin, 2002). Specifically, yi given (xi, zi) has a density in the
exponential family

(2)

i = 1, …, n, indexed by the canonical parameter θi and the scale parameter τ, where the functions
b(·) and c(·, ·) determine a particular distributional family in the class, such as the binomial,

normal or Poisson distribution. The functions ai(τ) are commonly of the form ,
where the kis are known weights. Further, the θis satisfy the equations θi = θ(μi), i = 1, …, n,

and  are the components of μ= E (y|x, z, β, τ), where g(·) is a known link function
and β = (β1, …, βp)′ is a p-dimensional vector of regression coefficients (p = p1 + p2). The
GLMs include many well-known regression models, such as normal linear regression, logistic
and probit regression, Poisson regression, gamma regression and some proportional hazards
models (McCullagh & Nelder, 1989).

We also need to specify a distribution for the missing covariates zi. For large p, modelling the
covariates usually involves several assumptions. To reduce the number of parameters, we
follow Lipsitz & Ibrahim (1996) and Ibrahim et al. (1999) and write p(zi|xi, α) as a sequence
of one-dimensional conditional distributions:

(3)

where α is a subvector of η. Furthermore, we typically assume specific parametric forms for
these one-dimensional conditional distributions. As the xis are fully observed, it is not
necessary to specify a distribution for xi.

One way of modelling the missing data mechanism p(ri|xi, zi, yi, ξ) is to use a joint log-linear
model (Lipsitz & Ibrahim, 1996). Following Ibrahim et al. (1999), another way of modelling
p(ri|yi, xi, zi, ξ) is to assume that

(4)
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It is common to use logistic regression models for the binary variables rij.

The EM algorithm has been a popular technique for obtaining the MLE of η = (β, τ, α, ξ)′ in
GLMs with missing covariate data (Little & Schluchter, 1985; Schluchter & Jackson, 1989;
Ibrahim, 1990; Ibrahim & Lipsitz, 1996; Lipsitz & Ibrahim, 1996, 1998; Little & Rubin,
2002). Let

be the complete data,

be the observed data, and Dm = (zm,1, …, zm,n) be the missing data. At the sth step of the EM
algorithm, given η(s), the E-step involves evaluating the Q-function, given by

(5)

where Lc(η|Dc) = log p(Dc|η) is the complete-data log-likelihood function. The M-step consists
of maximizing Q1(β, τ|η(s)), Q2(α|η(s)) and Q3(ξ|η(s)) separately (Ibrahim et al., 1999).

Our main interest is to make valid inferences about β, and this requires the correct specification
of all three levels of assumptions in (1). Misspecifying some of those modelling assumptions
may introduce serious bias in β. Thus, it is crucial to assess the potential degree of
misspecification at each of the three levels of assumptions in (1).

3. Diagnostic measures

We define the following two types of diagnostic measures: case-deletion measures and
conditional residuals for formal and informal examination of the adequacy of a GLM with
missing covariates. The two case-deletion measures, Cook’s distance and the Q-displacement,
can be used to examine the effects of deleting individual observations on the estimate of η. The
conditional residuals carry important information about the influence of observations. We use
the conditional residuals to construct goodness-of-fit statistics for testing the validity of
particular model assumptions.

3.1. Case-deletion influence measures

To quantify the effects of deleting the ith observation on the MLE, η ̂ of η, we define the MLE
of η for a subsample Dc[i], in which the ith observation di = (yi, xi, zi, ri) is deleted from Dc.
For the subsample Dc[i], we define Q[i](η|η ̂) as
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where the expectation is taken with respect to p(Dm|Do, η ̂). Then we define η ̂[i] as the maximizer

of Q[i](η|η ̂). Following Zhu et al. (2001), we calculate a one-step approximation  of η ̂[i] as
follows:

(6)

where ∂η and  represent the first- and second-order derivatives with respect to η. In (6), several
degrees of approximation are used, but this is usually adequate for diagnostic purposes (Cook
& Weisberg, 1982; Zhu et al., 2001). As ∂ηQ(η|η ̂)|η= η ̂ = 0,

We introduce two case-deletion measures to quantify the distance between the MLE of η with
and without the ith observation deleted from the full sample (Cook & Weisberg, 1982; Zhu et

al., 2001). Cook’s distance, denoted by CDi(M), in this setting is defined as

(7)

where M is chosen to be a positive definite matrix. For simplicity, we use CDi to denote

CDi(M), when . Similar to the likelihood displacement (Cook, 1986), the
Q-displacement (Zhu et al., 2001) is defined by

(8)

If the value of CDi or QDi is large, then the ith observation is influential. Similarly, we can
also quantify the effects of deleting two or more observations on η ̂ (Cook & Weisberg, 1982,
chapter 3). For simplicity, we omit those details here.

The diagnostic measures CDi and QDi can be decomposed as sums of three diagnostic measures

for assumptions (2)–(4) due to the decomposition in (5). The matrix  can be written
as

Thus, (6) can be written as
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(9)

Finally, CDi = CDi,1 + CDi,2 + CDi,3, where

(10)

Intuitively, CDi,1 is mainly associated with the effects of removing the ith observation on
assumption (2), CDi,2 is for assumption (3) and CDi,3 is for assumption (4). Similarly, it follows
from (5) that

(11)

where

Thus, QDi,1 is mainly associated with the effects of removing the ith observation on assumption
(2), QDi,2 is for assumption (3) and QDi,3 is for assumption (4). Moreover, using a Taylor’s
series expansion, it can be shown that QDi,k is asymptotically equivalent to CDi,k for each of
k = 1, 2, 3.

3.2. Conditional residuals

Residuals are key tools for revealing departures from assumptions (2)–(4). As our primary
interest is to make valid inferences on assumption (2), we define the residual for the ith
observation as

However, as zm,i is missing, Ri(η ̂) cannot be directly calculated for those cases with missing
covariates. Generally, there are many ways of ‘eliminating’ zm,i. Here, we focus on two kinds
of conditional residuals as follows:

(12)

ZHU et al. Page 6

Scand Stat Theory Appl. Author manuscript; available in PMC 2009 December 22.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(13)

for i = 1, …, n, where the expectations in (12) and (13) are taken with respect to p(zm,i|xi,
zo,i, η) and p(zm,i|xi, zo,i, ri, yi, η), respectively. If there are no missing covariates in zi, then

 and  reduce to Ri(η ̂). Thus, the conditional residuals  for k = 1, 2 can
be regarded as generalizations of residuals in GLMs (Cook & Weisberg, 1982). The conditional
residuals in (12) and (13) are computationally attractive because the conditional expectations
involved can be easily evaluated using Markov chain Monte Carlo (MCMC) methods (Chen

et al., 2000;Liu, 2003). We note that  does not account for the missing data mechanism.

We examine several properties of the proposed conditional residuals. Through a better
understanding of the properties of conditional residuals, we may develop both formal and
informal diagnostic tools for the examination of the adequacy of assumption (2). We derive
the expectations and variances of the proposed conditional residuals in the following theorems,
whose assumptions and detailed proofs can be found in the Appendix.

Proposition 1—Suppose that assumptions C3 and C2 in the Appendix are true. We then have
the following results:

i.  for k = 1, 2, where η* is the true value of η. However,

 may not equal zero for k = 1, 2.

ii. If the missing data are MAR, then  and

(14)

iii. If p(ri|xi, zi, yi, ξ) = p(ri|xi, zi, ξ), then

iv.

where

and

v.

where
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and

Proposition 1(i) shows that  for k = 1, 2 are biased, whereas

 and  are unbiased. Proposition 1(ii) shows that the missing data

indicators can be dropped from  under MAR covariates. The inverse weighted residuals

are unbiased only for . Proposition 1(iii) shows that  is unbiased
when the missing mechanism is independent of yi. Proposition 1(iv) and (v) give the first-order

expansions of  and  respectively. In particular, the terms involving  and

 are due to the presence of the missing data. The matrices  and  for k = 1, 2, can be
calculated using MCMC methods (Chen et al., 2000). For instance,

(15)

Thus,

We can use MCMC methods to generate random samples from p(zm,i|xi, zo,i, ri, yi, η ̂) and

construct a consistent estimate for .

The values of the standardized  may be used to detect anomalous or influential
observations (Cook & Weisberg, 1982). We define a standardized conditional residual as
follows:

(16)

where

When model (1) is correctly specified,  and  should oscillate around 0. We

consider the ith observation as an ‘outlier’ if  is significantly greater than some

threshold, such as 3. Moreover, if many  values are significantly greater than zero,
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then one should question whether assumption (2) is correct. It is also worthwhile to inspect

 against some function of the data, such as the observed responses and a specific
covariate, which may provide an assessment of the adequacy of assumption (2).

3.3. Goodness-of-fit test without incorporating missing data

There is an extensive literature on developing test statistics to check the correct specification
of the conditional mean (17) for GLMs with no missing data (Su & Wei, 1991;Stute, 1997;Lin
et al., 2002;Stute & Zhu, 2002). However, to the best of our knowledge, no goodness-of-fit
test statistics have ever been developed for GLMs with missing covariate data.

We may use the two types of conditional residuals proposed in the previous subsection to
develop test statistics to formally check model assumptions in a GLM with missing covariates.

However, for simplicity, we temporarily drop the superscript (k) in , because the results
below hold for both types of conditional residuals. These test statistics are originally designed
to test the following null and alternative hypotheses:

(17)

However, because some components of z are missing, we may wish to test the equality

Thus, instead of testing  against , we test the following null and alternative hypotheses:

(18)

Note that h(η|x) = 0 is only a necessary condition of E[y|x, z] = g((x′, z′)β). Thus, accepting h

(η|x) = 0 does not imply the acceptance of .

We can construct statistics for testing  as follows. Following theorem 1 in Bierens (1992),
E{CR(η)|x} = 0 is equivalent to E{CR(η)|x′ϕ} = 0 for any ϕ ∈ Rp1. Thus, as shown in lemma

1 of Escanciano (2006),  is equivalent to

(19)

for almost every (ϕ, t). To test , we may define a stochastic process as follows:

where
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in which ||·|| is the common L2-norm in Euclidean space. Graphically, for a specific direction
ϕ, we can plot I1((ϕ, t); η) as a function of t and use it as an exploratory tool for the detection
of model misspecification along the direction ϕ (Lin et al., 2002). For instance, we may set ϕ
= (β ̂1, …, β̂p1)′.

Theoretically, we regard I1((ϕ, t); η) as a stochastic process indexed by (ϕ, t) and then we use
I1((ϕ, t); η) to construct two test statistics. We first define a conditional Kolmogorov test (CK)
as

(20)

We also define a Cramer–von Mises test as follows:

(21)

where Fn,ϕ(u) is the empirical distribution function of { } (Stute, 1997). Large

values of CM1 and CK1 lead to rejection of .

We note that CM1 has several distinctive features (Escanciano, 2006). The statistic CM1 has
a closed form (Escanciano, 2006, appendix B), whereas computing the Kolmogorov-type
supremum statistic of residual process involves high-dimensional maximizations. Particularly,
when the dimension of the covariate vector is high or even moderate, it can be computationally
demanding to compute the Kolmogorov supremum statistic. Thus, CM1 avoids the problem of
the curse of dimensionality. We are now led to theorem 1.

Theorem 1—Suppose that assumptions C1–C7 in the Appendix are true. Under the null

hypothesis , we then have the following results:

i.

with ψn,i = Mn(η*)−1ℓ̇i (η*), where

ii.  converges in distribution to , where  is a
mean zero Gaussian process with covariance function
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iii. CK1 and CM1 converge in distribution to

respectively, where Fϕ(t) is the limiting cumulative distribution function of Fn,ϕ(t) and
Δ1(ϕ, t) is defined by

Theorem 1 formally characterizes the asymptotic null distributions of CK1 and CM1. Therefore,
we may directly approximate those distributions in order to calculate the p-values of the test
statistics CK1 and CM1.

The next result establishes the asymptotic distributions of CK1 and CM1 under a sequence of
local alternatives converging to the null at a parametric rate n−1/2. We consider the local
alternatives such that p(yi|xi, zi) belongs to the exponential family (2) and

(22)

for i = 1, …, n, where g0(xi, zi) is a function of (xi, zi). Let

where ḃ denotes ∂tb(t) and ḃ−1(·) is the inverse function of ḃ(·). Then, we have

Thus, the true distribution of yi given (xi, zi), denoted by p(yi|xi, zi, n
−1/2), is

(23)

Moreover, p(xi, zi|α*) and p(ri|xi, zi, yi, ξ*) are unchanged. We are now led to the following
results.
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Theorem 2—Suppose that assumptions C1–C7 in the Appendix and the sequence of models
in (23) are true. We then have the following results:

i.  converges in distribution to ν1 + A1, where ν1 is the same normal
distribution as in theorem 1 and

ii. I1(·; η*) converges in distribution to G1(·) + A2(·), where G1(·) is the same process as
in theorem 1. In addition,

for , whereas

for .

iii. CK1 and CM1 converge in distribution to

and

respectively.

3.4. Goodness-of-fit test incorporating missing data

We propose to use the missing covariates zi to improve the power of I1((ϕ, t); η) in detecting
the misspecification of g((x′, z′)β). Recall that h(η|x) = 0 is only a necessary condition of E[y|
x, z] = g((x′, z′)β). Because 1(x′ϕ ≤ t) in I1((ϕ, t); η) does not involve the missing covariates

z, we may lose power in detecting the misspecification of  in the missing covariate space.
In particular, if the fraction of missing covariates is small, then it is very inefficient to drop all
the information in z.

We may test whether  is true using the additional information contained in the missing
covariates. Letting zm,i(α) = E[zm,i|xi, zo,i, α], we suggest replacing zm,i by zm,i(α̂), which is an
imputed missing covariate vector. However, developing test statistics based on the imputed
missing covariates depends on the specific missing data mechanism.
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We first consider the case that p(ri|xi, zi, yi) is independent of yi. Using proposition 1(iii), we
can show that

(24)

for all i = 1, …, n, where

and ci* = ci(α*) = (xi, zo,i, zm,i(α*)). In addition, ci(α) is defined as

Let ĉi = ci(α̂). We are thus able to incorporate the additional information from zo,i into the

indicator function . Following the reasoning in (24), we now propose the stochastic
process:

(25)

We first suggest plotting I2((ϕ ̃, t) against t for a specific ϕ ̃ as an exploratory tool for detecting
the form of misspecification of assumption (2). For instance, we may set ϕ ̃ = β̂. Then, we
develop the corresponding CK and CM statistics based on I2((ϕ ̃, t); η ̂), denoted by CK2 and
CM2. Large values of CK2 and CM2 lead to rejection of the hypothesis that

.

Secondly, suppose that the missing data are MAR. Using proposition 1(ii), we can show that
for i = 1, …, n,

Then, we propose an inverse weighted process as follows:

(26)

We may plot I3((ϕ ̃, t) against t for a specific ϕ ̃ as an exploratory tool for detecting the assumption
of MAR. Similar to (21) and (20), we can develop the corresponding CK and CM statistics
based on I3((ϕ ̃, t); η ̂) and denote them by CK3 and CM3. Large values of CK3 and CM3 lead
to rejection of the hypothesis that
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Similar to theorems 1 and 2, we can establish the asymptotic distributions of CKk and CMk

and their power behaviour under local alternatives for k = 2, 3. For simplicity, we only include
the asymptotic null distributions of I2((ϕ ̃, t); η*) below.

Theorem 3—Suppose that assumptions C1–C8 in the Appendix are true. Under the null

hypothesis , I2(·; η*) converges in distribution to G2(·), where G2(·) is a mean zero Gaussian
process with covariance function

The CKk and CMk for k = 2, 3 differ from CK1 and CM1 in several aspects. The CK1 and

CM1 focus on testing  regardless of the missing data mechanism and the type of conditional
residual, whereas large values of CKk and CMk for k = 2, 3 can be caused by the misspecification
of the missing data mechanism. CK1 and CM1 can be used in either MAR or NMAR settings
and regardless of the types of conditional residual, and are mainly used to examine the validity
regarding the assumptions of the sampling distribution of (y|x). CKk and CMk for k = 2, 3 are
most useful in examining issues related to the sampling distribution of (y|x, z) and the missing
data mechanism. Specifically, CM2 (or CK2) addresses the form of the missing data
mechanism, and in particular, whether the missing data mechanism depends on the response
variable. CM3 (or CK3) addresses the more general issue of whether the missing data

mechanism is NMAR. For instance, CK2 and CM2 test whether  equals
zero or not, whereas CK3 and CM3 test whether

equals zero or not. The rejection of  may be caused by the dependence
of p(ri|xi, zi, yi, ξ) on the response yi, while the rejection of

can be caused by NMAR covariate data. Thus, CKk and CMk, k = 2, 3 are useful goodness-of-
fit statistics for testing the missing data mechanism.
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3.5. Resampling method

In the following, we devise a resampling method to approximate the p-value of CK1. We can
develop similar methods for CKk, CMj, k = 2, 3, j = 1, 2, 3. There are four steps in generating
the stochastic processes that have the same asymptotic distributions as I1((ϕ, t); η ̂).

Step 1. Generate independent and identically distributed (i.i.d.) random samples,

{ }, from an N(0, 1) distribution for q = 1, …, Q, where Q is the number of
replications, say Q = 1000.

Step 2. Calculate

where

Note that conditional on the observed data, as I1((ϕ, t); η ̂)(q) is the sum of independent but
not identically distributed stochastic process, it follows from some mild conditions that
I1((ϕ, t); η ̂)(q) converges weakly to the desired Gaussian process in theorem 1 as n → ∞
(Kosorok, 2003; van der Vaart & Wellner, 1996; Stute et al., 1998).

Step 3. Calculate the test statistics

and obtain { }.

Step 4. Calculate the p-value of CK1 using { }.

4. Simulation studies

We conducted Monte Carlo simulations to examine the finite-sample performance of the
various diagnostic measures proposed here. First, we applied case-deletion measures and
standardized conditional residuals to a simulated data set based on a linear model, in which an
outlier was added. We expected that the diagnostic measures would detect the outlier. Secondly,
we evaluated the rejection rates of the type I and type II errors for CM1 based on the conditional

residuals  and , for CM2 and for CM3 respectively. For the sake of simplicity, we
omitted the results based on CKk for k = 1, 2, 3 to save space, as they have similar type I and
type II errors as CMk. Furthermore, we evaluated the rejection rates for CM1 based on the

conditional residuals  and , and did the same thing for CM2, for a logistic regression
simulation.

4.1. Case-deletion measures and conditional residuals for the linear model

We considered the linear model
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(27)

where the εis are i.i.d. and εi ~ N(0, τ), i = 1, …, n. We assume that yi and xi are completely
observed for i = 1, …, n, but the covariate zi may be missing for some cases. We set n = 100,
β0 = β1 = β2 = 1 and τ = 1. Moreover, we independently generated 100 random vectors (xi, zi)
from an N2(0, I2) distribution. We also assumed the covariates are MAR,

(28)

with ξ0 = −1.5 and ξ1 = 1.0 to obtain an average missingness fraction of 20%.

We first changed the last response y100 to y100 + 5.0 in order to add an outlier to the data set.
We fit the linear model assuming an MAR zi for the simulated data and a normal distribution
for zi. Then we calculated case-deletion measures and conditional residuals for each
observation. The last observation was classified as the most influential observation by CDi and
CDi,1, but not CDi,2, because we only changed y100 in the response space (Fig. 1A–C).
Specifically, CD100 = 4.378 is much larger than the second largest CDi = 0.33 (Fig. 1A).
Moreover, we obtained similar findings based on QDi, QDi,1 and QDi,2 (not presented here).

The standardized conditional residuals with  also identified y100 as an influential
observation (Fig. 1D).

Now, instead of changing the last response y100, we changed z100 to z100 + 5.0 to add an outlier
in the covariate space, and fit the same linear model assuming an MAR zi. The last observation
was classified as the most influential observation by CDi, CDi,1 and CDi,2 (Fig. 1E–G). In
contrast to the previous case in which y100 was changed, both CDi,1 and CDi,2 detected the
influential observation z100 (Fig. 1F and G), because changing z100 affected the first two

components of (1). The standardized conditional residuals  for k = 1, 2 identified the last
observation as influential (Fig. 1H).

4.2. Goodness-of-fit statistics for the linear model

We systematically assessed the goodness-of-fit statistics based on the conditional residuals
developed in section 3 under various scenarios. We used 500 replications to calculate the p-
values of all test statistics. The significance level was always fixed at 0.05.

We considered three groups of simulation studies. The first group of simulation studies was to

compare the finite-sample performance of CM1 using either  or  under two scenarios.
In the first scenario, we simulated 500 data sets from

where (xi, zi) were generated from an N2(0, I2) distribution, the εis are i.i.d. and εi ~ N(0, τ), i
= 1, …, n, and c is in the range [0, 1]. We set β0 = β1 = β2 = 1. We assumed that the covariate
zi has a normal distribution. We considered two missing data mechanisms: MCAR and MAR.
Under MAR, the missing data mechanism was given by (28), in which we set ξ1 = 1.0 and ξ0
with values −1.5, − 0.5 and 0.5 to obtain average missing data fractions of 20%, 40% and 60%
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respectively. Then we fit yi = β0 + β1xi + β2zi + εi under MAR, and thus the fitted model would
be misspecified if c ≠ 0 and the misspecification is due to the fully observed covariate xi.

The top half of Table 2 shows the rejection rates of CM1 based on both  and  for this
scenario. The type I error rates are accurate across all missingness fractions. The CM1 based

on  is uniformly more powerful than that based on . Consistent with our expectations,
the power for detecting misspecification of the model increases with |c| for CM1. The missing
data fraction slightly influences the power of detecting model misspecification for CM1.

In the second scenario, we generated 500 data sets from , whereas the
rest of the set-up remained the same as in the first scenario described earlier. We fit yi = β0 +
β1xi + β2zi + εi assuming MAR, and thus the model would be misspecified if c ≠ 0 and the
misspecification is due to the missing covariate zi. The rejection rates are shown in the second

half of Table 2. We found that CM1 based on both  and  cannot detect the

misspecification of , because CM1 did not incorporate the missing covariate zi. Comparing
the top half with the bottom half in Table 2 reveals the importance of incorporating the

misspecified covariate in the indicator function .

The second group of simulation studies was to assess the finite-sample performance of CM2.
First, we evaluated the power of CM2 in detecting the misspecification of E [yi | xi, zi ]. We
used the same two scenarios as in the first group of simulations, and in each case, we fit the
linear model yi = β0 + β1xi + β2zi + εi assuming zi is MAR.

The first half of Table 3 shows the results for the first scenario where the misspecification is
due to xi, and the second half of the table is for the second scenario where the misspecification
is due to zi. The type I errors rates of CM2 are accurate across all missingness fractions. For
both scenarios, the power for detecting misspecification of the model increased with |c| for
CM2 and the missing data fraction influences the power in detecting model misspecification

(i.e. |c| ≠ 0). Compared with Table 2, when  is the true model (i.e. the

first scenario), CM1 based on  is slightly more powerful than CM2 in detecting the

presence of . However, if  is the true model (i.e. the second

scenario), then CM2 is much more powerful than CM1 based on . This indicates that
incorporating the missing data can increase the power of detecting model misspecification due

to .

We checked the influence of the misspecified parametric assumptions for the covariate
distribution on the finite-sample performance of CM2. Again, we used the same two settings
as before except for one change: zi was generated from U [−3, 3], a uniform distribution, instead
of an N(0, 1) distribution. We fit the linear model yi = β0 + β1xi + β2zi + εi and assumed that
zi is MAR and has a normal distribution. The first half of Table 4 shows the results for the first
scenario where the misspecification is due to xi, and the second half of the table is for the second
scenario where the misspecification is due to zi. Compared with Table 3, when

 is the true model (i.e. the first scenario), the misspecified covariate

distribution for zi has little effect on the statistical power of detecting the presence of .

However, if  is the true model (i.e. the second scenario), the
misspecified covariate distribution for zi has a clear effect on the statistical power of detecting

the presence of , especially when the missing data fraction is large. This indicates that the
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covariate distribution may have a profound effect on the finite-sample performance of our
goodness-of-fit tests.

Moreover, we assessed the power of CM2 in detecting whether the missing data mechanism
depends on the response variable. Specifically, 500 data sets were generated from yi = β0 +
β1xi + β2zi + εi assuming zi is MAR,

for i = 1, …, 100, whereβ0 = β1 = β2 = 1 and εi ~ N (0, 1). We fit the linear model yi = β0 +
β1xi + β2zi + εi under (28). The rejection rates were 0.045, 0.198, 0.328 and 0.358 for a = 0.0,
1.0, 1.5 and 2.0 respectively. Thus, CM2 can detect the dependence of the missing data
mechanism on the response for large values of |a|.

The third group of simulation studies was to assess the finite-sample performance of CM3.
First, we evaluated the power of CM3 in detecting the misspecification of E [yi | xi, zi] when
the missing data mechanism is dependent on the response variable. We simulated 500 data sets
using the second scenario in the first group of simulation studies, and then we fit the linear
model assuming an MAR mechanism

(29)

with various values of ξ0 and ξ1 to obtain the desired average missing data fractions. The
rejection rates of CM3 were 0.051, 0.380, 0.514 and 0.594 for c = 0.0, 0.5, 1.0 and 1.5,
respectively, assuming a 60% missingness fraction for zi.

Furthermore, we assessed the power of CM3 in detecting whether the missing data mechanism
is non-ignorable. The 500 data sets were generated from yi = 1 + xi + zi + εi for i = 1, …, 100,
where εi ~ N (0, 1), and the missing data mechanism is

Three average missingness fractions of 20%, 40% and 60% were used. We fit the linear model
yi = β0 + β1xi + β2zi + εi assuming (29). The rejection rates of CM3 were 0.046, 0.16, 0.262
and 0.422 for a = 0.0, 1.0, 1.5 and 2.0, respectively, for the 60% missingness fraction.

4.3. Goodness-of-fit statistics for the logistic regression model

We then considered the logistic regression model. The first group of simulation studies was to

compare the finite-sample performance of CM1 using either  or  under the two similar
scenarios as in the previous section. In the first scenario, we simulated 500 data sets from
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for i = 1, …, 200, where the c was in the range [0, 1]. We set β0 = β1 = β2 = 1. We considered
two missing data mechanisms: MCAR and MAR. For MAR, the mechanism was given by
(28), in which we set ξ1 = 1.0 and ξ0 with values −1.5, − 0.5 and 0.5 to obtain average missing
data fractions of 20%, 40% and 60% respectively. Then we fit

assuming an MAR mechanism, and thus the fitted model would be misspecified if c ≠ 0 and
the misspecification is due to xi.

The results shown in the first half of Table 5 are similar to those from the linear model. The

type I error rates of CM1 based on both  and  are accurate across all missingness

fractions. The CM1 based on  is uniformly more powerful than that based on . The
power for detecting misspecification of the model increased with |c| for CM1. The missing data
fraction slightly influences the power of detecting model misspecification for CM1.

In the second scenario, we generated 500 data sets from

whereas the rest of the set-up remained the same as in the first scenario. We fit the model

ignoring the term , and thus the model would be misspecified if c ≠ 0 and the misspecification
is due to zi. The results are shown in the second half of Table 5. Similar to the linear model,

CM1 based on both  and  cannot detect the misspecification of , because CM1 did
not incorporate the missing covariate zi.

Similarly to the linear model, we assessed the finite-sample performance of CM2 using the
same two scenarios. The first half of Table 6 shows the results for the first scenario where the
misspecification is due to xi, and the second half of the table is for the second scenario where
the misspecification is due to zi. The type I errors rates of CM2 are accurate across all
missingness fractions. And for both scenarios, the power for detecting misspecification of the
model increased with |c| for CM2 and the missing data fraction influences the power in detecting
model misspecification (i.e. |c| ≠ 0). Compared with Table 5, for the first scenario, CM1 based

on  is slightly more powerful than CM2 in detecting the presence of . However, for the

second scenario, CM2 is much more powerful than CM1 based on . This indicates that
incorporating the missing data can increase the power of detecting model misspecification due

to .
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5. Liver cancer data

To illustrate our proposed methods, we considered data on 191 patients from two Eastern
Cooperative Oncology Group clinical trials as mentioned in section 1 (Ibrahim et al., 1999).
We are interested in how the number of cancerous liver nodes (y) when entering the trials is
predicted by six other baseline characteristics: time since diagnosis of the disease (in weeks)
(z1); two biochemical markers (each classified as normal or abnormal), alpha-fetoprotein (z2)
and anti-hepatitis antigen (z3); associated jaundice (yes, no) (x1); body mass index (weight in
kilograms divided by the square of height in metres) (x2); and age (in years) (x3).

We used a Poisson regression model, given by

where  is the 1 × 7 vector of covariates including an intercept, and
β = (β0, β1, …, β6)′ are the corresponding regression coefficients. The logarithm of the time
since diagnosis was used to achieve approximate normality. As only zi = (zi1, zi2, zi3) have
missing values, we need to consider a joint distribution only for these covariates given xi =
(xi1, xi2, xi3). As zi2 and zi3 were both dichotomous, it was reasonable to model their conditional
univariate distributions using logistic regressions. Thus

where α = (α1, α2, α3) and (zi3 | zi1, zi2, xi) is a logistic regression with probability of success

and . Similarly,

and . In addition, we took a normal distribution for the missing covariate

z1, specifically, zi1 ~ N (α11, α12), i = 1, …, n, and .

We assumed that the missing covariates are MAR and calculated the MLE of (β, α) using the
EM algorithm. The case-deletion diagnostic measures CDi identified cases 10, 15, 65, 131 and
160 as influential, among which CDi,1 identified cases 10, 15, 65 and 160, whereas CDi,2

identified case 131 (Fig. 2A–C). These findings confirmed the suspected cases reported in
Table 1. The QDi, QDi,1 and QDi,2 gave similar results (not presented here). The standardized
conditional residuals, SCR(1), detected cases 10, 15, 65 and 160 as influential observations
(Fig. 2D) and SCR(2) gave similar results (not presented).
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The p-values of the goodness-of-fit test using CM1 based on  and  were 0.56 and
0.48, respectively, whereas the p-value of the goodness-of-fit test using CM2 was 0.06. We

drew the residual plot of I1((β ̂, t); η ̂) against t using  (Fig. 2E) and the residual plot of
I2((β ̂, t); η ̂) against t (Fig. 2F). In Fig. 2E and F, the observed pattern is shown by the thick
drawn curve, and 15 simulated resampling realizations are shown by the thin dashed curves.
The p-values for the supremum test with 500 realizations are 0.78 in Fig. 2E and 0.12 in Fig.

2F. All these indicated that either  or the missing data mechanism depended
on the response variable. So, we considered the following MAR mechanism,

where p(ri2 | ri1, xi, yi, ξ2) and p(ri1 | xi, yi, ξ1) are

in which

and

We found that the missing data mechanism of zi1 depended on the response variable, so we
should use CM3 for the goodness-of-fit test. The goodness-of-fit test using CM3 was not
significant (p = 0.56), indicating that the model fit well.

6. Discussion

We have derived goodness-of-fit statistics in the presence of missing data based on novel
definitions of case-deletion and residual diagnostics. The asymptotic properties of the
goodness-of-fit measures based on conditional residuals were also derived, as well as MCMC
algorithms for carrying out the EM algorithm. The simulation studies and liver cancer data set
showed very promising results for the proposed methods. Future work in this area includes
extending the methodologies to the Cox proportional hazards model with right censored
survival data and missing covariates, as well as to parametric and semiparametric models for
longitudinal data with MAR or NMAR response and/or covariate data.

We also note several limitations of our proposed tests. The first limitation is that we assume
parametric distributions throughout the paper, whereas the goodness-of-fit tests focus on
testing the regression function. It is very interesting to extend the definitions of conditional
residuals and associated test statistics to semiparametric models. In addition, our preliminary
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results have shown that the misspecified distributions can have profound effects on the finite-
sample performance of our proposed test statistics. The second limitation is that it is difficult
to pinpoint the cause of rejection of the null hypothesis and subsequently to suggest an
alternative model. This limitation is inherent in all omnibus tests based on integrated
regressions (Stute, 1997). All of these issues merit further research, and we will study them in
our future work.
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Appendix: Assumptions and Proofs

The following assumptions are needed to facilitate development of our methods, although they
may not be the weakest possible conditions.

(C1) η* is unique and an interior point of ϒ, where ϒ is a compact set in Rdim(η).

(C2) η ̂ → η* in probability as n → ∞.

(C3) For each i, ℓ(di; η) = log p(di; η) is three times continuously differentiable on ϒ and
|∂jℓ(di; η)|2 and |∂j∂kℓ(di; η)| are dominated by an integrable function Bi (di) for all j, k =
1, …, d, where ∂j = ∂/∂ηj.

(C4) For each ε > 0, there exists a finite K such that

for all n, where 1{Bi (di) > K} is the indicator function of Bi (di) > K.

(C5)

where A(η*) is non-singular and B(η*) is positive definite.

(C6) Let ρ((ϕ, t), (ϕ*, t*)) be the limit of ρn((ϕn, tn), (ρ*n, t*n)), where

For any sequences {(ϕn, tn)} and {(ϕ*n, t*n)}, ρn((ϕn, tn), (ϕ*n, t*n)) converges to zero when
ρ((ϕn, tn), (ϕ*n, t*n)) → 0 as n → ∞. A similar condition also holds for I3((ϕ ̃, t); η*).
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(C7) Δ1(ϕ, t) and Fϕ(dt) dϕ are absolutely continuous with respect to Lebesgue measure
on Π.

(C8) For any small a0 > 0, we assume that

where C0 and c1 are two positive scalars,

Comments

Condition C1 is a standard identifiability condition. Some sufficient conditions for condition
C2 have been widely presented in the literature; see Van der Vaart & Wellner (1996) and
Andrews (1999). Conditions C3–C5 are required to ensure the asymptotic normality of η ̂.
Condition C6 is required to invoke the central limit theory for the sums of independent but not
identically distributed stochastic processes (Van der Vaart & Wellner, 1996; Kosorok, 2007).
Condition C7 is required to ensure the asymptotic distributions of the Cramer–von Mises test
statistics. C8 is required to invoke Ossiander’s entropy conditions (Ossiander, 1987; Andrews,
1994).

Proof of proposition 1

For ease of exposition, we omit η* in some notation, such as p(ri | yi, xi, zi).

i. For brevity, we only consider . It can be shown that

which yields . Furthermore, .
However, it can be shown that

ii. For MAR covariates, we have p(ri | xi, zi, yi) = p(ri | xi, zo,i, yi). It can be shown that

Thus, we have
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Furthermore, it can be shown that

iii. Using p(ri | xi, zi, yi) = p(ri | xi, zi), we obtain

Thus,  and .

iv. Using first-order Taylor’s series expansions yields the desired results.

Proof of theorem 1

(i) Conditions C1–C5 are sufficient for establishing (i) (Andrews, 1994; Van der Vaart &
Wellner, 1996).

(ii) First, we can prove weak convergence of I1(·; η*) using a standard argument of empirical
process theory. The finite-dimensional marginals of I1(·; η*) converge weakly to the
corresponding marginals of the zero-mean Gaussian process G1(·). This can be proved by using
assumptions C3 and C4. Because

is a VC (Vapnik and Cervonenkis) class, which satisfies the universal entropy condition (Van
der Vaart & Wellner, 1996, sections 2.5 and 2.6), the tightness of I1(·; η*) follows from the
Donsker Theorem (Van der Vaart & Wellner, 1996, section 2.11). Second, the convergence of

 follows from the standard Lindeberg–Feller theorem. Third, we can prove the joint

convergence of I1(·; η*) and  using the Cramer–Wold device and empirical process
theory.

(iii) It can be shown from a Taylor’s series expansion that

(30)

where ||η̃ − η*|| ≤ ||η ̂ − η*|| → 0. It follows from the law of large numbers and assumptions C3
and C4 that
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converges to zero uniformly in (ϕ, t) in probability (Van der Vaart & Wellner, 1996). Similarly,

converges to Δ1(ϕ, t) uniformly in (ϕ, t) in probability. Because n1/2(η ̂ − η*) is asymptotically
normal and Δ1(ϕ, t) is uniformly continuous, the second term of (30) on the right-hand side is
asymptotically tight. As we have already established weak convergence of I1((ϕ, t); η*), we
can use a standard argument of empirical process theory to establish that I1(·; η ̂) converges
weakly to G1(·) + Δ1(·)′ν1 as n → ∞. Applying the continuous mapping theorem ensures that
CK1 converges in distribution to

To prove weak convergence of CM1, we use proposition 7.27 of Kosorok (2007) to prove that
CM1 = ∫Π|I1((ϕ, t); η ̂)|2Fn, ϕ(dt) dϕ converges weakly to

as I1((ϕ, t); η ̂) converges weakly to G1(ϕ, t) + Δ1(ϕ, t)′ν1 ∈ ℓ∞(Π) and

Proof of theorem 2

(i) We define ℓn(t) = log p(Do; t), where

The true density function of do,i under local alternatives equals p(Do; n−1/2). Using a Taylor’s
series expansion, we get
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where ∂t = d/dt and . In particular, we have

where the conditional expectation is taken with respect to zm,i given do,i under t = 0. Under p

(Do; t = 0), ( , ℓn(n−1/2) − ℓn(0)) can be approximated by

Following the arguments in example 12.3.8 of Lehmann & Romano (2006), we can show that

under local alternative hypotheses,  converges in distribution to A1 + ν1.

(ii) For simplicity, we only consider . The process I1((ϕ, t); η*) can be represented as

in which the first term on the right-hand side converges weakly to G1(·) by using similar
arguments as in theorem 1(ii). In addition, it follows from the law of large numbers that

converges to A2(ϕ, t) uniformly in probability.

(iii) Following similar arguments as in theorem 1(iii), we use a Taylor’s series expansion to
show that

where ||η̃ − η*||2 ≤ ||η ̂ − η*||2. Similar to the arguments in theorem 1(iii), we can use standard
arguments of empirical processes and the results in theorem 2(i) and (ii) to complete the proof
of (iii).
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Proof of theorem 3

The proof of theorem 3 consists of two steps as follows. In step 1, we need to prove that
I2((ϕ ̃, t); η*) can be represented as

(31)

where ci,* = ci (α*). We first show that the second term of (31) converges to zero uniformly in
probability and a sufficient condition is that

is stochastically equicontinuous, where  = {α: ||α− α*||2 ≤ a0} for a sufficiently small a0 > 0.
We invoke Ossiander’s entropy condition to show that

is a type IV class (Ossiander, 1987; Andrews, 1994). We need to check the following condition:

(32)

where κ1 = (α1, ϕ ̃1, t1) and C and c1 are some finite positive constants. The left-hand side of
(32) can be bounded above by

in which we have used the Cauchy–Schwartz inequality twice and

for any two sets S1 and S2. As
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it follows from condition C2 that

Let hi (κ) = ci (α)′ ϕ − t. It follows from a Taylor’s series expansion that

Thus, we have

Then, we have

Using  and condition C7, we can further show that

In step 2, we follow the arguments of theorem 1(ii) to prove that

converges to G2(·) in distribution.
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Fig. 1.

Index plots of diagnostic measures from two simulated data sets: (A) CDi; (B) CDi,1; (C)

CDi,2; (D) ; (E) CDi; (F) CDi,1; (G) CDi,2; (H) . Column one shows the results
from the simulated data with y100 as an influential point, whereas column two shows the results
from the simulated data with z100 as an influential point.
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Fig. 2.

Liver cancer data: index plots of diagnostic measures: (A) CDi, (B) CDi,1, (C) CDi,2, (D)

; (E) residual plot of I1((β ̂, t); η ̂) against t using , (F) residual plot of I2((β ̂, t); η ̂)
against t. In (E) and (F), the observed pattern is shown by the thick drawn curve and 15
simulated resampling realizations are shown by the thin dashed curves.
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