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Diagnostic Methods for Big Survival Data

Yishu Xue, Ph.D.
University of Connecticut, 2019

ABSTRACT

While studies of the proportional hazards model for big survival data mainly focus on

speeding up computation and selecting features from a huge number of covariates, veri-

fying the crucial assumption of proportional hazards (PH) has not been tackled for big

data when the data size exceeds a computer’s memory. This dissertation summarizes

methodological developments in statistics that address the diagnostics of the PH model,

including the PH assumption, functional form, and outlying and/or influential obser-

vations. Specifically, an online updating approach with minimal storage requirement

that updates the standard test statistic for the PH assumption in an online fashion is

proposed. The test and its variant based on most recent data blocks maintain their

sizes when the PH assumption holds, and have substantial power when it is violated in

different ways. Attention has also been paid to the baseline hazard function of the PH

model. Nonparametric methods to compare cumulative baseline hazard curves using

profile monitoring techniques, and their combination with parametric methods to detect

heterogeneity in data blocks, are presented.
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Chapter 1

Introduction

1.1 The Cox Model and Its Diagnostics

The Cox model (Cox, 1972) is the most commonly used tool in analyzing survival data

and remains so even for massive data (e.g., Mittal et al., 2014). Its usage has extended

to fields beyond biostatistics, such as predicting bank failures in finance (Lane et al.,

1986), identifying determinants for duration of unemployment in labor market research

Kupets (2006), and modelling time until a policy is adopted in political science (Jones

and Branton, 2005). It has been deemed one of the “breakthroughs in statistics” (Kotz

and Johnson, 1992), and has been cited over 48,848 times up to the time when this

dissertation is written.

Due to its pervasive applicability, before taking the results from a fitted Cox model

as valid, one should address a few important questions: is the proportional hazards

assumption satisfied? Are the functional forms of the variables appropriate? Are there

any outliers or influential observations? To answer these questions, multiple methods

have been proposed, many of which rely on different types of residuals of the model.
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1.2 Cox Model for Big Survival Data

Diagnostics for the Cox model, when raised to the scale of huge datasets, which are

not uncommon in this era of information technology, presents challenges to standard

statistical analyses. For example, flight information, such as delay time until take-off

or cancellation, is available for more than 114,000 commercial flights scheduled daily

around the world (Air Transport Action Group, 2018); real estate information, such as

time on market until sold, is updated continuously for the over 6 million homes in the

real-estate market (National Association of Realtors, 2018). In addition to huge number

of observations, there are also examples of survival data from the genomics field that in-

volves gene expression, which usually have a huge number of covariates. In using the Cox

model for such datasets, Park and Hastie (2007) proposed a path following algorithm for

L1-regularized generalized linear models that uses a predictor-corrector scheme to find

the entire regularization path. They extended this scheme by generalizing the loss plus

penalty to any convex and differentiable functions, one of which, is the partial likelihood

of the Cox model. The glmpath package (Park and Hastie, 2018) implements this algo-

rithm. Goeman (2009) proposed a combination of gradient ascent optimization and the

Newton–Raphson algorithm that efficiently does L1-penalized estimation, which can be

applied to generalized linear models and the Cox model. Yang and Zou (2013) introduced

a mixture of coordinate decent, the majorization-minimization principle and the strong
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rule to compute the solution paths of the Cox model with elastic net penalty, and imple-

mented it in fastcox (Yang and Zou, 2017). Mittal et al. (2014) proposed a variation of

coordinate descent that scales for high-dimensional, massive sample-size (HDMSS) data.

In their recent work, Wang et al. (2018) proposed a divide-and-conquer algorithm to

fit sparse Cox regression on massive-size, moderately-high-dimensional datasets, which

greatly improves computational speed and at the same time, maintains similar statistical

efficiency as full data based estimators. Nonetheless, little attention has been paid to

checking the fundamental assumptions of the Cox model for such huge datasets, which

has not been tackled for big data where the data size exceeds a computer’s memory.

The rest of this dissertation is organized as follows: Chapter 2 summarizes and re-

views diagnostic methods for the Cox model. Different residuals are introduced, and their

usage in model diagnostics are discussed, including checking the proportional hazards

assumption, verifying functional forms, detecting outlying observations, and identifying

influential observations. The diagnostic plots and tests are illustrated with an appli-

cation regarding dental clinic visits using existing R packages. Chapter 3 presents the

construction and asymptotic properties of the online updating cumulative and window

version test statistics for the proportional hazards assumption. Under extensive simu-

lation studies, they prove to hold their sizes when proportionality holds, and have sub-

stantial power when it is violated in two different ways. The application of this method

on lymphoma cancer patients in the Surveillance, Epidemiology, and End Results Pro-

gram (SEER) is presented. Chapter 4 extends the diagnostics to the nonparametric
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baseline hazard component of the Cox model. Ideas from statistical process control and

statistical profile monitoring are used to design an integrated filtering rule that identifies

changes in either part of the Cox model. This dissertation is concluded with a discussion

of proposed methods and directions for future research.
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Chapter 2

Review on Diagnostics for Cox

Model

2.1 Preliminaries

Let T ∗
i be the true event time and Ci be the censoring time for subject i such that T ∗

i

and Ci are independent. Define Ti = min(T ∗
i , Ci) and δi = I(T ∗

i ≤ Ci), i.e., an indicator

that equals 1 if the observation is not censored. Suppose we observe independent copies

of (δi, Ti, Xi), i = 1, . . . , n, where Xi is the p-dimensional vector of covariates of the ith

subject. The Cox model specifies the hazard for individual i as

λi(t) = λ0(t) exp
󰀃
X⊤

i β
󰀄
, (2.1)

where λ0 is an unspecified non-negative function of time called the baseline hazard, and

β is a p-dimensional coefficient vector in a compact parameter space. Because the hazard
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ratio for two subjects with fixed covariate vectors Xi and Xj,

λi(t)

λj(t)
=

λ0(t) exp
󰀃
X⊤

i β
󰀄

λ0(t) exp
󰀃
X⊤

j β
󰀄 = exp

󰀋
(Xi −Xj)

⊤β
󰀌
,

is a constant over time, and is exponentially proportional to the difference of Xi and Xj,

the model is also known as the proportional hazards model. In the case of a single binary

predictor, β summarizes the hazard ratio between the corresponding two subgroups of

data. It has been later extended to incorporate time-dependent covariates. For the rest

of this dissertation, we use Xi(t) to indicate the possibility of covariates being time-

dependent.

Cox (1972, 1975) formulated the partial likelihood approach to estimate β. For untied

failure time data, Fleming and Harrington (1991) expressed the partial likelihood under

the counting process formulation to be

PL(β) =
n󰁜

i=1

󰁜

t≥0

󰀥
Yi(t) exp

󰀋
Xj(t)

⊤β
󰀌

󰁓n
j=1 Yj(t) exp {Xj(t)⊤β}

󰀦dNi(t)

, (2.2)

where Yi(t) = I(Ti ≥ t) is the at-risk indicator of the ith subject, Ni(t) is the number of

events for subject i at time t, and dNi(t) = I(Ti ∈ [t, t+∆), δi = 1), with ∆ sufficiently

small such that
󰁓n

i=1 dNi(t) ≤ 1 for any t.

Taking the natural logarithm of (2.2) gives the log partial likelihood in the form of
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a summation:

pl(β) =
n󰁛

i=1

󰁝 ∞

0

󰀥
Yi(t) exp

󰀋
Xi(t)

⊤β
󰀌
− log

n󰁛

j=1

Yj(t) exp
󰀋
Xj(t)

⊤β
󰀌
󰀦
dNi(t). (2.3)

Differentiating (2.3) with respect to β yields the p× 1 score vector U(β):

U(β) =
n󰁛

i=1

󰁝 ∞

0

󰀅
Xi(t)−X(β, t)

󰀆
dNi(t), (2.4)

where X(β, t) is a weighted mean of covariates for those observations still at risk at time

t with the weights being their corresponding risk scores, exp{Xi(t)
⊤β},

X(β, t) =

󰁓n
i=1 Yi(t) exp

󰀋
Xi(t)

⊤β
󰀌
Xi(t)󰁓n

i=1 Yi(t) exp {Xi(t)⊤β}
. (2.5)

Taking the negative second order derivative of pl(β) yields the p × p observed partial

information matrix

In(β) =
n󰁛

i=1

󰁝 ∞

0

V (β, t)dNi(t),

with V (β, t) being the weighted variance of X at time t:

V (β, t) =

󰁓n
i=1 Yi(t) exp{Xi(t)

⊤β}{Xi(t)−X(β, t)}{Xi(t)−X(β, t)}⊤󰁓
i Yi(t) exp{Xi(t)⊤β}

.

The maximum partial likelihood estimator 󰁥βn is obtained as the solution of U(β) = 0.
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The solution 󰁥βn is consistent, and asymptotically normal, i.e., its distribution is approx-

imated by a normal distribution with mean β0 and inverse variance-covariance matrix

being E{In(β0)}, where β0 denotes the true underlying parameter. The evaluation of the

expectation depends on extra information which is generally unavailable. The observed

information In(󰁥βn), however, can be computed using

In(󰁥βn) = − ∂2pl(β)

∂β∂β⊤

󰀏󰀏󰀏󰀏
β=󰁥βn

, (2.6)

which approximates the variance of 󰁥βn.

Notice that in this section, untied event times are assumed. There are several meth-

ods to handle ties, including the Breslow approximation, the Efron approximation, the

exact partial likelihood, and the average likelihood methods. In R, the Efron approxi-

mation is the default becauseit can be easily implemented, and returns fairly accurate

results. For more details, see Section 3.3 of Therneau and Grambsch (2000).

2.2 Proportional Hazards Assumption

2.2.1 Diagnostics Based on Schoenfeld Residuals

Schoenfeld (1980) proposed a chi-squared goodness-of-fit test statistic for the propor-

tional hazards regression model which utilized a residual of the form Expected - Observed.

The formal definition and its properties were later discussed in Schoenfeld (1982).
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Let d denote the total number of events, and we denote the ordered uncensored event

times from smallest to largest as t1, . . . , td. Let X(ℓ), ℓ = 1, . . . , d be the covariate vector

of a subject with an event at the tℓ. Further let Rℓ denote the the risk set at time tℓ,

which is the set of all individuals who are still alive (“at risk”) at tℓ. The Schoenfeld

residual is defined as

rℓ(β) = X(ℓ) − E(X(ℓ)|Rℓ), ℓ = 1, . . . , d (2.7)

which, when there are no tied event times, is indeed rℓ(β) = X(ℓ) − X(β, tℓ), where

X(β, tℓ) as given in Equation (2.5) is evaluated at and tℓ. In practice, we replace β with

󰁥βn and obtain 󰁥rℓ. If the proportional hazards assumption holds, E(󰁥rℓ) 󰃋 0. Therefore,

a plot of Schoenfeld residuals against event times will approximately scatter around 0.

Moreau et al. (1985) and Moreau et al. (1986) proposed a test statistic for goodness-

of-fit of the Cox model, with the alternative model being one having time-varying coeffi-

cients. In the case of fitting a model with a single covariate in several levels, the statistic

is of a sum of quadratic expressions, and reduces to the statistic in Schoenfeld (1980)

for two-level problems, but is computationally simpler.

Grambsch and Therneau (1994) generalized the approach in Schoenfeld (1982) to

test the proportional hazards assumption. Assuming the true hazard function is of the

time-varying form

βj(t) ≡ βj + θjgj(t), j = 1 . . . , p, (2.8)
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where gj(t) is a function of time that varies around 0 and θj is a scalar. Common choices

of g(t) include the Kaplan-Meier (KM) transformation, which scales the horizontal axis

by the left-continuous version of the KM survival curve, the identity, and the natural

logarithm transformation. Writing the true hazard function (2.8) using matrix notation,

we have

λi(t) = λ0(t) exp
󰀅
Xi(t)

⊤{β +G(t)θ}
󰀆
, i = 1, . . . , n, (2.9)

where G(t) is a p × p diagonal matrix with the jth diagonal element being gj(t), and

θ = (θ1, . . . , θp)
⊤ is a vector of scalars. Then the null hypothesis of β being time-invariant

becomes H0 : θ = 0p×1. Denote 󰁥Vℓ = V (󰁥βn, tℓ), Gℓ = G(tℓ), and let

H =
d󰁛

ℓ=1

Gℓ
󰁥VℓG

⊤
ℓ −

󰀣
d󰁛

ℓ=1

Gℓ
󰁥Vℓ

󰀤󰀣
d󰁛

ℓ=1

󰁥Vℓ

󰀤−1 󰀣 d󰁛

ℓ=1

Gℓ
󰁥Vℓ

󰀤⊤

.

Grambsch and Therneau (1994) proposed the statistic

T (G) =

󰀣
d󰁛

ℓ=1

Gℓ󰁥rℓ
󰀤⊤

H−1

󰀣
d󰁛

ℓ=1

Gℓ󰁥rℓ
󰀤
, (2.10)

which, under the null hypothesis, has asymptotic distribution χ2
p, i.e., chi-squared distri-

bution with p degrees of freedom. They also pointed out that the tests in other previous

works fall under this framework with different choices of G(t). Table 1 summarizes the

related publications and the form of G(t) they used. The form of G(t) is diagonal for

all the articles, so we refer to a univariate g(t).
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For identifiability, g(t) is assumed to vary around 0, so for data analysis Gℓ, ℓ =

1, . . . , d, need to be centered such that
󰁓d

ℓ=1 Gℓ = 0. In addition, it has been pointed

out by Therneau and Grambsch (2000) that 󰁥Vℓ is rather stable for most datasets, and

therefore
󰁓d

ℓ=1 Gℓ
󰁥Vℓ is often small. As a result, H is often replaced by

H =
d󰁛

ℓ=1

Gℓ
󰁥VℓG

⊤
ℓ .

The cox.zph() function in the R survival package implements the test in (2.10) using this

same centering technique. For the rest of this article, we will assume that all G matrices

are centered prior to any calculation of diagnostic statistics. User-defined forms of g(t)

in obtaining T (G) is also supported. The function also provides a univariate version test

for each covariate j as

Tj(g) =

󰀣
d󰁛

ℓ=1

gj󰁥rjℓ
󰀤2

/Hjj, j = 1, . . . , p,

where gj and Hjj are the jth diagonal elements of G(t) and H, respectively, and 󰁥rjℓ is

the j th element of 󰁥rℓ. The test statistic will have a χ2
1 distribution if the proportional

hazards assumption for the jth covariate is satisfied.

Park and Hendry (2015) showed that the decision of time transformations can have

profound implications for the conclusions reached. In addition, they suggested that prior

to fitting the model, practitioners should first determine the levels of censoring in their



12

Table 1: Articles and their functional forms of g(t) falling under the framework of
Grambsch and Therneau (1994).

Article g(t)

Cox (1972), Gill and Schumacher
(1987), Chappell (1992)

a specified function of time

Schoenfeld (1980), Moreau et al.
(1985),O’Quigley and Pessione
(1989)

piecewise constant on non-overlapping time in-
tervals with the constants and intervals predeter-
mined

Harrell (1986)
g(t) = N(t−), tests the correlation between the
rank of the event times and the Schoenfeld resid-
uals

Lin (1991)
the proposed test is equivalent to g(t) = t when

the maximizer of a weighted partial likelihood, 󰁥βw,
is based on a one-step Newton-Raphson algorithm
staring from 󰁥β

Nagelkerke et al. (1984)
let gj(t1) = 0 and gj(k + 1) = a2j󰁥rjk, j = 1, . . . , p
to test for the serial correlation of the Schoenfeld
residuals, where aj is the weight of the jth covari-
ate



13

data, as in some cases an alternative model might be more appropriate than the Cox

model. Exploratory graphical analysis, such as histograms, should be used to see if

there are any outlying survival times. If there are few outliers, the test of Grambsch and

Therneau (1994) should be done using the untransformed time. Otherwise, the rank

transformation is a better choice. They showed using simulations that, with low levels

of censoring, the rank and the KM transformation perform approximately equally well.

When the level of censoring increases, the rank transformation tends to outperform the

KM and natural log transformations.

Keele (2010) pointed out that, while the test of Therneau and Grambsch has been

widely used as it is easy to conduct and interpret, application of the test requires some

care due to it being sensitive to several forms of misspecification. Omitted predictors,

omitted interactions and nonlinear covariate functional forms can all significantly affect

the test result. The paper also emphasized the importance of correcting the functional

form for continuous covariates before checking for nonproportionality (see Section 2.3).

Winnett and Sasieni (2001) discussed situations in which the approach of Grambsch

and Therneau (1994) might provide misleading estimates of time-varying coefficients and

presented an example using Mayo clinic lung cancer data. They also suggested using a

compromise between 󰁥Vℓ and V for such situations, such as a smoothed version of 󰁥Vℓ. De-

spite the fact that the test of Grambsch and Therneau (1994) allows for time-dependent

covariates, Grant et al. (2014) showed using simulation that its performance, when there

are indeed time-dependent covariates, is highly unstable and its power depends largely
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upon factors that are unknown in practice, such as when the hazard ratio changes, and

by how much it changes. Grant et al. (2014) focused on the identity, log, rank, and

KM transformations for g(t) in their simulations, and concluded that this instability

suggests limited value of the test in (2.10) in the presence of time-dependent covariates

in real-world applications. Fisher et al. (1999) suggests the approach of Lin (1991) for

time-dependent covariates, but note that the approach can be sensitive to the choice

of weight function. Fisher et al. (1999) also cites the approach of Wei (1984), which is

based on the score process. Please see Wei (1984) for further details.

Xue et al. (2013) extended the Schoenfeld residuals to case-cohort studies in epi-

demiological studies of rare disease and defined case-cohort Schoenfeld residuals as the

difference of the covariate value and its mean, conditioned on the case-cohort risk set.

They also made proper adjustments to the KM estimating procedure by taking into

account the influence of each cohort on the increment of the cumulative hazard. They

also proposed a test of proportionality based on the correlation between their modified

Schoenfeld residuals and g(t), where g could be the identity, rank, or KM transforma-

tion. If proportionality holds for a covariate, the correlation should be close to 0. Large

values of correlation, however, are often indications of nonproportionality.

2.2.2 Diagnostics Based on Cox–Snell Residuals

Another residual that assists in evaluating the proportional hazards assumption is the

Cox–Snell residual. Cox and Snell (1968) provided a general definition of residuals
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instead of limiting the scope to only linear models. Kay (1977) used the methods in Cox

and Snell (1968) to derive the residuals for the proportional hazards regression model.

The Cox-Snell residual for the ith observation is defined as:

󰁥ei = 󰁥Λ0(ti) exp
󰁱
Xi(t)

⊤󰁥βn

󰁲
, i = 1, . . . , n, (2.11)

where 󰁥Λ0 is the estimated cumulative baseline hazard, which can be obtained using the

method of Breslow (1972). More detail on the Breslow estimator is included in Chapter 4.

It was concluded that if the model was correctly specified, and no observation was

censored, the residuals should approximately exhibit the properties of a random sample

of size n from a unit exponential distribution. This can be checked using an exponential

Quantile-Quantile plot. Crowley and Hu (1977) used heart transplant survival data to

illustrate the usage of Cox–Snell residuals. When censoring is present, however, the

residuals are no longer approximately unit exponential.

2.2.3 Diagnostics Based on Martingale Residuals

The martingale residual, which is a slight modification of Cox–Snell residual, also assists

in assessing proportionality. It was first discussed by Lagakos (1981) and later by Barlow

and Prentice (1988). Further work was done by Therneau et al. (1990). The martingale
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residual process is defined as

󰁦Mi(t) = Ni(t)−
󰁝 t

0

Yi(s) exp
󰁱
Xi(s)

⊤󰁥βn

󰁲
d󰁥Λ0(s), i = 1, . . . , n, (2.12)

where Ni(t) and Yi(s) are defined in Section 2.1. The martingale residual is defined as

the martingale residual process at the end of the study, i.e.,

󰁦Mi = δi −
󰁝 ∞

0

Yi(s) exp
󰁱
Xi(s)

⊤󰁥βn

󰁲
d󰁥Λ0(s), i = 1, . . . , n. (2.13)

Asymptotically, E(󰁦Mi) = 0 and Cov(󰁦Mi, 󰁦Mj) = 0 for i ∕= j.

Lin et al. (1993) presented a procedure that used cumulative sums of martingale-

based residuals, which have been sorted in advance by the order of follow-up time and/or

value of a covariate. They considered the process

W (z) =
n󰁛

i=1

I(X⊤
i
󰁥βn < z)󰁦Mi, (2.14)

which will be an approximate Gaussian process and fluctuate around 0 if the Cox model

has been correctly specified. One can perform more formal tests to assess normality

(e.g., Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling). The authors also

discussed the application of such technique to the setting of time-dependent covariates,

while arguing that the practical use is little.
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Grønnesby and Borgan (1996) concluded that when β is one-dimensional, (2.14) only

checks the coding of the covariate. When β is of higher dimension, however, W (z) cannot

detect whether the effects of covariates vanish with time or not. Grønnesby and Borgan

(1996) grouped the individuals after their linear predictions, i.e., replaced I(X⊤
i
󰁥βn < z)

with I(X⊤
i
󰁥βn ∈ Ωℓ) in (2.14) for some interval Ωℓ, which usually is a quartile group.

This is equivalent to introducing the g × n grouping matrix Q, where g is the number

of intervals and Qℓ,i = I(X⊤
i
󰁥βn ∈ Ωℓ). Given the asymptotic distribution of the es-

timated martingale residuals, the grouped martingale residual process, J(·) = Q󰁦M(·),

once properly normalized, converges to a mean zero multivariate Gaussian process. Then

with 󰁥Σ(t), such that 󰁥Σij is an estimate of the covariance between JΩi
(t) and JΩj

(t), the

test statistic

TC(t) = (JΩ1(t), . . . , JΩg
(t))󰁥Σ−1(t)(JΩ1(t), . . . , JΩg

(t))′

has an approximate χ2
g−1 distribution when the proportional hazards assumption holds.

Marzec and Marzec (1997a) established the asymptotic behavior of processes based

on sums of weighted martingale-transformed residuals. They developed Kolmogorov-

Smirnov and Cramér-von Mises types of omnibus tests using the fact that, in special

cases, they appear to be transformed Brownian motions or Brownian bridges. As the

derivation is complicated, please see Marzec and Marzec (1997a) for further details.
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2.2.4 Graphical Methods

In addition to formal tests, graphical methods to assess the proportional hazards assump-

tion for categorical predictors have been developed by Cox (1979) and Arjas (1988). Hess

(1995) summarized these methods and their extensions, including 1) plotting the Cox

model’s estimated survival curves 󰁥S(t) against nonparametric (e.g., Kaplan–Meier) es-

timates; 2) plotting the estimated cumulative hazard functions − log 󰁥S(t) against time

and checking if their ratio is constant for any given t; 3) plotting the cumulative hazard

functions against each other and checking if the slope is constant; 4) plotting the loga-

rithm of the cumulative hazard functions, log
󰀓
− log 󰁥S(t)

󰀔
, against time and checking if

the curves are approximately parallel; 5) plotting the differences in the log cumulative

hazard functions against time and checking if the curve of the differences are approxi-

mately constant; and 6) plotting the Schoenfeld residuals against time and checking for

changes in patterns of scattering.

The aforementioned graphical methods all have one common limitation: they only

apply to categorical predictors that have a few levels. If a predictor has many levels or

is continuous, the survival curves and cumulative hazard functions would no longer be

informative. Therneau and Grambsch (2000) suggested plotting the cumulative Schoen-

feld residuals ordered by event times against event times. If the proportional hazards

assumption holds, the cumulative sum should be a random walk starting and ending at

0. These plots, however, can be difficult to read.
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2.3 Functional Forms

Martingale residuals, defined in Equation (2.13), play an important role in functional

form diagnostics. Barlow and Prentice (1988) provided more detailed discussion and

illustrated that plots of such residuals may provide insight to the choice of model form.

Therneau et al. (1990) discussed the usage of martingale residuals in investigating the

functional form of covariates. To examine a particular covariate, they suggest fitting

a proportional hazards model omitting that covariate and computing the martingale

residuals 󰁦Mi as given in Equation (2.13). Then a smoothed plot of 󰁦Mi versus the

omitted covariate often gives approximately the correct functional form of the covariate

(e.g., linear, quadratic) to place in the exponent of a Cox model. They also pointed out,

however, that this plot does not work well when dealing with large covariate effects, and

that it requires the covariate of interest to be uncorrelated with other covariates in the

model.

Henderson and Milner (1991) noticed that plots of the martingale residuals against

time, although useful, can exhibit systematic patterns which are not a priori predictable

even when the model fails. They suggested two amendment approaches and gave an

example for illustration. One approach was to superimpose the estimated mean when

plotting residuals, which enables comparison between the observed patterns and the

expected patterns. The other approach was to subtract the conditional expected value

from each observed residual and scale it using its standard deviation, which could be
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consistently estimated from the data according to Barlow and Prentice (1988). Then

the standardized residuals, when plotted, should be randomly scattered if the model is

appropriate.

Grambsch (1995) proposed two aspects from which the martingale residual plot in

Therneau et al. (1990) can be improved. One aspect is to modify the martingale plot for

counting process data because of the close relationship between counting process models

and Poisson regression. Suppose Z is the variable of interest. If a monotonic relationship

between Z and the hazard λi(t) is expected, a log-linear form is often adequate. The

model

λi(t) = exp

󰀣
p−1󰁛

j=1

βjfi(Xij) + αZi

󰀤
λ0(t), i = 1, . . . , n,

is fitted, and the expected count for the ith individual is

󰁥Ei =

󰁝 Ti

0

exp

󰀣
p−1󰁛

j=1

󰁥βnjfj(Xij) + 󰁥αZi

󰀤
󰁥λ0(t)dt,

where 󰁥βnj denotes the jth entry of 󰁥βn, 󰁥λ0(t) is the estimated baseline hazard, and 󰁥α is the

estimated parameter for Z. The martingale residual in this case would be 󰁦Mi = δi − 󰁥Ei,

and the generalized linear model (GLM) partial residual is given by

󰁦Mi

󰁥Ei

+ 󰁥αZi.
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McCullagh and Nelder (1983) recommended plotting the partial residual against Z as

an informal check for the correctness of the guess for functional form.

The other aspect mentioned by Grambsch (1995) comes from the penalized like-

lihood approach of Hastie and Tibshirani (1993). They assumed that the functional

form of covariate Xj is an unknown, smooth function fj, and proposed the alternative

formulation

λ(t) = λ0(t) exp

󰀣
p󰁛

j=1

fj(Xj)

󰀤
,

which enables estimation of all functional forms at the same time. To avoid overfitting,

they maximized the penalized partial likelihood with penalty
󰁓p

j=1 νj
󰁕
f ′′
j (s)

2ds, where

νj ≥ 0, j = 1, . . . , p, are smoothing parameters that can be tuned. Both approaches

lead to approximately the same solution, but the latter is computationally more complex

since the optimization is done within the kernel of the partial likelihood.

2.4 Outlying Observations

A plot of martingale residuals against the linear prediction Xi(t)
⊤󰁥βn or the risk score

γi(t) = exp
󰁱
Xi(t)

⊤󰁥βn

󰁲
often helps to identify the observations who have died too soon

or lived too long, based on the assumed model. Nevertheless, having a range of (−∞, 1],

the martingale residual is often heavily skewed, and may be misleading. Therneau et al.

(1990) used a liver disease data set to demonstrate these scenarios, where the martingale

residual plot indicated that some observations died too soon while in actuality they were
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not outliers at all. They pointed out that it is a favorable practice to transform the

residuals to a more normal shaped distribution to help assess the prediction accuracies

for individual subjects.

Inspired by the deviance residuals for GLM in McCullagh and Nelder (1983), Th-

erneau et al. (1990) introduced the deviance residual for the Cox model:

di = sgn(󰁦Mi)
󰁫
−2

󰁱
󰁦Mi + δi log

󰀓
δi − 󰁦Mi

󰀔󰁲󰁬 1
2
, i = 1, . . . , n, (2.15)

where δi is again the non-censoring indicator for subject i. From the functional form, it

is apparent that the deviance residual is essentially a transformation of the martingale

residual. Therneau et al. (1990) concluded that with less than 25% of censoring, the

deviance residual is approximately normally distributed. With censoring rates greater

than 40%, too many points will lie near 0 and make the distribution not normal, but

the set of residuals is still symmetrized. Plotting di against Xi(t)
⊤󰁥βn or γi(t) will help

identify potential outliers which have deviance residuals with too large absolute values.

Noticing that deviance residuals do not have a reference distribution and the normal

approximation can sometimes be unsatisfactory (Fleming and Harrington, 1991), Nardi

and Schemper (1999) proposed two new types of residuals: (i) the log-odds residual Li =

log [Si(ti)/{1− Si(ti)}] and (ii) normal deviate residual ηi = Φ
−1{Si(ti)}, i = 1, . . . , n,

where Φ
−1 is the inverse normal cumulative distribution function. Assuming Si(·) is

known, the sampling distribution for Li is logistic with E(Li) = 0 and Var(Li) = π2

3
,
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and standard normal for ηi. In practice, we use the predicted survival for observation i,

󰁥Si(ti), to calculate 󰁥Li and 󰁥ηi, which converge in probability to Li and ηi, respectively.

Based on simulations, they concluded the performances of these two residuals when

identifying outliers are better than that of the deviance residual since they are both

unimodal, and the empirical distribution of deviance residual often becomes bimodal

because of censoring. They suggested that one can use the quantiles of the normal

distribution, ±1.64 and ±1.96, and of the logistic distribution ±2.94 and ±3.66, to help

identify potential outliers.

2.5 Influential Observations

The score vector U defined in Equation (2.4) is of great importance in influential diag-

nostics. Again, using the counting process formulation, the score residual for the ith

individual is defined to be

rUi(󰁥β) =
󰁝 ∞

0

[Xi −X(󰁥βn, s)]d󰁦Mi(s), i = 1, . . . , n, (2.16)

where X(󰁥βn, s) is the X(β, s) defined in Equation (2.5) evaluated at β = 󰁥βn, and 󰁦Mi(s)

is defined in Equation (2.12).

In studying the influence of one observation, a general practice is to delete that ob-

servation, fit the model again, and compare the parameter estimates with those of the

model fit on the complete data. Nevertheless, the Cox model is conceptually different



24

from linear or generalized linear models in that it involves both parametric and non-

parametric estimation. Therefore, an observation could be influential in terms of more

than just regression coefficients. We review measures of both in this section.

2.5.1 Influence on Regression Coefficients

Cain and Lange (1984) presented a method for approximating the influence of individual

cases on the Cox model’s parameter estimates. Let 󰁥βn be the value of β that maximizes

the partial likelihood (2.2) and 󰁥βn(i) denote the estimate of β when observation i is

deleted. They approximated 󰁥βn− 󰁥βn(i) by assigning to observation i weight wi. Suppose

wj = 1 for any j ∕= i. Then 󰁥βn can be regarded as a function of wi and we have

󰁥βn(1) = 󰁥βn and 󰁥βn(0) = 󰁥βn(i). The first-order Taylor series expansion about wi = 1

gives:

󰁥βn − 󰁥βn(i) 󰃋
∂󰁥βn

∂wi

, i = 1, . . . , n,

where ∂󰁥βn/∂wi is evaluated at wi = 1. They evaluated the derivative treating the score

vector U in Equation (2.4) as a function of 󰁥βn and wi, and obtained:

∂U

∂󰁥βn

∂󰁥βn

∂wi

+
∂U

∂wi

= 0.

Notice that ∂U/∂󰁥βn is the negative observed information matrix defined in Equation (2.6).
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Hence we obtain

∂󰁥βn

∂wi

= I−1
n (󰁥βn)

∂U

∂wi

. (2.17)

The partial derivative ∂U/∂wi, when evaluated at wi = 1, becomes exactly the score

residual rUi in Equation (2.16). Therefore

󰀣
∂󰁥βn

∂wi

󰀤

wi=1

= I−1
n (󰁥βn)rUi, i = 1, . . . , n.

Let D be the n× p matrix with the ith row being 󰁥βn− 󰁥βn(i), and rU be the n× p matrix

with the ith row being the vector of score residuals for observation i. Then the above

approximation, put into matrix form, becomes

D = rUI
−1
n (󰁥βn). (2.18)

We call D the matrix of dfbeta residuals. When we divide Dij by the observed standard

deviation of the ith element of 󰁥βn, which is the square root of the ith diagonal element

of the inverse observed information matrix I−1
n (󰁥βn), we get DS, the matrix of dfbetas

residuals. Conventionally, the ith observation is considered to be influential if DSij > 1

for small to medium datasets, and if DSij > 2/
√
n for large datasets.

Reid and Crépeau (1985) presented influence functions for the Cox model to identify

possible influential observations and gave the same statistic (2.18) as in Cain and Lange

(1984).
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Storer and Crowley (1985) pointed out that a good estimate of 󰁥βn− 󰁥βn(i) can also be

obtained using an augmented regression model. The design matrix is augmented using

a binary indicator variable for the ith observation and taking a single Newton-Raphson

step towards the fit of the augmented model gives the estimate of change in β. This

estimate, they argued, is easy to compute.

2.5.2 Overall Influence

Pettitt and Daud (1989) discussed the disadvantages of the approaches that try to

approximate 󰁥βn − 󰁥βn(i). They concluded that only using single-case deletion statistics

may cause some cases to be masked, i.e., the deleted observation may influence the value

of the test statistic enough so that an actual outlier is not declared as outlier. They

suggested changing the weights of each observation, and studying the change in the

likelihood caused by this perturbation. They adopted the approach of Cook (1986) and

defined the likelihood displacement to be

LD(w) = 2
󰁫
ℓ
󰀓
󰁥βn

󰀔
− ℓ

󰀓
󰁥βn(w)

󰀔󰁬
, (2.19)

where 󰁥βn(w) maximizes the weighted partial likelihood

PLw(β) =
n󰁜

i=1

󰁜

t≥0

󰀥
wiYi(t) exp

󰀋
Xi(t)

⊤β
󰀌

󰁓n
j=1 wjYj(t) exp {Xj(t)⊤β}

󰀦dNi

. (2.20)
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The weighting scheme of wi = 1, i ∕= j and wj = 0 in Cain and Lange (1984) is an

appropriate and specific case. Using second-order approximation, we have

ℓ(󰁥βn)− ℓ(󰁥βn(w)) ≈
1

2

󰁫
󰁥βn − 󰁥βn(w)

󰁬⊤
In(󰁥βn)

󰁫
󰁥βn − 󰁥βn(w)

󰁬
.

Let Uw(β) be the score function corresponding to the weighted partial log-likelihood.

With another approximation that

∂󰁥βn(w)

∂w⊤ = I−1
n (󰁥βn)

∂Uw(β)

∂w⊤ ,

which is essentially the matrix form of Equation (2.17), LD(w) reduces to

LD(w) ≈ (w0 − w)⊤rUI
−1
n (󰁥βn)r

⊤
U (w0 − w), (2.21)

where w0 is a vector of 1’s and rU is the score residual matrix. The approach of Cook

(1986) looks for an unit-length ln×1 that maximizes l⊤Bl, where B = rUI
−1
n (󰁥βn)r

⊤
U . The

maximum ξmax is the largest eigenvalue of B, and is attained when lmax is the correspond-

ing eigenvector. Cook concluded that ξmax > 1 indicates notable local sensitivity, and

that a locally influential observation must be globally influential, although the reverse

is not necessarily true.

Weissfeld (1990) adopted the idea of Cook (1986) to measure the change in likelihood

function by computing its curvature. Originally, in Cook’s work, the change could be
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caused by perturbations in the score vector or the covariates. Weissfeld (1990) proposed

for the Cox model three ways to perturb the data: weighting the observations in the log

partial likelihood using a vector w of weights, adding a vector to the vector of censoring

indicators (δ1, . . . , δn), and adding a scaled weight vector w to the covariates, where

the scale is usually the standard deviation of the corresponding coefficient. Then take

F̈ = ∆
⊤I−1

n (󰁥βn)∆, where I−1
n (󰁥βn) is the inverse of the observed information matrix

in Equation (2.6) and ∆ is the partial derivative matrix of the score vector U to the

weights, which takes different forms for the three perturbation schemes. The maximum

eigenvalue of F̈ , Cmax, is informative in that large or small values point to possible

influential observations. It was concluded that perturbation of the covariates is useful

for locating observations that influence the estimated coefficients, and the other two

pertubations will help detect observations that may impact the results of likelihood

ratio tests. It was also indicated that the proposed approach is capable of detecting

influential observations caused by masking.

Barlow (1997) proposed a modification of the method in Pettitt and Daud (1989).

Their approach replaces In(󰁥βn) in Equation (2.21) using the inverse of the robust covari-

ance matrix in Lin and Wei (1989). The substitution, upon further derivation, provides

a scalar measure of influence with known mean to be the ratio of number of events and

number of observations, and range of (0,1). The approach can also be generalized to

include designs with multiple failures and to case-cohort designs. They illustrated the

usage of this method by plotting the calculated influence measure against the covariate
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of interest, and visually looking for any particularly influential observations.

In addition to traditional delete-one approaches, Wei and Kosorok (2000) developed

case interaction influence measures for unmasking observations masked by other ob-

servations in the Cox model. They proposed the following statistic to assess the joint

influence of observations i and j:

−
󰀓
󰁥βn − 󰁥βn(j) − 󰁥βn(i) + 󰁥βn(i,j)

󰀔
=

󰀓
󰁥βn(i) − 󰁥βn(i,j)

󰀔
−

󰀓
󰁥βn − 󰁥βn(j)

󰀔

=
󰀓
󰁥βn(j) − 󰁥βn(i,j)

󰀔
−

󰀓
󰁥βn − 󰁥βn(i)

󰀔

=
󰀓
󰁥βn − 󰁥βn(i,j)

󰀔
−

󰁱󰀓
󰁥βn − 󰁥βn(i)

󰀔
+
󰀓
󰁥βn − 󰁥βn(j)

󰀔󰁲
,

where 󰁥βn − 󰁥βn(i,j) and 󰁥βn(i) − 󰁥βn(i,j) are related to the joint influence and conditional

influence in Lawrance (1995). On one hand, if the value of the test statistic is small, we

conclude that the parameter estimate is not significantly influenced by the deletion of one

observation, with or without incorporating the other observation in estimation. A large

value, on the other hand, would imply that the joint influence of these two observations

is significantly different from the sum of their individual influences, and the identified

pairs need further investigation. In cases where two moderately influential observations

have substantial joint influence, or where two individually influential observations have

little joint influence, however, their proposed diagnostic cannot identify them.

Zhu et al. (2015) investigated case-deletion measures, conditional martingale residu-

als, and score residuals for the Cox model with missing covariate values. They proposed
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the Q-distance to examine the effects of deleting individual observations on the esti-

mates of finite-dimensional and infinite-dimensional parameters. They also addressed

the problem of quantifying influence by introducing a detection probability of being

influential for each observation and for any case-deletion measure. A large value of de-

tection probability is an indicator of being influential. The forms and derivation of the

Q-distance and the detection probability are complicated; the interested reader should

see Zhu et al. (2015) for full details.

2.6 A Case Study

The dental restoration longevity data, provided by the University of Iowa College of

Dentistry’s Geriatric and Special Needs (SPEC) Clinic (see Caplan et al., 2019) is used

as a case study to demonstrate the diagnostic methods of the Cox model. For this analy-

sis, electronic data was obtained during the 5-year period from 1995 to 1999. The health

record numbers were scrambled by IT personnel to ensure that no Personal Health In-

formation was included. Subsequently, the Institutional Review Board at the University

of Iowa declared that this project is exempt from Human Subjects Review, due to the

anonymous nature of the data.

We identified 697 unique patients who went to the SPEC Clinic to treat their molars

upon their first visit and received restoration in amalgam, composite, or glass ionomer.

The follow-up of their visits began on the date of restoration. Any restoration that was
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replaced with another intracoronal or extracoronal restoration, accessed for endodontic

therapy, or extracted was deemed to have undergone an event. If the restoration results

in an event, the event date would become the end of follow-up. Restorations that did

not incur an event are considered censored up to the date of the patient’s second-to-last

visit to any College of Dentistry’s clinic. Among the 697 patients, 228 experienced an

event during the follow-up, giving a censoring rate of 67.3%.

We considered the following covariates: Gender, Age (when receiving restoration, cen-

tered and scaled), Occupation (Faculty, Non-faculty) and Size (Small, Medium, Large).

Analysis was performed using the survival package in R, and figures were produced

using the survminer (Kassambara and Kosinski, 2017), ggplot2 (Wickham, 2009) and

ggfortify (Tang et al., 2016) packages.

2.6.1 Functional Form

As suggested in Section 2.3, we should determine the appropriate form of covariates

to include in the model before testing for proportionality. Age is the only continuous

covariate whose form needs to be assessed. We use the methods of Therneau et al.

(1990): fit a model excluding Age and obtain its martingale residuals. The martingale

residuals are plotted against Age in Figure 1. We also superimpose the loess pointwise

confidence band. The curvy behavior of the loess fit indicates that we should consider

higher orders of Age.
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Figure 1: Plot of martingale residual of the model excluding Age against Age.

2.6.2 Proportional Hazards

As suggested in Section 2.6.1, we consider including the square of Age (Age2) in the

model. We fit two models: one with only linear age effects (Model 1) and another model

with linear and quadratic age effects (Model 2) to assess the improvement to the model

when correcting the functional form. To assess the proportional hazards assumption, we

used the cox.zph() function to obtain both the individual χ2
1 statistics for each covariate

and the global χ2
p statistic for each model. The test results are summarized in Table 2.

While both models passed the global test, Age in Model 1 did not pass the individual

test at the 0.05 level. In Model 2, however, both Age and Age2 pass the individual test

of proportionality at the 0.05 level.

The parameter estimates of Model 2 are summarized in Table 3. Restorations for



33

Table 2: Proportionality test results for Model 1 and Model 2.

Model 1 Model 2

χ2 Stat p-value χ2 Stat p-value

Male 0.586 0.444 0.429 0.513
Age 4.029 0.045 3.555 0.059
Age2 – – 0.638 0.424

Non-Faculty 0.429 0.513 0.558 0.455
SizeMedium 1.560 0.212 1.711 0.191
SizeSmall 0.298 0.585 0.416 0.519
GLOBAL 6.788 0.237 6.932 0.327

Table 3: Cox regression results for tooth restoration failure for the modified model.

Estimate exp(Estimate) Std.Error Z Stat p-value

Male -0.221 0.802 0.137 -1.612 0.107
Age 0.206 1.228 0.0076 2.709 0.007
Age2 -0.092 0.912 0.085 -1.075 0.282

Non-Faculty 0.116 1.123 0.146 0.795 0.427
SizeMedium -0.140 0.869 0.165 -0.850 0.395
SizeSmall -0.510 0.601 0.169 -3.018 0.003

males tend to fail later than for females, while restorations for older patients tend to fail

sooner. Compared to large restorations, medium and small restorations are less likely

to fail.

As mentioned in Section 2.2.1, when the proportional hazards assumption holds, the

Schoenfeld residuals will be close to zero. Therefore a plot of the Schoenfeld residuals

against survival times would be informative (Schoenfeld, 1982). Figure 2 shows the

plots for Model 2. For all six covariates, the smoothed pointwise confidence bands

are all around 0, which again confirms that there is no obvious evidence against the

proportional hazards assumption.
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Figure 2: Schoenfeld residuals for each covariate against survival time.

For the three categorical covariates (Gender, Occupation and Size), we also utilize

the graphical methods in Section 2.2.4 to check the proportional hazards assumption.

For each covariate, we plot the estimated survival curves 󰁥S(t), the cumulative hazards

− log 󰁥S(t) and the log-log transformed survival log
󰀓
− log 󰁥S(t)

󰀔
against survival times

in Figure 3. The three plots for Gender indicate that the hazards of the two gender

strata are proportional, but the lack of large discrepancy indicates that this proportional

effect is not significant. Similarly, the ignorable discrepancy between the two occupation

strata tells the same story. The three plots for restoration size strata, however, are more

informative, in that although the proportionality effect is small between SizeLarge and

SizeMedium, it is highly significant between SizeLarge and SizeSmall.

As mentioned in Section 2.2, the martingale residual can be used to graphically assess

the proportional hazards assumption as well. We plot the cumulative sum of martingale

residuals ordered by Age in Figure 4. The curve fluctuates around zero as expected.
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Figure 3: Estimated survival curves, cumulative hazards and log-log transformed survival
curves for categorical covariates. The first row is for Gender, the second row is for
Occupation, and the third row is for Size.



36

−10

−5

0

5

10

15

0 200 400 600

Index

C
u
m

u
la

ti
ve

 M
a
rt

in
g
a
le

 R
e
s
id

u
a
l

Figure 4: Cumulative sum of martingale residuals of Model 2, ordered by Age.

2.6.3 Outlying Observations

As suggested in Section 2.4, both the martingale residual and the deviance residual are

useful for identifying outlying observations, but the deviance residual is less skewed and

therefore more useful. We plot both residuals against the linear predictions, X⊤󰁥βn, in

Figure 5. In Figure 5(a), the martingale residuals do not vary much against the linear

predictions, and fail to identify any outlying observations. Using ±1.96 as thresholds,

the deviance residuals plotted in Figure 5(b) identify 34 potential outliers. Upon further

investigation, these subjects turned out to be much younger than other subjects (46.6

vs 55.1) but their restorations failed very soon. Due to the high censoring rate, however,

the normal-approximation-based thresholds may not be appropriate.

We also use the log-odds residual and the normal deviate residual discussed in Sec-

tion 2.4 to look for potential outliers. Both the log-odds residual in Figure 6(a) and

the normal deviate residual in Figure 6(b) identify the same set of 67 potential outliers,

which is bigger than the set of outliers identified by the deviance residual. This set,
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Figure 5: Plot of martingale and deviance residuals of Model 2.

however, still consists of younger individuals (51.7 vs 55.1) whose restorations failed

very soon.

2.6.4 Influential Observations

We use the methods in Section 2.5 to perform influential diagnostics. We first look

at influence of observations on parameter estimates and plot the dfbetas residuals in

Figure 7. As illustrated, no observation caused any parameter change of more than 15%

of that parameter’s standard error. Considering that there are 697 observations, we can

conclude there are no significantly influential observations.

We also present the likelihood displacement approach in Figure 8. The absence of

particularly large likelihood displacements further confirms our conclusion from Figure 7.
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Figure 6: Plot of log-odds and normal deviate residuals of Model 2.
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Figure 7: Dfbetas residuals for covariates of Model 2.
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Figure 8: Likelihood displacement caused by dropping each observation.

2.7 Discussion

With such wide usage across a variety of disciplines, the importance of the Cox regression

for modeling time-to-event data cannot be overstated. As a consequence, one must con-

sider the appropriateness and validity of the results from such an analysis before reaching

at any conclusions. This chapter summarizes existing graphical and statistical diagnos-

tic methods for the Cox model on given, full datasets, including methods for identifying

violations of the proportional hazards assumption, finding appropriate functional forms

of continuous covariates, and detecting outlying and influential observations. Using a

non-linear functional form of covariate can often improve model fit, while any outlying

or influential observations identified by the procedures should be investigated further

before taking any action.
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Violations of the proportional hazards assumption can be addressed in several ways,

the most common of which include the use of time-varying coefficients and stratified

models. Flexible models that incorporate time-varying coefficients have been studied by

Murphy and Sen (1991), Hastie and Tibshirani (1993), Verweij and van Houwelingen

(1995), Sargent (1997), Marzec and Marzec (1997b), Cai and Sun (2003), Tian et al.

(2005), Fan et al. (2006), and more recently by Chen et al. (2012). In practice, the

graphical tools in the survival package enable us to check if there are any time-varying

coefficients, and the survSplit() function, which will be introduced in more detail in

Chapter 3, facilitates the approximation for such coefficients using piecewise constant

functions, and we are able to test for excessive time-variation. Another popular approach

for addressing non-proportionality is using a stratified Cox model. In this case, it is

assumed that individuals in different strata have different baseline hazard functions, but

all other predictor variables satisfy the proportional hazards assumption within each

stratum. Related chapters can be found in Therneau and Grambsch (2000), Kalbfleisch

and Prentice (2002), Lawless (2003), and Collett (2015).

The Cox model has also been extended to the analysis of interval-censored survival

data. Such models have been studied by Finkelstein (1986), Farrington (2000), Goggins

and Finkelstein (2004) and recently Heller (2010). In particular, Farrington (2000) pro-

posed the counterparts to the Cox–Snell, martingale, deviance, and Schoenfeld residuals

and illustrated their usage in model diagnostics under the interval-censored framework.
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Chapter 3

Online Updating Proportional

Hazards Test

3.1 Introduction

Proportional hazards is the fundamental assumption made by the Cox model. If it is

itself violated, neither the parameter estimates nor the inference based on them are

trustworthy. As mentioned in Section 2.2.1, the test of Grambsch and Therneau (1994)

has been popular since it has been proposed, as it incorporates many existing tests,

and provides the flexibility of choosing a survival time transformation when calculating

the final χ2 test statistic. It is, however, worth noticing that we need to compute the

Schoenfeld residuals for all observations at once in order to obtain the final statistic,

which is impossible when the data size is bigger than the computer’s memory and an

estimate for β cannot even be obtained.

The same issue also exists in linear regression or generalized linear regression prob-

lems. In addition to subsample procedures, which inevitably incur information loss, and
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divide-and-combine procedures, which require powerful computing resource, Schifano

et al. (2016) proposed the online updating procedure, which treats the data as a stream,

and process the stream in a blockwise fashion. After a block is processed, only a few

summarize statistics are retained, and the data itself can be removed from the memory,

freeing up space for the next block. In this way, a huge dataset can be processed using

a common computer.

In this chapter, Section 3.2.1 proposes the online updating cumulative version test

statistic for the proportional hazards assumption with streams of big survival data.

As implied by its name, it utilizes information from all historical data. Section 3.2.2

presents an online updating window version variant of the test that focuses on local

changes, using information from most recent blocks. At which estimate of β to evaluate

the matrices and residuals in calculating the statistics is addressed in Section 3.2.3.

Section 3.2.4 provides theoretical justification for the proposed test statistics. Section 3.3

contains the numerical simulation results for both versions of test statistic under a

scenario where the proportional hazards assumption for stream data is satisfied, and

two scenarios where it is violated. The savings in computing time and memory usage

are also studied. Section 3.4 presents results from survival analysis of lymphoma patients

from the Surveillance, Epidemiology, and End Results Program (SEER).
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3.2 Online Updating

3.2.1 Cumulative Version

Instead of a given, complete dataset, we now consider a scenario in which data become

available in blocks. Suppose that for each newly arriving block k, we observe for nk

subjects, an nk-dimensional vector of response times, event indicators, and an nk × p

matrix of covariates, respectively, for k = 1, . . . , K where K is some terminal accumula-

tion point of interest. Further, denote the number of events in the kth block as dk. With

a given g(t) as in (2.8), we obtain dk centered p× p diagonal matrices G(t1), . . . , G(tdk)

such that
󰁓dk

ℓ=1 G(tℓ) = 0. Let Gℓk and 󰁥rℓk, ℓ = 1, . . . , dk, be the kth block counterpart of

previously defined Gℓ and Schoenfeld residual 󰁥rℓ, respectively. Without loss of generality,

we assume that there is at least one event in each block, and each block-wise observed

information matrix Ink,k is invertible. Let Vℓk be the variance-covariance matrix of the

covariate matrix at the ℓth event time in the kth block. With the approximation that

󰁥Vℓk = Ink,k/dk, where Ink,k is evaluated at some estimate of β, we have
󰁓dk

ℓ=1 Gℓk
󰁥Vℓk = 0.

We will discuss the choice of estimate for β that will be used to evaluate Ink,k, and also

󰁥rℓk, in Section 3.2.3.

We denote Hdk,k = 1
dk

󰁓dk
ℓ=1 GℓkInk,kGℓk, and Qdk,k =

󰁓dk
ℓ=1 Gℓk󰁥rℓk. Let H0 = 0p×p,

Hk−1 =
󰁓k−1

i=1 Hdi,i, Q0 = 0p×1, and Qk−1 =
󰁓k−1

i=1 Qdi,i. Then we have the online
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updating test statistic given by

Tk(G) = Q⊤
k H

−1
k Qk = (Qk−1 +Qdk,k)

⊤(Hk−1 +Hdk,k)
−1(Qk−1 +Qdk,k). (3.1)

At each accumulation point k, we need to store Hk−1 and Qk−1 from previous calcula-

tions, and compute Hdk,k and Qdk,k for the current block.

3.2.2 Window Version

The cumulative test statistic takes all historical blocks into consideration, one potential

problem of which is that discrepancies from the proportional hazards assumption will

accumulate, and after a certain time period, the test will always reject the null hypoth-

esis. This motivates us to focus on more recent blocks in some applications. At block k,

we consider a window of width w(≥ 1), which is tunable, and use summary statistics for

all blocks in this window to construct the corresponding test statistic. With Hdk,k and

Qdk,k defined above, we again assume there is at least one event in each block of data.

Denoting Hw
k−1 =

󰁓k−1
i=k−w Hdi,i, and Qw

k−1 =
󰁓k−1

i=k−w Qdi,i, the window version online

updating test statistic for nonproportionality based on the most recent w blocks is:

Tw
k (G) = (Qw

k )
⊤(Hw

k )
−1Qw

k . (3.2)
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In implementation, we only need to store Hdk,k and Qdk,k for all but the first block in

the window, and compute these summary statistics for the current block to obtain the

aggregated diagnostic statistic. Compared to the cumulative version statistic, which at

each update requires storage of one p× 1 vector Qk, one p× 1 vector for an estimate of

β, one p × p matrix Hk, and one p × p estimated covariance matrix of β, the window

version requires storage of these quantities for w − 1 steps, which is still minimally

storage intensive when p ≪ nk. In addition, as an auxiliary approach that provides an

indication approximately where along the stream a violation has occurred, w is generally

chosen not to be large, which also makes the storage of these quantities affordable.

3.2.3 Where to Evaluate the Matrices and Residuals

The observed information matrix Ink,k and the residuals 󰁥rℓk must be evaluated at a

particular choice of β. A straightforward choice would be 󰁥βnk,k, the estimate of β using

the kth block of data, for k = 1, 2, . . .. It may, however, be more advantageous to use

an estimate that utilizes all relevant historical information.

Suppose now we have K subsets of data. The score function for subset k is

Unk,k(β) =

nk󰁛

i=1

󰁝 ∞

0

󰀅
Xi(t)−X(β, t)

󰀆
dNi(t).
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Denote the solution to Unk,k(β) = 0 as 󰁥βnk,k. If we define

Ink,k(β) = −
nk󰁛

i=1

∂
󰁕∞
0

󰀅
Xi(t)−X(β, t)

󰀆
dNi(t)

∂β
,

a Taylor expansion of −Unk,k(β) at
󰁥βnk,k is given by

−Unk,k(β) = Ink,k(
󰁥βnk,k)(β − 󰁥βnk,k) +Rnk,k

as Unk,k(
󰁥βnk,k) = 0 and Rnk,k is the remainder term. For notational simplicity, we denote

Ink,k(
󰁥βnk,k) as

󰁥Ink,k for the rest of this thesis. Without loss of generality, we assume that

there is at least one event in each block, and each 󰁥Ink,k is invertible.

Similar to the aggregated estimating equation (AEE) estimator of Lin and Xi (2011)

which uses a weighted combination of the subset estimators, the AEE estimator under

the Cox model framework is:

󰁥βN =

󰀫
K󰁛

k=1

󰁥Ink,k

󰀬−1 K󰁛

k=1

󰀓
󰁥Ink,k

󰁥βnk,k

󰀔
, (3.3)

which is the solution to
󰁓K

k=1
󰁥Ink,k(β − 󰁥βnk,k) = 0, with N being the total number of

observations at the final accumulation point K. Schifano et al. (2016) provided the

variance estimate for the original AEE estimator of Lin and Xi (2011), and under the
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Cox model framework it simplifies to

󰁥AN =

󰀫
K󰁛

k=1

󰁥Ink,k

󰀬−1

. (3.4)

Following Schifano et al. (2016), the cumulative estimating equation (CEE) estimator

for β at accumulation point k under the Cox model framework is

󰁥βk =
󰁱
󰁥Ik−1 + 󰁥Ink,k

󰁲−1 󰁱󰁥Ik−1
󰁥βk−1 + 󰁥Ink,k

󰁥βnk,k

󰁲
(3.5)

for k = 1, 2, . . ., where 󰁥β0 = 0p×1, 󰁥I0 = 0p×p, and 󰁥Ik =
󰁓k

i=1
󰁥Ini,i =

󰁥Ik−1 + 󰁥Ink,k. The

variance estimator at the kth update simplifies to

󰁥Ak =
󰁱
Ik−1 + Ink,k(

󰁥βnk,k)
󰁲−1

. (3.6)

Note that for terminal k = K, Equations (3.5) and (3.6) coincide with Equations (3.3)

and (3.4), respectively (i.e., AEE=CEE).

As pointed out by Schifano et al. (2016), the CEE estimators are not identical to the

estimating equation (EE) estimators (based on the entire sample) in finite sample sizes.

Similar to Schifano et al. (2016), we propose a CUEE estimator under the EE framework

to better approximate the EE estimators with less bias. Take the Taylor expansion of
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−Unk,k(β) around β

󰁥
nk,k, which will be defined later. We have

−Unk,k(β) = −U

󰁥
nk,k + I

󰁥
nk,k(β − β

󰁥
nk,k) +R

󰁥
nk,k,

where U

󰁥
nk,k = U(β

󰁥
nk,k), I

󰁥
nk,k = Ink,k(β

󰁥
nk,k), and R

󰁥
nk,k is the remainder term. We now

ignore the remainder terms, and sum the first order expansions for blocks 1, . . . , K, and

set it equal to 0p×1:

K󰁛

k=1

−U

󰁥
nk,k +

K󰁛

k=1

I

󰁥
nk,k(β − β

󰁥
nk,k) = 0p×1. (3.7)

Then we have the solution to (3.7):

󰁨βK =

󰀫
K󰁛

k=1

I

󰁥
nk,k

󰀬−1 󰀫 K󰁛

k=1

I

󰁥
nk,kβ

󰁥
nk,k +

K󰁛

k=1

U

󰁥
nk,k

󰀬
.

The choice of β

󰁥
nk,k is subjective. At accumulation point k, it is possible to utilize

information at the previous accumulation point k − 1 to define β

󰁥
nk,k. One candidate

intermediary estimator can be obtained as

β

󰁥
nk,k = (I

󰁥
k−1 + 󰁥Ink,k)

−1

󰀣
k−1󰁛

i=1

I

󰁥
ni,iβ

󰁥
ni,i +

󰁥Ink,k
󰁥βnk,k

󰀤
(3.8)

for k = 1, 2, . . ., I0

󰁥
= 0p×p, β

󰁥
n0,0 = 0p×1, and I

󰁥
k =

󰁓k
i=1 I

󰁥
ni,i. Estimator (3.8) is the

weighted combination of the previous intermediary estimators β

󰁥
ni,i, i = 1, . . . , k− 1 and
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the current subset estimator 󰁥βnk,k. It results as the solution to the estimating equation

󰁓k−1
i=1 I

󰁥
ni,i(β − β

󰁥
ni,i) +

󰁥Ink,k × (β − 󰁥βnk,k) = 0, with 󰁥Ink,k(β − 󰁥βnk,k) being the bias

correction term since −
󰁓k−1

i=1 Uni,i has been omitted.

With β

󰁥
nk,k given in (3.8), our CUEE estimator 󰁨βk is

󰁨βk =
󰁱
I

󰁥
k−1 + I

󰁥
nk,k

󰁲−1

(sk−1 + I

󰁥
nk,kβ

󰁥
nk,k + ξk−1 + Unk,k(β

󰁥
nk,k))

with sk =
󰁓k

i=1 I

󰁥
ni,iβ

󰁥
ni,i = I

󰁥
nk,kβ

󰁥
nk,k + sk−1 and ξk =

󰁓k
i=1 U

󰁥
ni,i = U

󰁥
nk,k + ξk−1,

where s0 = ξ0 = 0p×1, and k = 1, 2, . . .. For the variance of 󰁨βk, as 0p×1 = −󰁥Unk,k ≈

−U

󰁥
nk,k +

󰁥Ink,k(
󰁥βnk,k − β

󰁥
nk,k), we have I

󰁥
nk,kβ

󰁥
nk,k + U

󰁥
nk,k ≈ I

󰁥
nk,k

󰁥βnk,k. The estimated

variance of 󰁨βk is online updated by

󰁪Var(󰁨βk) =
󰀓
I

󰁥
k−1 + I

󰁥
nk,k

󰀔−1 󰀓
I

󰁥
k−1

󰁪Var(󰁨βk−1)I

󰁥
⊤
k−1 + I

󰁥
nk,k

󰁥I−1
nk,k

I

󰁥
⊤
nk,k

󰀔󰀗󰀓
I

󰁥
k−1 + I

󰁥
nk,k

󰀔−1
󰀘⊤

.

Upon further simplification, it reduces to

󰁪Var(󰁨βk) =
󰀓
I

󰁥
k−1 + I

󰁥
nk,k

󰀔−1
󰀣

k󰁛

i=1

I

󰁥
nk,k

󰁥I−1
nk,k

I

󰁥
⊤
nk,k

󰀤󰀗󰀓
I

󰁥
k−1 + I

󰁥
nk,k

󰀔−1
󰀘⊤

.

The proposed methods are all implemented in R based on functions from the survival

package (Therneau, 2015), and the code can be found via GitHub (Xue, 2018).
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3.2.4 Asymptotic Results

We now provide the asymptotic distribution of the test statistic Tk(G) given in Equa-

tion (3.1). For ease of presentation, we assume that all subsets of data are of equal

size n, i.e., nk = n. The following regularity assumptions are required to establish the

asymptotic distribution.

C1 We assume the regularity conditions A-D in Section 2.4 of Andersen (1982).

C2 The function g(t), t ∈ [0, τ ], is bounded, where τ is the follow-up time.

C3 Assume that {X(t), t ∈ [0, τ ]} is a bounded Donsker class (Kosorok, 2008).

C4 There exists an α ∈ (1/4, 1/2) such that for any η > 0, the subdata estimator

󰁥βn,k satisfies P (nα󰀂󰁥βn,k − β0󰀂 > η) ≤ Cηn
2α−1, where Cη > 0 is a constant only

depending on η.

C5 For each subdata, 󰀂󰁓dk
ℓ=1 Gℓk

󰁥Vℓk󰀂 < Cgvn󰀂󰁥βn,k−β0󰀂, or 󰀂
󰁓dk

ℓ=1 GℓkV

󰁥
ℓk󰀂 < Cgvn󰀂β

󰁥
n,k−

β0󰀂, where Cgv is a constant that does not depend on k.

The conditions assumed in Section 2.4 of Andersen (1982) are commonly used in the

literature of survival analysis. Since g(t) is user-specified, it is reasonable to assume

that it is bounded. Most widely used g(t) functions are bounded if the follow-up time

is finite. Condition C3 imposes a constraint on the time varying covariate. If it is

time invariant, the condition can be replaced by bounded covariate. Condition C4 is a

typical assumption required for online updating method such as in Lin and Xi (2011);
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Schifano et al. (2016). Condition C5 indicates that 󰀂
󰁓dk

ℓ=1 Gℓk
󰁥Vℓk󰀂 = OP (

√
n). This

condition is typically satisfied in practice. As mentioned in Therneau and Grambsch

(2000), 󰁥Vℓk are often replaced by Ink,k/dk in practice and Gℓk are always centered. Thus,

󰁓dk
ℓ=1 Gℓk

󰁥Vℓk = 0 for this scenario.

Theorem 3.2.1. Under conditions C1-C5, as n → ∞, if K = O(nγ) with 0 < γ <

min{1− 2α, 4α− 1}, then for any k ≤ K, the test statistic satisfies that

Tk(G) → χ2
p,

in distribution when all blocks of data follow the proportional hazards model with the

same covariate parameters.

Proof. If K = O(nγ), then any k ≤ K satisfies this condition. Thus, we only need to

prove the result for K.

We first consider the case that In,k and 󰁥rℓk are evaluated at 󰁥βn,k. Denote

ΓK = H
−1/2
K QK , where HK =

K󰁛

k=1

dk󰁛

ℓ=1

Gℓk
󰁥VℓkGℓk. (3.9)

To prove the asymptotic chi-square distribution, we only need to show that ΓK converges

in distribution to a p-dimensional multivariate standard normal distribution.

We first show that (nK)−1HK converges in probability to some positive definite

matrix. Note that the function g(t) is bounded. Thus, under the conditions A-D in
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Andersen and Gill (1982), using arguments similar to those used in the proof of Theorem

3.2 (page 1107-1108) of Andersen and Gill (1982), we have that

1

n

dk󰁛

ℓ=1

Gℓk
󰁥VℓkGℓk →

󰁝 τ

0

G(t)v(β0, t)G(t)s(0)(β0, t)λ0(t)dt ≡ Σ, (3.10)

in probability, where v(β, t) and s(0)(β, t) are limits (uniformly in probability) of V (β, t)

and S(0)(β, t) = n−1
󰁓n

i=1 Yi(t) exp{Xi(t)
⊤β}, respectively as defined in Conditions A

and D in Andersen and Gill (1982).

Since {X(t), t ∈ [0, τ ]} is a bounded Donsker class, {Y (t) exp{β′X(t)}, t ∈ [0, τ ], β ∈

B} is also Donsker. A Donsker class is also a Glivenko-Cantelli class, so we have

sup
t∈[0,τ ],β∈B

󰀏󰀏󰀏󰀏󰀏
1

n

n󰁛

0

Yℓk(t) exp{Xℓk(t)
⊤β′}− s(0)(β, t)

󰀏󰀏󰀏󰀏󰀏 → 0, (3.11)

almost surely, where B is the compact parameter space. This means that S(0)(β, t) is

uniformly bounded away from 0. As a result, 1
n

󰁓dk
ℓ=1 Gℓk

󰁥VℓkGℓk is bounded since the

covariate X(t) is bounded. Thus, from Theorem 1.3.6 of Serfling (1980), Equation (3.10)

implies that

E

󰀝
1

n

dk󰁛

ℓ=1

Gℓk
󰁥VℓkGℓk

󰀞
→ Σ.

With this, from Fubini’s theorem, we have

E
󰁱HK

nK

󰁲
=

1

K

K󰁛

k=1

E

󰀝
1

n

dk󰁛

ℓ=1

Gℓk
󰁥VℓkGℓk

󰀞
→ Σ.
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Thus,

HK

nK
→ Σ, (3.12)

in probability.

Now we examine QK =
󰁓K

k=1

󰁓dk
ℓ=1 Gℓk󰁥rℓk. For each component of 󰁥rℓk, 󰁥r(i)ℓk (i =

1, ..., p), the Taylor series expansion yields

󰁥r(i)ℓk = r
(i)
ℓk − V(i)(󰁥β(i∗)

n,k , tℓ)(
󰁥βn,k − β0),

where V(i)(󰁥β(i∗)
n,k , tℓ) is the ith row of V (󰁥β(i∗)

n,k , tℓ), and
󰁥β(i∗)
n,k is on the line segment between

󰁥βn,k and β0. If V (󰁥β∗
n,k, tℓ) is the matrix whose rows are V(i)(󰁥β(i∗)

n,k , tℓ), i = 1, ..., p, then we

have

󰁥rℓk = rℓk − V (󰁥β∗
n,k, tℓ)(

󰁥βn,k − β0).

Thus

QK =
K󰁛

k=1

dk󰁛

ℓ=1

Gℓk󰁥rℓk

=
K󰁛

k=1

dk󰁛

ℓ=1

Gℓkrℓk −
K󰁛

k=1

dk󰁛

ℓ=1

GℓkV (󰁥β∗
n,k, tℓ)(

󰁥βn,k − β0) ≡ ∆1 −∆2.

(3.13)

Note that ∆1 is a weighted score function for the full data log partial likelihood, and

the weights are bounded. Thus, using arguments similar to the those used in the proof
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of Theorem 3.2 (pages 1106-1107) of Andersen and Gill (1982), we know that

∆1√
nK

→ N(0,Σ), (3.14)

in distribution. Now we show that

∆2√
nK

= oP (1). (3.15)

Note that for each k, 󰀂󰁓dk
ℓ=1 Gℓk

󰁥Vℓk󰀂 < Cgvn󰀂󰁥βn,k − β0󰀂. Thus,

󰀂∆2󰀂 ≤
K󰁛

k=1

󰀐󰀐󰀐󰀐
dk󰁛

ℓ=1

Gℓk{V (󰁥β∗
n,k, tℓ)− V (󰁥βn,k, tℓ)}(󰁥βn,k − β0)

󰀐󰀐󰀐󰀐

+
K󰁛

k=1

󰀐󰀐󰀐󰀐
dk󰁛

ℓ=1

GℓkV (󰁥βn,k, tℓ)(󰁥βn,k − β0)

󰀐󰀐󰀐󰀐

≤Cg

K󰁛

k=1

dk󰁛

ℓ=1

󰀂V (󰁥β∗
n,k, tℓ)− V (󰁥βn,k, tℓ)󰀂󰀂󰁥βn,k − β0󰀂+ Cgvn

K󰁛

k=1

󰀂󰁥βn,k − β0󰀂2,

(3.16)

where Cg is a constant that bounds G(t) from above.

For the i1i2th element of V (󰁥β∗
n,k, tℓ)− V (󰁥βn,k, tℓ),

V(i1i2)(
󰁥β∗
n,k, tℓ)− V(i1i2)(

󰁥βn,k, tℓ) =
∂V(i1i2)(

󰁥β∗∗
n,k, tℓ)

∂β
(󰁥β∗

n,k − 󰁥βn,k),

where 󰁥β∗∗
n,k is on the line segment between 󰁥β∗

n,k and 󰁥βn,k. From (3.11) and the fact that
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X(t) is bounded, we know that ∂V(i1i2)(
󰁥β∗∗
n,k, tℓ)/∂β is uniformly bounded. Let M be a

constant that bounds its elements. Since 󰁥β∗∗
n,k and 󰁥β∗

n,k are between 󰁥βn,k and β0, we have

|V(i1i2)(
󰁥β∗
n,k, tℓ)− V(i1i2)(

󰁥βn,k, tℓ)| ≤ M󰀂󰁥βn,k − β0󰀂. (3.17)

Combining (3.16) and (3.17), we have

󰀂∆2󰀂 ≤ Cn

K󰁛

k=1

󰀂󰁥βn,k − β0󰀂2, (3.18)

where C = CgM + Cgv. Since K = O(nγ), there exist a constant, say C2
1 , such that

K < C2
1n

γ. From (3.18), for any 󰂃 > 0,

P
󰀃
󰀂∆2󰀂 >

√
nK󰂃

󰀄
≤ P

󰀕
1

K

K󰁛

k=1

󰀂󰁥βn,k − β0󰀂2 >
󰂃

C
√
nK

󰀖

≤
K󰁛

k=1

P

󰀕
󰀂󰁥βn,k − β0󰀂2 >

󰂃

C
√
nK

󰀖

≤
K󰁛

k=1

P

󰀕√
nnγ󰀂󰁥βn,k − β0󰀂2 >

󰂃

CC1

󰀖

=
K󰁛

k=1

P

󰀕
n(1+γ)/4󰀂󰁥βn,k − β0󰀂 >

󰁵
󰂃

CC1

󰀖

≤
K󰁛

k=1

P

󰀕
nα󰀂󰁥βn,k − β0󰀂 >

󰁵
󰂃

CC1

󰀖

≤
K󰁛

k=1

Cηn
2α−1 = CηKn2α−1 = O(nγ+2α−1) = o(1).

Here, the last inequality is from condition C4; the second last inequality is because
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γ < 4α − 1; and the last step is because γ < 1 − 2α. This proves (3.15). The proof

finishes by combining (3.9), (3.12), (3.13), (3.14), (3.15), and Slutsky’s theorem.

Now we consider the case when In,k and 󰁥rℓk are evaluated at β

󰁥
n,k. Under Condition

C1 and C4, the requirements of (C4’) and (C6) in Lemma E.2 of Schifano et al. (2016)

are satisfied. Thus, the condition described in C4 for 󰁥βn,k is also valid for β

󰁥
n,k . With

this result, the proof is similar to the case when In,k and 󰁥rℓk are evaluated at 󰁥βn,k.

The asymptotic distribution is valid for any stage of the updating process if each sub-

set is not very small and the null hypothesis is true. This means that the type one error

rate is always well maintained. As more data accumulate along the updating procedure,

the test statistic gains more power. If nk’s are different, the asymptotic result is still

valid under mild some condition, for example, maxk nk/mink nk = O(1). Note that the

window version statistic Tw
k (G) is essentially the cumulative version statistic evaluated

at the CEE with different starting blocks. Therefore, the asymptotic distribution is also

valid for the window version statistic.In the special case of w = 1, the proposed statistic

reduces to the original T (G) on the most recent block, which has been shown to be χ2
p

by Grambsch and Therneau (1994).

3.3 Simulation Study

Simulation studies were carried out to evaluate the empirical size and power of both the

online updating cumulative and window versions of the test statistic. When data were
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generated under the proportional hazards assumption, we also compared the empirical

distribution of the online updating cumulative statistic Tk(G) with that of the standard

statistic computed using all data up to selective accumulation points k, denoted by

T1:k(G). While we look at the end of each stream to decide whether the entire stream of

data satisfies the proportional hazards assumption or not, we also examine the results

at each accumulation point to verify the performance of the proposed test statistics.

Simulations have also been conducted to assess the savings in computing time in memory

usage for the proposed statistics.

3.3.1 Size

Event times were generated from Model (2.1) with three covariates xki[1]
i.i.d.∼ N(0, 1),

xki[2]
i.i.d.∼ Bernoulli(0.5), xki[3]

i.i.d.∼ Bernoulli(0.1) for i = 1, . . . , nk, making a nk × 3

covariate matrix. We set a vector of parameters β0 = (0.67,−0.26, 0.36)⊤, and baseline

hazard λ0(t) = 0.018. Censoring times were generated independently from a mixture

distribution: ε〈60〉+ (1− ε)U (0, 60), where 〈60〉 represents a point mass at 60. Setting

ε = 0.9 gives approximately 40% censoring rate, and ε = 0.1 gives approximately 60%

censoring rate. For each censoring level, we generated 1, 000 independent streams of

survival datasets, each of which had N = 200, 000 observations in K = 100 blocks with

nk = 2, 000.

Three choices of g(t) were considered, the identity, KM, and log transformations, in

the calculation of the test statistics. For each choice, we calculated both the cumulative
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online updating cumulative

censoring rate 40%

online updating cumulative
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Figure 9: Empirical size (proportion of statistic values greater than χ2
3,0.95) calculated at

each update using the identity, KM, and log transformations under the null hypothesis.

version and window version (width w = 5) statistics upon arrival of each block of sim-

ulated data. For the cumulative version statistic, the matrices and Schoenfeld residuals

were evaluated at 󰁨βk, the CUEE estimator. Figure 9 summarizes empirical rejection

rates of the test with nominal level 0.05 at each accumulation point k = 1, . . . , 100 for

the two versions of the tests under two censoring levels. The empirical rejection rates

for the three choices of g(t) fluctuate closely around the nominal level 0.05 in all the

scenarios. The log transformation, however, results in a slightly larger size than the

other two transformations, and its usage should therefore be treated with caution.

To compare the empirical distribution of the online updating cumulative statistic

Tk(G) and the standard statistic T1:k(G), we generated 1, 000 independent streams of

data, each again with K = 100 blocks and nk = 2, 000 under the same settings as

before. Test statistics Tk(G) were computed for all blocks k = 1, . . . , 100 according to

Equation (3.1). At blocks k ∈ {25, 50, 75, 100}, we also calculate the standard statistic

T1:k(G) based on cumulative data up to those blocks; that is, we combine the data in
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Figure 10: Empirical quantile-quantile plots of the online updating cumulative statis-
tics Tk(G) (x-axis) and T1:k(G) obtained using cumulative data (y-axis) with censoring
rate 40% and 60%, taken at block k ∈ {25, 50, 75, 100}, both calculated using the KM
transformation on event times.

block k with the previous k − 1 blocks into a single large dataset and obtain T (G) in

Equation (2.10) based on this single large dataset of k blocks. Figure 10 presents the

quantile-quantile plots of the two statistics obtained with g(t) being the KM transfor-

mation. The points line up closely on the 45 degree line, confirming that the online

updating cumulative statistics Tk(G) follow the same asymptotic χ2
p distribution under

the null hypothesis as T1:k(G).

In addition to scenarios where p = 3, simulation studies are performed to assess

the size of the proposed test statistics for moderate dimensions for p ∈ {10, 20}. For

each setting, there are p/2 continuous covariates, generated i.i.d. from N (0, 1), and the

remaining p/2 covariates are binary, generated i.i.d. from Bernoulli(0.5). The beta
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Figure 11: Size for the proposed test statistics when p = 10 and 20.

vectors are chosen as β10 = (0.7,−0.5, 0.8, 0.3, 0.1,−0.4,−0.9,−0.2,−0.3, 0.4)⊤, and

β20 = (β⊤
10, β

⊤
10). The baseline hazards are set to, respectively, 0.032 and 0.015, with

the weights at 〈60〉 being (0.9, 0.1) to produce the desired censoring rates of approx-

imately 40% and 60%. It can be seen from Figure 11 that both versions of statistic

hold their sizes under the null hypothesis, under both dimensions, although the log

transformation is not recommended.

Because our initial analysis of the SEER lymphoma data suggested a Cox model with

time-varying coefficients that could be approximated by a piecewise constant function

of time (see Section 3.4), we checked the size of the proposed test in a simulation study

with a Cox model having a similar structure. The function survSplit() from the survival



61

Table 4: Size of Tk(G) for models with piecewise constant coefficients based on 1,000
replicates.

Censoring Rate Transformation Size

40% KM 0.067
Identity 0.043

Logarithm 0.156

60% KM 0.039
Identity 0.033

Logarithm 0.094

package facilitates the fitting of Cox models for these piecewise-constant time-varying

coefficients with the use of tgroup as described in Section 5 and further detailed in Th-

erneau et al. (2017). As an illustration, we used the reda package (Wang et al., 2017)

to simulate survival data with again the three covariates, but the coefficients are now

piecewise constant. On the interval [0, 12], β = (0.7,−0.26, 0.36), and on the interval

(12, 60], β = (0.6,−0.4, 0.46). The same censoring schemes as in earlier this section

have been used and produced censoring rates of approximately 40% and 60%. Func-

tion survSplit() was applied with breaking point 12. The online updating cumulative

statistic Tk(G) evaluated at the CUEE was compared against critical value χ2
0.95,6 to

make the decision. The empirical sizes from the three transformations are summarized

in Table 4. For both censoring rates, it can be seen that the empirical type I error rate

is appropriately controlled around its nominal level of 0.05 when the KM or identity

transformations are used. The logarithm transformation does not maintain its size well,

which is similar to the instability we observed in Figure 9 and Figure 11, and is again

not recommended.
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Figure 12: Empirical power (proportion of statistic values greater than χ2
3,0.95) for the

online updating cumulative and window tests, calculated at each update using the iden-
tity, Kaplan–Meier, and log transformations under the alternative hypotheses of model
misspecification (left) and parameter change (right) under censoring rate 40% (top) and
60% (bottom).

3.3.2 Power

Continuing with the simulation setting, two scenarios where the proportional hazards

assumption is violated were considered to assess the power of the proposed tests.

The first scenario breaks the proportional hazards assumption by a multiplicative

frailty in the hazard function. Starting from the 51st block in each stream, the hazard
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function, instead of being (2.1), becomes

λ(t) = λ0(t) exp
󰀃
X⊤β + 󰂃

󰀄
,

where a normal frailty 󰂃 ∼ N(0, σ2) is introduced. Two levels of σ were considered,

0.5 and 1. Figure 12 shows the empirical rejection rates of the tests at level 0.05 from

1,000 replicates against accumulation point k. The tests have higher power under lower

censoring rate or higher frailty standard deviation. At a given censoring rate and frailty

standard deviation, the window version picks up the change more rapidly than the

cumulative version because it discards information from older blocks for which the pro-

portional hazards assumption holds; the power remains at a certain level (less than 1)

after all the blocks in the window contain data generated from the frailty model. The

cumulative version responds to the change more slowly, but as the proportion of blocks

with data generated from the frailty model increases, the power approaches 1 eventually.

In all settings, tests based on the log transformation and KM transformation seem to

have higher power than that based on the identity transformation.

The second scenario breaks the proportional hazards assumption by a change in one

of the regression coefficients. Specifically, we considered an increase of 0.5 or 1 in β1, the

coefficient for the first covariate in data generation, starting from the 51st block. The

empirical rejection rates of the tests with level 0.05 from 1,000 replicates are presented in

Figure 12. Both versions of the tests have higher power when the censoring rate is lower
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or the change in β1 is larger. At a given censoring rate and change in β1, the window

version only has power to detect the change near the 51st block, when the blocks in

the window contain data from both the original model and the changed model. The

cumulative version picks up the change after the 51st block and the power increases

quickly to 1 as more data blocks from the changed model accumulate.

To further compare the powers of T (G) and Tk(G), in both scenarios, we decreased

the magnitude of change in the underlying model generating the data streams, and

calculate the powers of T (G) and Tk(G) at the end of each stream. For the model

misspecification scenario, we choose σ ∈ {0.15, 0.20, 0.25, 0.30, 0.35, 0.40}. For each σ,

1000 replicates of simulation are performed, and the power is calculated in the end of

the data stream in each replicate for both T (G) and Tk(G). Similarly for the param-

eter change scenario, for ∆β1 ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}, the power for 1000

replicates of simulation is also calculated. All three transformations are assessed under

both the low and high censoring rates. We plot the powers against the magnitudes of

model/parameter change in Figure 13.

It can be seen that, when the violation is due to a model change to frailty, both

versions have relatively low power when the frailty standard deviation is small. At

σ = 0.40, however, both T (G) and Tk(G) identify the violation with quite high power.

The performance of Tk(G) is not better than, but still comparable to, the performance of

T (G). Note that both statistics have higher power for the same change at 40% censoring

level than at 60% censoring level.
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When the violation is due to a change in covariate effects, however, our proposed

online updating cumulative statistic Tk(G) has significantly higher power than T (G).

While both statistics have small power at ∆β1 = 0.05, when ∆β1 increases, the power

of Tk(G) increases faster than the power of T (G), and the difference in powers can be

as large as nearly 0.5.

3.3.3 Comparison of Computing Time

The computation time for the standard test T (G) and the online updating cumulative

statistic Tk(G), for both the CEE- and CUEE-based versions. For comparison pur-

poses, we choose to simulate data that can be loaded into one computer’s memory.

Survival data streams using the setting of Section 3.3.1 with ε = 0.1 are generated.

The size of the stream, N , is such that N ∈ {100000, 200000, 300000, 400000, 500000},

and each stream is partitioned into K = 100 equally sized blocks, such that nk ∈

{1000, 2000, 3000, 4000, 5000} for k = 1, . . . , 100. For each stream, the time it takes to

calculate the maximum partial likelihood estimate of β and the diagnostic statistic T (G)

are recorded, as well as the time it takes to obtain Tk(G), 󰁥βk and 󰁨βk for k = 1, . . . , 100.

The results are obtained for 100 replicates of simulation performed with Intel R© Core(TM)

i7-8850H CPU @2.60GHz, and we illustrate the average computing time in Figure 14. It

is rather apparent that the standard test is far more time-consuming than both versions

of the proposed online updating cumulative test, and the disparity increases with the

size of the data stream. The CUEE-based Tk(G) is slightly slower than the CEE-based
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Tk(G), but the difference is minor. Note that T (G) is only computed at the end of each

stream. If we want to obtain a new T (G) on cumulative data upon the arrival of each

new block, like we can do with Tk(G), the contrast of computing time would be even

more significant.

To compute T (G) on the entire data stream withN observations and d events, we first

need to evaluate the log partial likelihood (2.3). The summation inside the logarithm

has O(N) complexity, while the outer integral is indeed a summation over d individual

event times, which requires computing the component inside the square brackets for d

times. Therefore evaluation of the partial likelihood has O(Nd) complexity. Assum-

ing that d is roughly of the same order as N , this is equivalent to O(N2) complexity.

Calculation of the Schoenfeld residuals, similarly, is roughly O(N2). Other procedures

in Equation (2.10) include multiplication of 1 × d, d × p, and p × p matrices, and the

inversion of p× p matrices, and the time complexity is capped at O(dp+ p3+ p2), which

is dominated by O(N2) when the number of events is much larger than the dimension

of covariate space and therefore ignored.

The online updating approach breaks the dataset into K blocks. For simplicity let

us assume the block sizes are all equal to N/K, then evaluating the partial likelihood,

together with calculation of the Schoenfeld residuals, has O(N2/K2) complexity, there-

fore doing so for all K blocks will require O(N2/K) time. This indicates that the speed

of online updating is inversely proportional to the number of blocks that a big dataset

is partitioned into. Note, however, that K needs to satisfy the regularity condition in
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Theorem 3.2.1.

3.3.4 Comparison of Memory Usage

In addition to computing time, we also study the savings in memory usage of our pro-

posed online updating statistics. A big dataset was simulated using the parameter

setting in Section 3.3.1 with β = (0.67,−0.26, 0.36) and λ0(t) = 0.018, which contains

N = 200 millions of observations. The size of the simulated dataset, when written into

a csv file is 7.65 GB. Using the bigmemory package (Kane et al., 2013), a description file

is created, which contains references to the same dataset but converted to a C++ object,
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stored on the hard drive. The description file can be loaded after it is created to allow

access of the corresponding data from within R, without having to load the entire dataset

into the memory. All studies were performed under single-core mode on the same laptop

as in Section 3.3.3. The total memory available on this laptop is 32 GB. The profvis

package (Chang and Luraschi, 2018) was used to track the memory usage and running

time. The block size is chosen to be nk = 2000, resulting in 10,000 blocks in total. Cre-

ation of the description profile takes 407.5 seconds, and the cumulative memory usage

is 16,785.2 MB. Next, the online updating CUEE-based Tk(G) was calculated for the

10,000 blocks. At each update, memory was first allocated and then de-allocated after

the blockwise summary statistics were obtained. The cumulative memory allocation for

loading the description file and performing online updating diagnostics was 43,318.2 MB,

and the cumulative memory de-allocation was 43,297.4 MB, which indicates that on av-

erage, each update requires slightly more than 4 MB memory. The entire data loading,

model estimation and diagnostic process took 1,048 seconds.

As a comparison, we also tried to load the entire dataset into R’s workspace. The

read.csv() procedure did not finish after running for an hour and occupying 37.57 GB

of the virtual memory and 15.61 GB of the real memory, and finally aborted because of

insufficient memory.
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3.4 Survival Analysis of SEER Lymphoma Patients

We consider analyzing the survival time of the lymphoma patients in the SEER program

with the proposed methods. There were 131,960 patients diagnosed with lymphoma

cancer between 1973 to 2007. We limited our scope to events due to lymphoma within the

first 60 months after being diagnosed Among those 131,960 subjects, the total number

of events was 47,009, and the censoring rate was 64.4%. The risk factors considered

in our analysis were Age (centered and scaled), gender indicator (Female), and African-

American indicator (Black). There were 60,432 females, and 9,199 African-American.

While the dataset is large, the analysis of the data as a single dataset is still possible

with reasonable computing resources. We wish to compare the performance of the

standard statistic T (G) from Equation (2.10) with our online updating statistics under

a setting in which the proportional hazards statistic is judged to be satisfied based on

the standard T (G) test. For online updating, the patients in the data were ordered by

time of diagnosis, so it is natural to partition the data by quarter of a year into 140

blocks. The average sample size per block was 943, but the block sizes and censoring

rates increased over time. Figure 15 presents the stacked bar plot of censors and events,

together with the line plot of censoring rate for each block.

As a starting point, an initial model that included the three risk factors was fitted,

and the standard test statistic based on the full data as in Equation (2.10) was calculated

to be 83.38, which indicated that the model does not satisfy the proportional hazards
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Figure 15: Sample size and censoring rate in blocks of SEER lymphoma data.

assumption. The online updating cumulative statistic was calculated to be 95.60. Due to

the relatively high censoring rate, all diagnostics were applied after applying the Kaplan–

Meier transformation on the survival times as it is more robust in such a scenario (e.g.,

Xue and Schifano, 2017). Diagnosis with function plot.cox.zph() in the survival package

revealed that all the parameters are likely to be time-dependent; see Figure 16.

0.00

0.25

0.50

0.75

1.00

0.54 2 4.4 7.5 12 19 30 49

Time

B
e

ta
(t

) 
fo

r 
A

g
e

Schoenfeld Individual Test p: 0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.54 2 4.4 7.5 12 19 30 49

Time

B
e

ta
(t

) 
fo

r 
G

e
n

d
e

r

Schoenfeld Individual Test p: 0.0022

0.00

0.25

0.50

0.75

1.00

0.54 2 4.4 7.5 12 19 30 49

Time

B
e

ta
(t

) 
fo

r 
B

la
c
k

Schoenfeld Individual Test p: 0

Figure 16: Time-varying pattern of the parameters for Age, Gender and Black in the
initial model, with parameter estimates from the entire data overlaid in green.
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Techniques in Therneau et al. (2017) were used to approximate the parameters using

piecewise constant functions of time. Two cut-offs were chosen at 2 and 30 months based

on the time-variation pattern obtained from the naive model. A factor variable tgroup

is defined to indicate on which intervals the corresponding observation contributes to

estimation of β. For example, a subject with survival time 25 and event 1 will now

be represented separately on two intervals: one with time interval from 0 to 2, with

event 0 and tgroup=1, and the other with time interval from 2 to 25, with event 1

and tgroup=2. The interaction of Age, Female and Black with the generated tgroup as

strata, respectively, gives the model more flexibility to fit to the data. The new model

resulted in T (G) = T1:140(G) = 5.75 on 9 degrees of freedom with a p-value of 0.77, which

indicates that the proportional hazards assumption for the revised model is appropriate

based on the full data. Figure 17 presents time-dependency plot of parameters for the

revised model. In contrast to Figure 16, the parameter estimates are much more stable

as the confidence band of each parameter estimate at different times contain its entire

data estimate for almost the whole time range.

To evaluate the performance of the online updating parameter estimates and test

statistics under the revised model, at each block k, k = 1, . . . , 140, we calculated the

parameter estimates, the online updating cumulative statistics Tk(G), the online updat-

ing window version statistics Tw
k (G), and also T1:k(G) based on the single large dataset

consisting of all cumulative data up to block k. Two online updating cumulative statis-

tics Tk(G) were obtained, one using the CEE estimator 󰁥βk and the other using the CUEE
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Figure 17: Time-varying pattern of the parameters for age, Gender and Black in the
revised model on three disjoint intervals of survival time, with parameter estimates from
the entire data overlaid in green.
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estimator 󰁨βk. For the window version, the CEE estimator 󰁥βk was used for computational

convenience, and two widths w = 1 and w = 10 were considered. The trajectories of

different versions of the test statistics were plotted in Figure 18. While the proportional

hazards assumption seemed to be satisfied within each individual block (w = 1), as well

as in cumulative data up to each accumulation point, both online updating cumulative

statistics Tk(G) resulted in a rejection of the null hypothesis, and Tw
k (G) when w = 10

also showed a few rejections along the stream.

The trajectories of three parameter estimates 󰁥βAge, 󰁥βFemale, and 󰁥βBlack on the three

time intervals (0, 2], (2, 30] and (30, 60] (obtained from the covariate interactions with
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Figure 19: Parameter estimates given by different estimating schemes plotted with re-
spect to block indices, obtained using the lymphoma data ordered by diagnosis time.

tgroup) were plotted with respect to block indices to investigate this apparent discrep-

ancy; see Figure 19. Apparently, 󰁥βAge on (0, 2] remained relatively stable for blocks 1

to 50, but started to first decrease and increase after. This change was captured by

both the window (Tw
k (G)) and the cumulative version statistics (Tk(G)), but it was not

captured by T1:k(G). This is explained by the fact that T1:k(G) is based on a single es-

timator of β, while in the online updating statistics, each block has its own estimate of

β. The temporal changes that are observed in the CUEE estimate of β get canceled in

the calculation based on the full cumulative data.
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To confirm that the temporal change in parameter contributed to the highly signifi-

cant online updating test statistics, we randomly permuted the order of the observations

in the original dataset 1,000 times using the same block size as the temporally-ordered,

3-month blocked data. For each permutation, we applied the same techniques and cut-

offs to allow for piecewise constant parameters over time as before. The histogram of

online updating cumulative statistics obtained for 1,000 such permutations is presented

in Figure 20. The empirical p-value based on these 1,000 permutations is 0.016, indicat-

ing that the particular order of blocks in the original temporally ordered data is indeed

contributing to non-proportionality.

Figure 21 presents the same diagnostic plots as Figure 19 except that they are for

one random permutation. While the final cumulative data parameter estimates remain

the same, the trajectories are much flatter, with no obvious temporal trend over blocks.

The diagnostic statistics were also obtained under this random permutation, and plotted

in Figure 22. Each block again satisfies the proportional hazards assumption, and the

performance of the online updating cumulative statistic based on CUEE is very close

to T (G) computed on the entire dataset. The online updating window version (w =

10), however, still identified a few neighborhoods where the variation is large, and this

behavior persists across different choices of window size.
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Figure 21: Parameter estimates given by different estimating schemes plotted with re-
spect to block indices, obtained using the randomly ordered lymphoma data.

3.5 Discussion

We focus on the test for the proportional hazards assumption in this chapter. Specifically,

instead of working on a given, full dataset, we developed the online updating test statistic

for big streams of survival data. The statistic is inspired by the divide and conquer

approach (Lin and Xi, 2011), and the online updating approach for estimation and

inference of regression parameters for estimating equations (Schifano et al., 2016). Two

versions of test statistic was proposed: Tk(G) that uses cumulative information from all

historical data, and an auxiliary Tw
k (G) using information only from recent data. Both

statistic have an asymptotic χ2 distribution when the blocks in the entire stream are
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generated from the same underlying Cox model. In the simulation studies, Tk(G) has

comparable or higher power to the standard test T (G) of Grambsch and Therneau (1994)

on the entire dataset, for scenarios of a model change or parameter change, respectively.

In addition, when T (G) fails to detect violation of the null hypothesis on the whole

dataset, Tk(G) may still identify the violation with high power. This was observed in

the application to the SEER data, and also echoes the findings in Battey et al. (2018).

This also suggests that, even when the dataset is not that huge, it might be helpful to

partition the data and examine the partitions for possibly masked violations of the null

hypothesis. At the final block, the cumulative version test statistic will help us decide if

the proportional hazards assumption has been satisfied. The window version, however,

can be run at the same time, as it is sensitive to heterogeneity among a few blocks.

Compared to the traditional approach, Tk(G) and Tw
k (G) are computationally fast,

and minimally storage intensive. Even when the dataset is too large to be loaded into

the memory, the proposed approach can still be performed within reasonable time limit.

Compared to parallel computing, the proposed approach reduces time needed for com-

munication between nodes, and allows for bias correction of the parameter estimates.

A few issues beyond the scope of this chapter are worth investigation. The size of

blocks should be chosen following general guidelines (e.g. Schoenfeld, 1983), so that the

covariate effects can be sufficiently identified, and that the information matrices exist

and are invertible. In practice, with a data stream, we can always choose to let the data

accumulate until a certain number of events are observed. Then these observations can
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be grouped into one block, which can produce stable and valid results for test purposes.

For Tw
k (G), the choice of w may affect the test results and local parameter estimates.

Possible influential factors include the size of data chunks, the censoring rate within

each chunk, among others. Additionally, as we are more interested in local or current

goodness-of-fit when using the window version, w should generally be small. Also, as

illustrated in Figure 12, Tw
k (G) can behave differently under different violations of the

proportional hazards assumption. Therefore, prior knowledge on what types of changes

are likely to occur, if available, may also be taken into consideration. As we are more

concerned with deciding whether the entire stream satisfies the proportional hazards

assumption, this window version should be treated as of auxiliary purpose. Also, the test

statistics and parameter estimates perform well when p is small to moderate. When p is

high or ultra-high, singularity issues could arise, and appropriate penalization methods

should be considered (e.g. Fan and Li, 2002; Zou et al., 2008; Fan et al., 2010; Mittal

et al., 2014).

Also, we are only concerned with making a final decision regarding the proportional

hazards assumption at the end of a data stream. There are scenarios, however, under

which we may wish to make decisions alongside the data stream as the updating process

progresses. This beings up the issue of multiple hypothesis testing. Hypothesis testing

in the online updating framework is an interesting topic, and has been explored recently

in Webb and Petitjean (2016) and Javanmard and Montanari (2018), and also in the

statistical process control framework in, e.g., Lee and Jun (2010, 2012). Appropriate
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adjustment procedures in the online updating proportional hazards test context are

devoted for future research.
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Chapter 4

Simultaneous Monitoring for

Regression Coefficients and Baseline

Profile in Cox Modeling

4.1 Introduction

The nonparametric baseline hazard function in the Cox model can be of special inter-

est in applications where its change needs to be detected. Breslow (1972) proposed

an approach, later summarized by Lin (2007) to be a nonparametric maximum likeli-

hood estimation (NPMLE) approach, which estimates the regression parameters and

the cumulative baseline hazard function at the same time. The resulting estimator of

cumulative baseline hazard, when plotted against event times, form a monotone non-

decreasing curve. In applications where the full survival curve of a given covariate set

is needed for prediction, this nonparametric baseline hazard could also be of special in-

terest. As a consequence, with a stream of survival data, changes in both the covariate
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effects and the baseline cumulative function need to be monitored.

Statistical profile monitoring techniques have been developed to detect changes in

parameter vectors, or more complicated parameter profiles. Most parametric monitoring

methods are applications of Hotelling’s T 2 statistic (Hotelling, 1931). Kang and Albin

(2000) monitored linear profiles by running a regression and keeping track of the esti-

mated intercepts and slopes using a multivariate T 2 chart. Zhu and Lin (2009) used the

same regression technique, but focused on using a t statistic for only the estimated slope

after centering both the independent and dependent variables. The use of Hotelling’s

T 2 statistic was later extended to monitoring coefficients obtained by a parametric non-

linear regression in cases where a response curve is studied by Williams et al. (2007).

Kazemzadeh et al. (2008) extended similar ideas to profiles obtained via a polynomial

regression. In addition to the aforementioned parametric procedures, nonparametric

monitoring methods have also been proposed. Zou et al. (2008) considered the use of

nonparametric regression methods with some degree of smoothness in monitoring pro-

files. Woodall (2007) reviewed and summarized the application of such techniques in

fields other than industrial manufacturing, including detecting changes in Q-Q plot re-

flecting the relationship between a collected sample and a baseline sample (Wang and

Tsung, 2005) and detecting increased disease rate clusters (Zhou and Lawson, 2008). In

an effort to allow the measurements within one profile to be correlated instead of strictly

independent, Qiu et al. (2010) proposed the usage of nonparametric mixed effects models

in profile monitoring context. Yu et al. (2012) formulated the profile monitoring problem
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in the scope of functional data analysis, and proposed an outlier detection mechanism

based on functional principal component analysis. Wei et al. (2012) developed a purely

nonparametric approach, which estimates a reference profile, and then relies on three

nonparametric statistics to describe departures from the reference profile. This approach

can be applied to essentially any curve-type observations, as the control limits can be

established using quantiles of summary statistics based on existing data.

We considering statistical profile monitoring of Cox modeling in time-to-event data

analysis where both the regression coefficient vector and the cumulative baseline hazard

function need to be monitored. Following the conventions in statistical profile monitor-

ing, we assume that in the beginning of a data stream, the blocks are “in control”, i.e.,

observations in all blocks follow a Cox model with the same set of parameters and base-

line hazard. The relatively homogeneous and stable blocks are then denoted as Phase I.

Based on these blocks, after controlling for the heterogeneity in blockwise sample size

and censoring rate, a T 2 statistic is used to describe a reasonable range of variation for

the covariate effects, while three nonparametric descriptive statistics similar to those in

Wei et al. (2012) are constructed for the same purpose for the cumulative hazard func-

tion. A combined decision rule is proposed to select the thresholds for the four statistics,

such that the empirical type I error rate in Phase I is properly controlled. In Phase II,

the same statistics are computed for each new arriving block. By comparing the values

of the statistics with their respective control limits, one is able to tell whether a block

is outlying in terms of one or more of the four measurements.
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The rest of this chapter is organized as follows: in Section 4.2, we briefly outline

the basics of the Cox model and the nonparametric estimate of the cumulative baseline

hazard function, are obtained; in Section 4.3, we present, respectively, the monitoring

methods for the coefficient estimates and for the cumulative baseline hazard function,

and how to combine them to produce an integrated result. Simulation studies are pre-

sented in Section 4.4, followed by an application to the same lymphoma dataset from

the SEER registry in Section 4.5.

4.2 Nonparametric Estimators for the Cumulative

Baseline Hazard

Cox (1972, 1975) proposed the partial likelihood (2.2), which facilitates the estimation of

covariate effects without having to consider the nonparametric baseline hazard function.

Breslow (1972) used another formulation where a full model likelihood that incorporates

both β and λ0(t) is used. The joint likelihood is written as:

L(β,Λ0) =
n󰁜

i=1

󰀋
exp{Xi(Ti)

⊤β}λ0(Ti)
󰀌δi

exp

󰀝
−
󰁝 Ti

0

exp{Xi(t)
⊤β}λ0(t)dt

󰀞
. (4.1)

Maximizing the joint likelihood (4.1) with respect to β and λ0 under the restriction that

the baseline hazard is piecewise constant between uncensored event times yields 󰁥βn,

which is exactly the maximum partial likelihood estimator, and the Breslow estimator
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for cumulative baseline hazard function:

󰁥Λ0(t) =
󰁛

s≤t

󰀵
󰀷 dN(s)
󰁓n

i=1 exp
󰀓
X⊤

i
󰁥βn

󰀔
Yi(s)

󰀶
󰀸 . (4.2)

A consistent approximation for the variance of 󰁥Λ0(t) has been provided by Andersen and

Gill (1982). At time t, we have

󰁛

s≤t

󰁫
X(󰁥βn, s)d󰁥Λ0(s)

󰁬⊤
I(󰁥βn)

−1
󰁛

s≤t

󰁫
X(󰁥βn, s)d󰁥Λ0(s)

󰁬⊤
+
󰁛

s≤t

d󰁥Λ0(s)
󰁓n

j=1 Yj(s) exp
󰀓
X⊤

j
󰁥βn

󰀔 ,

(4.3)

where X(󰁥βn, s) is the X defined in (2.5) evaluated at 󰁥βn and s. In practice, the surv-

fit.coxph() function in the survival package enables one to obtain the estimated cumula-

tive hazard, together with its variance estimate. It takes a coxph object, and if fed with

a new data.frame object having the same structure as block1, computes the predictive

survival curves for each unique cohort of covariates in the new dataset. If no such new

dataset is fed, it computes the predicted survival curves at “average observation” whose

covariates equal the means of covariates in the original data. Both survfit() and base-

haz() in survival when applied to the same coxph object, returns a scaled version of the

Breslow estimator:

󰁥Λ0default(t) = exp
󰀓
X

⊤󰁥βn

󰀔󰁛

s≤t

󰀵
󰀷 dN(s)
󰁓n

i=1 exp
󰀓
X⊤

i
󰁥βn

󰀔
Yi(s)

󰀶
󰀸 ,
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where the scaling constant is the risk score of the “average observation”. Different

blocks, however, have different overall covariate levels, which may make the cumulative

baseline hazard curves returned by survfit() not comparable. Therefore, to unmask

the true Breslow estimator from the influence of covariate levels, we use a benchmark

observation whose covariates are all 0. This is also a desirable practice, as has been

discussed by the package author, if there are binary covariates such as an indicator for

gender, a value of 1/2 is not reasonable.

4.3 Simultaneous Monitorng

In this section, we assume that we have already had K blocks of Phase I survival data,

which all come from the same Cox model. Based on each block k with sample size

nk, similar to in Chapter 3, we obtain its maximum partial likelihood estimate 󰁥βnk,k,

its corresponding observed partial information matrix Ik(󰁥βnk,k), the Breslow estimator

󰁥Λnk,k(t) over a time grid 0 < t1, . . . , tG ≤ τ for a pre-speficied τ , and the corresponding

variances of the Breslow estimator at these time points as in (4.3).

4.3.1 Monitoring the Coefficient Estimates

As discussed in Williams et al. (2007), for nonlinear regression models, parameter esti-

mates are usually obtained by numerically maximizing the likelihood function. Define a
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precision-weighted average vector of estimated parameters, 󰁥βK as

󰁥βK =

󰀣
K󰁛

k=1

Ik(󰁥βnk,k)

󰀤−1 K󰁛

k=1

Ik(󰁥βnk,k)
󰁥βnk,k,

where the observed information matrices, i.e., precisions, are used as weights to ensure

that each 󰁥βnk,k contributes to the weighted average proportionally to the amount of the

information in block k. Intuitively, the more events a block contains (by having a larger

sample size or a smaller censoring rate), the closer its parameter estimate is to the true

underlying β0. Substituting 󰁥βK into Equation (5) of Williams et al. (2007) produces the

sample-size and censoring-rate adjusted version of the Hotelling’s T 2 statistic:

T 2
k = (󰁥βnk,k − 󰁥βK)

⊤S−1(󰁥βnk,k − 󰁥βK), (4.4)

where S is some estimate of the covariance of 󰁥βnk,k.

Several choices of S are possible. Williams et al. (2007) discussed the sample co-

variance matrix, one based on successive differences originally proposed by Holmes and

Mergen (1993), an robust minimum volume ellipsoid (MVE) estimator proposed by

Rousseeuw (1984), and a modified version of the MVE estimator. These estimates,

however, all suffer from certain disadvantages, such as having doubtful power (Sullivan

and Woodall, 1996), failing to be robust against multiple outliers (Vargas, 2003), or

being computationally intensive and even hard to find (Jensen et al., 2007). In the Cox
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model scenario, fortunately, the observed information matrices are available. Denote

I1/2
k (󰁥βnk,k)(

󰁥βnk,k − 󰁥βK) as 󰁨βk. Using similar argument as in Williams et al. (2007), when

the number of events in block k is large enough, the distribution of 󰁨βk can be approx-

imated by a multivariate normal distribution with mean 0p×1, and covariance matrix

Ip×p, which leads to the multivariate Hotelling’s T 2 statistic:

󰁨T 2
k = 󰁨β⊤

k
󰁨βk, k = 1, . . . , K. (4.5)

For a Phase II block ℓ, denoting its vector of parameter estimates as 󰁥β∗
nℓ,ℓ

, we have its

T 2 statistic:

󰁨T 2∗
ℓ = (󰁨β∗

ℓ )
⊤(󰁨β∗

ℓ ), ℓ = 1, . . . , (4.6)

where 󰁨β∗
ℓ = I∗1/2

ℓ (󰁥β∗
nℓ,ℓ

)(󰁥β∗
nℓ,ℓ

− 󰁥βK), where I∗
ℓ (
󰁥β∗
nℓ,ℓ

) is the observed partial information

matrix for Phase II block ℓ, evaluated at 󰁥β∗
nℓ,ℓ

.

An appropriate control limit can be obtained by taking proper percentiles of the em-

pirical distribution for theK Phase I statistics, 󰁨T 2
1 , . . . ,

󰁨T 2
K , and based on the comparison

of 󰁨T 2∗
ℓ with the control limit, we are able to decide if the ℓth Phase II block differs sig-

nificantly from being normative in terms of its covariate effects. Note that here we are

making full use of the estimated covariance matrix of each 󰁥βnk,k, so that inhomogeneity

in blockwise sample sizes are accounted for, while in the existing approach of Williams

et al. (2007), all profiles are assumed to be based on the same number of observations.
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4.3.2 Monitoring the Cumulative Hazard Function

We consider a decomposition of a curve into a scalar center, a shape curve, and a

variation curve similar to that in Wei et al. (2012). Extra challenges come from the

fact that our cumulative hazard profiles are estimated instead of directly observed, and

that differences in censoring rates and sample sizes across the sample blocks need to be

taken into account. For each Phase I block k, k = 1, . . . , K, like in Wei et al. (2012),

we take the median of each profile, denoted by δk, as its center. Next we consider the

shape. The profile medians are subsequently subtracted from each profile, such that all

profiles are brought to a comparable level. To take the censoring rate and the samples

size into account, before continuing with the decomposition of shape and variation, we

first normalize each profile by its standard error at each time point along the time grid.

This gives

󰁨Λk(tj) =
󰁥Λnk,k(tj)− δk

sd(󰁥Λnk,k(tj))
, j = 1, . . . , G, k = 1, . . . , K. (4.7)

With the locations of 󰁥Λnk,k accounted for, we consider the shape-scale model for 󰁨Λk:

󰁨Λk(tj) = µ(tj) + s(tj)ek,j, j = 1, . . . , G, k = 1, . . . K,

where ek,j comes from a stationary process such that median(ek,j) = 0 and median(|ek,j|) =

1. Denoting the radial basis function (RBF) kernel with bandwidth b as Wb(·), the least
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absolute deviation (LAD) estimate of the shape function 󰁥µb(t) characterizing the me-

dian of the normalized curves at each time tj can be obtained by numerically solving

the following minimization problem:

󰁥µb(t) = argmin
θ

K󰁛

k=1

G󰁛

j=1

󰀏󰀏󰀏󰁨Λk(tj)− θ
󰀏󰀏󰀏Wb(tj − t).

Noting that 󰁥µb(t) could be biased, Wei et al. (2012) also gave the bias-corrected jackknife

estimator,

󰁨µb(t) = 2󰁥µb(t)− 󰁥µ√
2b(t).

Next, the reference deviation function 󰁥sh(t) is estimated using the same LAD approach

based on the residuals from the previous step:

󰁥sh(t) = argmin
θ

K󰁛

k=1

G󰁛

j=1

󰀏󰀏󰀏|󰁨Λk(tj)− 󰁨µb(t)|− θ
󰀏󰀏󰀏Wh(tj − t),

where h is another bandwidth for the RBF kernel. The bias-corrected jackknife estimator

of s(t) is obtained as

󰁨sh(t) = 2󰁥sh(t)− 󰁥s√2h(t).

The optimal values of b and h can be obtained using leave-one-out cross validation on

the Phase I profiles.

Based on the estimated reference shape and variation, three descriptive statistics can

be calculated, which describe the reasonable range of variabilities within the Phase I
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profiles. For vertical shift of the profile centers, we have

Dk =
|δk − 󰁥µδ|

󰁥sδ
, (4.8)

where 󰁥µδ is the sample median of the Phase I profile centers (δ1, . . . , δK), and 󰁥sδ is the

their median absolute deviation. Next, based on the censoring rate and sample size

adjusted curves 󰁨Λk(t), we can obtain a curve of normalized deviations as

󰁨ek(tj) =
󰁱
󰁨Λk(tj)− 󰁨µb(tj)

󰁲
/󰁨sh(tj), j = 1, . . . , G, (4.9)

and obtain two measures of shape deviation as:

Tk,1 = max
j

|󰁨ek(tj)|, Tk,2 =
G󰁛

j=1

|󰁨ek(tj)|,

with Tk,1 being the maximum absolute shape deviation, and Tk,2 being the cumulative

absolute shape deviation.

For a Phase II cumulative baseline hazard profile 󰁥Λ∗
nℓ,ℓ

(t), we first record its center

and denote it as δ∗ℓ , and then calculate the normalized statistic like in (4.8):

D∗
ℓ =

|δ∗ℓ − 󰁥µδ|

󰁥sδ
.
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It is then adjusted for sample size and censoring rate, and we obtain

󰁨Λ∗
ℓ(tj) =

󰁥Λ∗
nℓ,ℓ

(tj)− δ∗ℓ

sd(󰁥Λ∗
nℓ,ℓ

(tj))
, j = 1, . . . , G. (4.10)

Based on (4.10), we can again obtain the curve of normalized deviations as

󰁨e∗ℓ(tj) = {󰁨Λ∗
ℓ(tj)− 󰁨µb(tj)}/󰁨sh(tj), j = 1, . . . , G,

and the two measures of shape deviation of the ℓth Phase II profile from the reference

estimated from Phase I:

T ∗
ℓ,1 = max

j
|󰁨e∗ℓ(tj)|, T ∗

ℓ,2 =
G󰁛

j=1

|󰁨e∗ℓ(tj)|, ℓ = 1, . . . . (4.11)

To decide whether a Phase II profile is “out of control” or not, we need to set the

critical values of the three summary statistics. Let c(0)(α), c(1)(α), and c(2)(α) be the

100(1− α)th percentiles of the empirical distributions for Dk, Tk,1 and Tk,2. For a given

significance level α0, Wei et al. (2012) proposed a numerical approach to determine the

critical values by setting α to be the α∗ such that

α∗ = max
α

󰀫
α :

K󰁛

k=1

max{1Dk>c(0)(α), 1Tk,1>c(1)(α), 1Tk,2>c(2)(α)} ≤ Kα0

󰀬
. (4.12)

The critical values are then c(0)(α∗), c(1)(α∗), and c(2)(α∗), respectively, for statistics D∗
ℓ ,
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T ∗
ℓ,1 and T ∗

ℓ,2.

4.3.3 Simultaneous Monitoring

For the Cox model, we extend (4.12) by incorporating the Hotelling’s T 2 statistic. We

now have four summary statistics, one corresponding to the parametric component and

the other three corresponding to the nonparametric component. For a given desired

significance level α0, choose α∗ such that

α∗ = max
α

󰀫
α :

K󰁛

k=1

max{1Dk>c(0)(α), 1Tk,1>c(1)(α), 1Tk,2>c(2)(α), 1 󰁨T 2
k
>c(3)(α)} ≤ Kα0

󰀬
,

(4.13)

where c(3)(α) is the 100(1−α)th percentile of the empirical distribution of 󰁨T 2
k . A Phase II

block will be considered “out of control” if either one of the four statistics exceeds its the

critical values c(0)(α∗), c(1)(α∗), c(2)(α∗), and c(3)(α∗). The approach in (4.13) ensures

that empirically, among the K Phase I blocks, no more than Kα0 are identified to be

“out of control”. The empirical rejection rate of the procedure on Phase II blocks is

1

L

L󰁛

ℓ=1

max{1D∗

ℓ
>c(0)(α∗), 1T ∗

ℓ,1>c(1)(α∗), 1T ∗

ℓ,2>c(2)(α∗), 1 󰁨T 2∗
ℓ

>c(3)(α∗)},

where L is the total number of Phase II blocks.
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4.4 Simulation Studies

4.4.1 Size

We simulate normative Phase I blocks of data from a Cox proportional hazards model as

the base to construct the proposed test statistics and their control limits. For the linear

predictor of Cox model, we choose β = (0.7,−0.5, 0.4)⊤ that corresponds to three covari-

ates: xki[1] ∼ N(0, 1), xki[2] ∼ Bernoulli(0.5), and xki[3] ∼ Bernoulli(0.1) independently.

Next, we specify two baseline hazard functions, λ01(t) = 0.02 and λ02(t) = 0.06t0.7, cor-

responding to, respectively, the exponential and Weibull distributions if there were no

covariates. To account for different censoring rates in blocks, for block k, k = 1, . . . , K,

the censoring times are generated from a mixture distribution 󰂃k〈60〉+(1−󰂃k)Unif(0, 60)

where 〈60〉 stands for a point mass at 60, and 󰂃k ∼ Unif(0.1, 0.9). The censoring rates

range from approximately 40% when 󰂃 = 0.9, and 60% when 󰂃 = 0.1. For the exponen-

tial baseline hazard scenario, the bandwidths are cross-validated on 500 Phase I profiles

and bExp = 0.3, hExp = 0.8 are used. For the Weibull case, bWeib = 0.7, and hWeib = 0.3.

We considered cases where there are K ∈ {200, 400} normative Phase I blocks, re-

spectively. To assess the performance of the proposed screening procedure for differences

in block sizes, the block sizes are generated using a uniform distribution over the inte-

gers from 2000 to 4000. In each replicate of simulation, after the K normative blocks

are generated, the four statistics are calculated, and the procedure in (4.13) is used to

choose the α∗ corresponding to an overall α0 = 0.05. Then 500 Phase II blocks are
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simulated using the same setting, and the four statistics for these blocks are again cal-

culated and compared with their respective control limits. The proportion of Phase II

blocks classified as “violators” is calculated, which is the empirical Type I error. A total

of 500 replicates are run for each combination of K and nk. The average Type I errors

are reported in Table 5. The proposed screening procedure has size close the nominal

level of 0.05 for all combinations of block sizes and numbers of Phase I blocks. For even

bigger K, such as 600 or 800, the empirical Type I error rates are even closer to 0.05.

In addition, we recorded the proportions of rejections made by each statistic, and the

detailed results are included in Appendix A.

4.4.2 Power

To demonstrate the power of the proposed monitoring scheme, we generated Phase II

blocks from different alternative models where either the baseline hazard or the vector

of coefficients departs from the model from which Phase I data is generated. Then the

proportion of blocks identified as “violators” is calculated, which is the empirical power

of the proposed test. To study whether the “correct” statistic picked up the violation,

we also recorded the individual powers of the four statistics. The details are given in

Appendix A.

The baseline hazard for Phase II blocks can vary in multiple ways. For different

blocks, the baseline hazard may fluctuate around a certain value, but with some variance;

or, the baseline hazard can be greater or smaller than the Phase I blocks in an overall
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manner. For the increased variability scenario, all Phase I blocks are generated using the

same setting as in Section 4.4.1. Phase II blocks are generated using the same setting,

except that the the hazard rate becomes

λ′
01i

= 0.02 + 󰂃i

λ′
02i

= 0.06t0.7+εi

with 󰂃i ∼ Unif(−0.005, 0.005), εi ∼ Unif(−0.1, 0.1) corresponding to small variability,

and 󰂃i ∼ Unif(−0.01, 0.01), εi ∼ Unif(−0.2, 0.2) corresponding to large variability. We

considered two overall shifts as well. Phase II blocks are generated using the same

setting, except that the hazard rate becomes

λ′
01i

= 0.02 + δv1 ,

λ′
02i

= (0.06 + δv2)t
0.7,

with δv1 = 0.0015, δv2 = 0.005 for a small shift, and δv1 = 0.003, δv2 = 0.01 for

a large shift. The obtained average empirical powers on 500 replicates are reported

in Table 5. For both baseline hazards, the power increases with the magnitude of

change. For different K’s, the fluctuation in power is rather small, indicating that

for the scenario presented here, 200 Phase I blocks provide enough information for the

proposed procedure to identify violators.
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Table 5: Average Size and Power under different changes for Phase II data.

Component Change
λ01 λ02

K = 200 K = 400 K = 200 K = 400

No Change, under the null hypothesis 0.062 0.058 0.062 0.057

Baseline, λ0 Increased Variability
small increase 0.601 0.600 0.724 0.720
large increase 0.800 0.800 0.862 0.860

Overall Shift
small shift 0.294 0.286 0.376 0.368
large shift 0.846 0.846 0.924 0.926

Parameter, β Increased Variability
Σ󰂃 = 0.04I3×3 0.263 0.258 0.271 0.270
Σ󰂃 = 0.08I3×3 0.629 0.627 0.638 0.637

Shift in Covariate Effect
∆β2 = −0.15 0.473 0.468 0.741 0.741
∆β2 = −0.3 0.983 0.984 0.957 0.957

The parametric part can also change in multiple ways. For different blocks, like

the baseline hazard, the vector of coefficients may fluctuate around a certain vector,

but with some variance; or, the effect of one particular covariate can change. Phase I

blocks are generated using the same setting as before. For Phase II blocks, the vector of

coefficients is obtained as βPhase II = (0.7,−0.5, 0.4) + ε, with ε ∼ N(0, 0.04I3×3) corre-

sponding to small variability, and ε ∼ N(0, 0.08I3×3) corresponding to large variability.

For the case where a single covariate effect changes, we considered two alternative β’s:

(0.7,−0.65, 0.4), and (0.7,−0.8, 0.4). A total of 500 replicates are run for each scenario

specified above. The obtained average empirical powers are also reported in Table 5.
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Again, as expected, the power increases as the variability of parameter vector or magni-

tude of shift in covariate effect increases. For both the exponential and Weibull baselines,

when variability of parameter vector increases, the powers are similar. When covariate

effect shifts, the power is higher for the Weibull baseline case. Similar patterns as in

Table 5 for changes in λ0 are observed. The power increases when the magnitude of

change increases. The influence of K is again insignificant here. This indicates that, 200

Phase I blocks is enough to establish credible control limits for the four statistics.

4.5 Monitoring the Survival of Lymphoma Patients

We choose a subset of the SEER lymphoma data diagnosed between 1974 and 1998 for

illustration. The selected dataset consists of 84,794 patients, out of which 33,557 had

events due to lymphoma. The same 3-month partition scheme was used, resulting in

100 blocks of survival data.

As a starting point, we partitioned the data as in Qiu et al. (2010) such that 2/3

of all blocks serve as Phase I, i.e., blocks 1 to 66 are used as Phase I, and blocks 67

to 100 are used as Phase II. This is also consistent with the findings in Chapter 3,

where the proposed online updating cumulative test statistic suggested a significant

change in the underlying model around approximately the same time. A Cox regression

is run with three covariates: a continuous covariate Age, and two indicators Female

and Black, and 󰁥βnk,k and Ink,k(
󰁥βnk,k) for k = 1, . . . , 66 are obtained. We subsequently
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calculated 󰁨β1, . . . , 󰁨β66 and 󰁥β66, and obtained the 󰁨T 2 statistics calculated using (4.5). For

the nonparametric component, as in SEER reporting, survival times are reported in

integer months and censored at 60 months, a natural choice for the time grid is the set

of integer values from 1 to 60. The Breslow estimators 󰁥Λn1,1, . . . , 󰁥Λn66,66, are obtained,

each consisting of 60 (time, cumulative hazard) pairs. Due to the heterogeneity in block

sizes and censoring rates, after centering each curve with its median δk, we used the

normalization in (4.7) and obtained 󰁨Λk for k = 1, . . . , 66. We then estimate the reference

curve and variability as in Wei et al. (2012). Again, leave-one-out cross validation

was used to select the optimal bandwidths among {0.1, 0.2, . . . , 3} for the RBF kernels

for, respectively, the shape 󰁨µ(t), and the variability 󰁨s(t), at times t = 1, . . . , 60. The

final bandwidth b for shape was selected to be 0.9, and h for variability was selected

to be 1.7. Based on the selected bandwidths, the relative vertical deviations Dk, the

maximum absolute shape deviations Tk,1, and cumulative absolute shape deviations Tk,2

are calculated. The α∗ for each individual statistic was selected to be 0.01535 so that

they jointly identified 4 violators within the Phase I blocks, yielding an overall Phase I

α0 of 0.061. Their control limits are subsequently obtained by taking the 100(1− α∗)th

percentile of their empirical distributions.

For patients in the rest blocks, the Phase II statistics, 󰁨T 2∗
ℓ , D∗

ℓ , T
∗
ℓ,1, and T ∗

ℓ,1 are

calculated as in (4.6) and (4.11). The four statistics for Phase I and Phase II blocks

are plotted together in Figure 23. The control limits established in Phase I are plotted

as horizontal dashed lines. Phase I and Phase II statistics are separated using vertical
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Figure 23: Profile charts of the four measurements for each block. Their respective
thresholds are plotted using red dashed line. Outliers that they jointly identified are
plotted in red.

dashed lines. It can be seen that within the 32 Phase II blocks, 11 have been identified

as violators. Blocks 95 and 100 have been singled out due to relatively large vertical

shifts. Block 75 has an abnormally large cumulative shape deviation compared to the

reference obtained in Phase I. The T 2 statistics of blocks 67, 70, 71, 72, 75, 78, 80, 81

and 87 are too large to be normative.

To verify that this is indeed the case, we plot the estimated cumulative baseline

hazard curves, in panel (a) of Figure 24, we plot the profiles obtained for Phase II

blocks, where the two dashed lines are the violators identified by D∗
ℓ . In panel (b), the

absolute normalized shape deviations (|(󰁨Λ∗
ℓ(t)−󰁨µ(t))|/󰁨s(t)) are plotted, where the dashed

line corresponds to block 75. In panel (c), boxplots for normalized Phase I parameter

estimates 󰁨βk for k = 1, . . . , 66 are first drawn, and normalized Phase II parameter

estimates (󰁨β∗
ℓ ) are overlaid using triangles to differentiate from one outlier in Phase I,

which was plotted as a dot. It is obvious that the covariate effects are outlying when

compared to Phase I.
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Figure 24: (a) The original curves 󰁥Λn67,67, . . . , 󰁥Λn100,100; (b) the absolute normalized shape

deviations (|(󰁨Λ∗
ℓ(t) − 󰁨µ(t))|/󰁨s(t)) for ℓ = 67, . . . , 100; (c) boxplot of Phase I normalized

parameters, with Phase II normalized parameters scattered as triangles.

4.6 Discussion

While the online updating approach help us decide whether there is an violation in the

parametric component of the Cox model along the data stream, a tool is also needed to

detect changes in the baseline hazards, which was the motivation for this chapter. We

proposed a procedure that is based on a collection of Cox model estimates obtain on

known, “in control” Phase I blocks of survival data, and detects departures of Phase II

data blocks from Phase I, in terms of both the parametric component β, and the nonpara-

metric baseline hazard. This approach was inspired by the profile monitoring methods

of Williams et al. (2007) for regression coefficients and of Wei et al. (2012) for curves.

The approach in Wei et al. (2012) is extended to incorporate four test statistics to ensure

that, when Phase II data are in control, the empirical type I error rate is appropriately

controlled. One novelty of the proposed method is that it allows different sample sizes

in different blocks through a proper normalization procedure, which ensures that the
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determination of control limits is not impacted by block sizes. Block sizes, however,

should in general be sufficiently large, so that the asymptotic distributions of 󰁨βk and

󰁨Λk are valid. In addition, the validity of the proposed approach resides on the assump-

tion that within each block, the observations are generated from the same underlying

model. As the control limits are established using quantiles of the empirical distribution

of Phase I statistics, and are essentially approximations of the true underlying quantiles,

it is reasonable to expect that as the number of Phase I blocks increase, the more precise

the approximation becomes.

The choice of time grid for the Breslow estimators should not be arbitrary. On

the one hand, we want to choose enough time points, so that the obtained profile is

representative of the Breslow estimator curve. On the other hand, when the grid is

chosen to be too fine, the corresponding computing burden would be heavy. Neither will

the approximation be necessary when the number of time points exceeds the number of

event times in each block.

In simulation studies, the proposed simultaneous monitoring method holds its size

when Phase II blocks are generated from the same model as Phase I blocks, and the

size approaches its nominal level of 0.05 with the increase in number of Phase I profiles,

while having substantial power in detecting different types of model change, including

shifts in, or increase in variabilities of, either the baseline hazard rate, or the covariate

effects. In the application to SEER lymphoma data, the proposed procedure identified

11 outlying blocks in Phase II.
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The proposed method can be extended to the monitoring of other semi-parametric

models, such as the proportional odds model (Bennett, 1983) and the additive hazards

model (Cox and Oakes, 1984), and out of the survival analysis context, the partially

linear model (Robinson, 1988) and index model (Ichimura, 1993), provided that appro-

priate approaches bring both components to a comparable level.
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Chapter 5

Future Work

In Chapter 4, when monitoring both the parametric and nonparametric components of

the Cox model, we are using three nonparametric statistics designed for depicting curves,

and we are interested in whether Phase II blocks are different or not, without regards

to any increasing or decreasing trend. If our alternative hypothesis is not “a Phase II

block is outlying”, but “Phase II blocks are having overall higher cumulative baseline

hazard”, testing methods based on contrasts similar to those in Hu and Huffer (2019),

where the Nelson–Aalen estimator and Kaplan–Meier estimators are studied, can be

constructed for the Breslow estimators. In addition, when data keep arriving, gradual

changes may happen. For such cases, using fixed control limits for statistics might raise

too many false rejections. How to dynamically and adaptively set the control limits to

accommodate the gradual changes would be an interesting topic.

For a rather general online updating setting, variable selection remains an interest-

ing topic. It is online updating’s natural advantage that previous parameter estimates

and variable selection results can be used to inform selection of weights in fitting an
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adaptive Lasso (Zou, 2006) procedure for the current block. Under the divide and con-

quer setting, Chen and Xie (2014) used a majority voting approach to select the final

set of covariates. Tang et al. (2016) constructed a confidence distribution that allows

combining results from multiple blockwise analysis results. Development of similar or

more precise approaches under the online updating setting is devoted to future research.
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Appendix A

Simultaneous Monitoring

Supplementation

A.1 Detailed Simulation Results

In addition to the results presented in Table 5 in the main text, we also recorded which

of the four statistics exceeded their respective thresholds in each simulation scenario.

It can be seen that the overall size is very close to the nominal level of 0.05, and the

proportions of violators identified by each of the four statistics are very close.

When the variability of the baseline hazard function increases in Phase II, as indi-

cated in Table 7, in addition to Di, the two statistics describing shape deviation also

identified an increased proportion of outliers. The effect is more obvious for the Weibull

distribution, as changing the Weibull scale parameter will give more complicated varia-

tions in the shape of the cumulative baseline hazard curve than a simple shift. When we

tweak the baseline hazard function by changing the value of a parameter, from Table 8,

while the overall power demonstrates the effectiveness of the combined rejection rule, it
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Table 6: Average proportions of rejections given by each statistic under the null hypoth-
esis

Baseline K Overall Size Di T ∗
i,1 T ∗

i,2
󰁨T 2
i

Exponential 200 0.062 0.017 0.018 0.017 0.017
400 0.058 0.016 0.017 0.017 0.015

Weibull 200 0.062 0.017 0.019 0.017 0.017
400 0.057 0.016 0.017 0.016 0.016

Table 7: Average proportions of rejections given by each statistic when the baseline
hazard has an increase in variability

Baseline K Overall Power Di T ∗
i,1 T ∗

i,2
󰁨T 2
i

Small Increase Exponential 200 0.601 0.580 0.027 0.035 0.017
400 0.600 0.581 0.024 0.033 0.016

Weibull 200 0.724 0.701 0.181 0.198 0.028
400 0.720 0.698 0.179 0.198 0.027

Large Increase Exponential 200 0.800 0.789 0.076 0.093 0.017
400 0.800 0.790 0.070 0.092 0.016

Weibull 200 0.862 0.851 0.524 0.507 0.036
400 0.860 0.849 0.524 0.505 0.035

can be found that it’s the statistic for location shift, Di, that plays a major role here in

identifying violators.

For the vector of coefficients, as it is relatively independent from the first three

statistics that describe the cumulative baseline hazard profile, in Tables 9 and 10, when

comparing the results to Table 6, it can be found that the proportions of violators

identified by the first three statististics had little change. It is 󰁨T 2
i that made the major

contribution in identifying outliers.
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Table 8: Average proportions of rejections given by each statistic when the baseline
hazard has a shift

Baseline K Overall Power Di T ∗
i,1 T ∗

i,2
󰁨T 2
i

Small Shift Exponential 200 0.294 0.254 0.024 0.024 0.016
400 0.286 0.248 0.022 0.023 0.015

Weibull 200 0.376 0.334 0.025 0.027 0.023
400 0.368 0.330 0.023 0.025 0.021

Large Shift Exponential 200 0.846 0.834 0.034 0.040 0.017
400 0.846 0.835 0.031 0.039 0.015

Weibull 200 0.924 0.917 0.035 0.044 0.019
400 0.926 0.920 0.032 0.043 0.019

Table 9: Average proportions of rejections given by each statistic when the coefficient
vector has an increase in variability

Baseline K Overall Power Di T ∗
i,1 T ∗

i,2
󰁨T 2
i

Small Increase Exponential 200 0.263 0.017 0.018 0.017 0.229
400 0.258 0.015 0.016 0.015 0.227

Weibull 200 0.271 0.017 0.019 0.017 0.238
400 0.270 0.016 0.017 0.016 0.239

Large Increase Exponential 200 0.629 0.017 0.019 0.017 0.611
400 0.627 0.016 0.017 0.016 0.610

Weibull 200 0.638 0.017 0.019 0.018 0.621
400 0.637 0.016 0.018 0.017 0.621

Table 10: Average proportions of rejections given by each statistic when the coefficient
vector has a shift

Baseline K Overall Power Di T ∗
i,1 T ∗

i,2
󰁨T 2
i

Small Shift Exponential 200 0.473 0.017 0.019 0.017 0.448
400 0.468 0.015 0.017 0.016 0.446

Weibull 200 0.741 0.018 0.019 0.018 0.730
400 0.741 0.016 0.018 0.016 0.730

Large Shift Exponential 200 0.983 0.018 0.021 0.018 0.979
400 0.984 0.016 0.018 0.017 0.980

Weibull 200 0.957 0.019 0.022 0.020 0.955
400 0.957 0.017 0.020 0.019 0.955
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