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Abstract 

Background:  Progress towards malaria elimination has stagnated, partly because infections persisting at low parasite 
densities comprise a large reservoir contributing to ongoing malaria transmission and are difficult to detect. This study 
compared the performance of an ultrasensitive rapid diagnostic test (uRDT) designed to detect low density infections 
to a conventional RDT (cRDT), expert microscopy using Giemsa-stained thick blood smears (TBS), and quantitative 
polymerase chain reaction (qPCR) during a controlled human malaria infection (CHMI) study conducted in malaria 
exposed adults (NCT03590340).

Methods:  Blood samples were collected from healthy Equatoguineans aged 18–35 years beginning on day 8 after 
CHMI with 3.2 × 103 cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ Challenge, strain NF54) 
administered by direct venous inoculation. qPCR (18s ribosomal DNA), uRDT (Alere™ Malaria Ag P.f.), cRDT [Carestart 
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Background
Over the past decade, malaria treatment and vector con-
trol interventions have significantly decreased malaria 
burden worldwide. The global incidence rate of malaria 
decreased between 2010 and 2018 from 71 to 57 cases 
per 1000 people at risk [1]. However, during 2020, the 
first full year of the COVID-19 pandemic, the World 
Health Organization (WHO) World Malaria Report 
documented an increment of 14  million annual malaria 
cases and 69,000 additional deaths compared to 2019, 
much of this attributable to COVID-19-related inter-
ruption of malaria control and medical services [2]. A 
significant challenge faced by malaria control and elimi-
nation projects is addressing transmission potential from 
low parasite density carriers with mild or no symptoms. 
Low parasite density carriers are estimated to account 
for 20–50% of human-to-mosquito transmission [3]. It 
would be beneficial to have a rapid test able to identify 
these infections.

Current widely deployed diagnostic tools such as con-
ventional rapid diagnostic tests (cRDTs) are affordable 
and have user-friendly formats and function. In 2018, 
259 million cRDTs were distributed mainly in sub-Saha-
ran Africa and utilized to examine suspected malaria 
cases [1]. cRDTs test for the presence of histidine-rich 
protein 2 (PfHRP2), an antigen specific to Plasmodium 
falciparum, and many iterations of the test also include 
a pan-malaria antigen (PAN) common to all 4 major 
malaria species such as lactate dehydrogenase (LDH). 
While cRDTs are affordable, provide quick and readable 
results, and require little training to operate, they cannot 
detect low-density infections, which can occur frequently 
in low transmission areas [3–5]. As a result, efforts are 
underway to develop advanced malaria rapid diagnostic 

tests that are more sensitive and effective at identifying 
low-density P. falciparum infections [6, 7].

Laboratory-based techniques such as thick blood 
smear (TBS) and polymerase chain reaction (PCR) are 
considered to have greater sensitivity than cRDTs [8]. 
Historically, TBS has been the gold standard for malaria 
diagnosis. When performed by expert microscopists 
reading 0.5 µL of blood, detection may range typically 
between 10 and 50 parasites per microlitre (p/µL), and 
under carefully controlled CHMI and TBS preparation 
conditions, expert microscopists can quantify para-
site densities at the theoretical lower limit of detection 
for this blood volume, 2 p/µL. In contrast, cRDTs have 
reported detection limits of 100–200 p/µL of blood in 
field studies [9–11]. TBS has the additional advantages 
of diagnosing infections even in the presence of para-
sites carrying PfHRP2 deletions, a challenge that RDT 
manufacturers are currently facing [12, 13], and allow-
ing detection of all species of malaria parasite. In recent 
years, the further development of the quantitative poly-
merase chain reaction (qPCR) method has enabled the 
detection of low parasite densities that frequently go 
undetected by cRDTs and TBS [14, 15]. Utilizing qPCR, 
reservoirs of low parasite density cases can be identified 
and treated, which is an essential component for elimina-
tion in low transmission areas [8, 16–18]. The drawback 
of both TBS and qPCR is the need for specialized labo-
ratory equipment, materials and well-trained staff, which 
are often in short supply in low income countries, mak-
ing them unfeasible for use under field conditions on a 
large scale [19, 20]. TBS can also lead to false negative 
results when performed by a non-competent microsco-
pist, the parasitaemia is low or there are multiple-species 
co-infections [21, 22]. An ideal diagnostic tool would 

Malaria Pf/PAN (PfHRP2/pLDH)], and TBS were performed daily until the volunteer became TBS positive and treatment 
was administered. qPCR was the reference for the presence of Plasmodium falciparum parasites.

Results:  279 samples were collected from 24 participants; 123 were positive by qPCR. TBS detected 24/123 (19.5% 
sensitivity [95% CI 13.1–27.8%]), uRDT 21/123 (17.1% sensitivity [95% CI 11.1–25.1%]), cRDT 10/123 (8.1% sensitivity 
[95% CI 4.2–14.8%]); all were 100% specific and did not detect any positive samples not detected by qPCR. TBS and 
uRDT were more sensitive than cRDT (TBS vs. cRDT p = 0.015; uRDT vs. cRDT p = 0.053), detecting parasitaemias as 
low as 3.7 parasites/µL (p/µL) (TBS and uRDT) compared to 5.6 p/µL (cRDT) based on TBS density measurements. 
TBS, uRDT and cRDT did not detect any of the 70/123 samples positive by qPCR below 5.86 p/µL, the qPCR density 
corresponding to 3.7 p/µL by TBS. The median prepatent periods in days (ranges) were 14.5 (10–20), 18.0 (15–28), 18.0 
(15–20) and 18.0 (16–24) for qPCR, TBS, uRDT and cRDT, respectively; qPCR detected parasitaemia significantly earlier 
(3.5 days) than the other tests.

Conclusions:  TBS and uRDT had similar sensitivities, both were more sensitive than cRDT, and neither matched qPCR 
for detecting low density parasitaemia. uRDT could be considered an alternative to TBS in selected applications, such 
as CHMI or field diagnosis, where qualitative, dichotomous results for malaria infection might be sufficient.

Keywords:  Malaria, Rapid diagnostic test, Controlled human malaria infection, Thick blood smear, Low parasite 
density infections, Malaria pre-exposure
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combine the sensitivity of qPCR with the affordability 
and simplicity of the cRDT.

An ultrasensitive RDT (uRDT; Alere™ Malaria Ag P.f.) 
has recently been developed and offered as a reliable 
diagnostic tool that can be used in clinical studies and in 
field operations [23–25]. Similar to conventional RTDs 
[cRDTs, such as Carestart Malaria Pf/PAN (PfHRP2/
pLDH)] in form and function, the uRDT detects PfHRP2 
in P. falciparum, but at greater sensitivity, identifying 
densities as low as 0.1–1.0 p/µL in culture-derived sam-
ples [7, 23]. This more sensitive RDT, which has been 
described as being capable of detecting low parasite 
density infections, could target these low-density infec-
tions for treatment [26]. If the sensitivity reported is 
confirmed, it could also be used in clinical trials of anti-
malarial drugs or vaccines to document protection fol-
lowing CHMI or natural P. falciparum exposure [27–29]. 
To date, limited literature exists systematically examin-
ing the performance of the uRDT in direct comparison 
to cRDTs, TBS and qPCR in samples collected from indi-
viduals with low parasite density [30, 31]. Existing inves-
tigations have been conducted predominantly in the field 
where it is difficult to monitor factors such as timings of 
infectious mosquito bites and the waxing and waning of 
parasite densities [24, 31–35].

A new approach to conducting controlled human 
malaria infection (CHMI) using P. falciparum sporozo-
ites (PfSPZ) has become available over the past five years, 
based on administering aseptic, purified, cryopreserved, 
infectious PfSPZ (Sanaria® PfSPZ Challenge) [36]. In 
this model, PfSPZ are administered by syringe, replacing 
mosquito bite administration, and the study subjects are 
then monitored in the standard way [37]. The advantages 
are that CHMI can be performed by institutions with-
out an insectary or without the need to import infected 
mosquitoes, the dose of PfSPZ can be standardized, and 
CHMI can be administered at any time without coor-
dinated mosquito infections. The use of cryopreserved 
infectious PfSPZ is thus similar to the use of cryostabi-
lates for induced blood stage malaria (IBSM), a con-
trolled human infection model that bypasses the SPZ and 
liver stages and is similarly free of constraints [38]. CHMI 
using PfSPZ Challenge is now being utilized extensively 
to evaluate efficacy of anti-malarial drugs and vaccines 
in malaria-naive and malaria pre-exposed populations 
[39–45].

CHMI using injectable PfSPZ provides an opportunity 
to assess malaria diagnostics under carefully controlled 
conditions in malaria exposed populations. The exact 
exposure time is known, the induced infections gradu-
ally increase in density, and the time of first detection and 
associated prepatent period can be precisely determined. 
The aim of this study was to systematically evaluate and 

compare uRDT (Alere™ Malaria Ag P.f.) performance 
against three other commonly used malaria diagnos-
tic tools using whole blood samples collected daily from 
malaria pre-exposed individuals undergoing CHMI.

Methods
Study site
The Bioko Island Malaria Elimination Program (BIMEP) 
focuses on developing malaria vaccines and other inter-
ventions to decrease malaria-attributable morbidity 
and mortality on Bioko Island, Equatorial Guinea [46]. 
BIMEP performs various activities on Bioko such as in-
depth epidemiological studies and clinical trials of the 
malaria vaccine candidates Sanaria® PfSPZ Vaccine and 
PfSPZ-CVac [44, 47, 48] to collect data on safety and effi-
cacy to support vaccine licensure. In 2018, the BIMEP 
conducted a regimen optimization trial of PfSPZ Vac-
cine (ClinicalTrials.gov ID: NCT03590340) at the Baney 
Research Facility that involved 104 healthy Equatogu-
inean adults male and female, aged 18–35 years [49]. 
Study volunteers were recruited from Baney district and 
the city of Malabo, and were enrolled after providing 
informed consent. Homologous (the strain of P. falcipa-
rum in PfSPZ Challenge, PfNF54, was the same as in the 
vaccine) CHMI with 3.2 × 103 PfSPZ was administered 
to 95 eligible individuals, 6 to 7 weeks after last vaccina-
tion and the observation period was conducted in a hotel 
at the La Paz Hospital beginning eight days after PfSPZ 
Challenge injection.

Malaria rapid diagnostic tests
Malaria rapid diagnostic tests were performed with fro-
zen venous whole blood samples anticoagulated with 
EDTA and stored at − 80 °C. Blood samples were allowed 
to thaw slowly and equilibrate to ambient temperature 
for at least 30 min before performing the RDT. The com-
mercially available cRDT [Carestart malaria Pf/PAN 
(PfHRP2/pLDH) Ag Combo, ACCESSBIO, USA (Lot# 
MR18F63, expiration: 30th Nov, 2020)] and uRDT [the 
Alere™ Malaria Ag Pf, Standard Diagnostic Inc., Republic 
of Korea (Lot# 05LDE001A, expiration: 20th Feb, 2020)] 
were used throughout the study. Both tests have simi-
lar manufacturer instruction workflows, requiring 5 µL 
blood to be applied to the RDT, followed by addition of 
the assay buffer and incubation for 20  min. After incu-
bation, diagnosis was determined by the appearance of 
lines in the test result window. A single control line was 
considered malaria negative, a line for both control and 
test were considered malaria positive, and no lines, nei-
ther control nor test, was considered an invalid test. Two 
to three readers were involved in determining each RDT 
result, the third added when there were discrepancies 
between the first two readers. The samples were analysed 
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in batches of 10 by a first reader and the developed RDTs 
were then given to a second reader to confirm the read-
ing of the first reader. Any discrepancy between first and 
second readers was resolved using a third reader within a 
period of 20 ± 1 min. Results were recorded in the data-
base as binary figures with zero representing negatives 
and one representing positives. Five fresh known malaria 
positive and five fresh known negative samples were used 
for quality control for the performance of the assay and 
for training the technicians prior to conducting the study.

Thick blood smear for quantification of Plasmodium 
falciparum
Two millilitres of fresh whole venous blood from study 
participants were used for the preparation of TBS. 
The TBS was prepared by evenly spreading 10 µL of 
fresh whole venous blood into a 1 cm × 2 cm rectangle. 
The smears were air dried, stained for 45 min using 4% 
Giemsa stain and rinsed with buffered water, pH 7.2. 
The slides were dried and read using a light microscope 
with a high-power field (immersion oil, 100× objective) 
of 0.18 mm diameter. 6 × 1 cm passes equivalent to 0.54 
µL of blood or 24 × 1 cm passes equivalent to 2.14 µL of 
blood for symptomatic volunteers were read before a TBS 
was declared positive or negative. The slides were read by 
two independent expert microscopists and any discrep-
ancies were resolved by a third microscopist. For Giemsa 
staining quality control, known positive and negative thin 
blood smears were included at the beginning of the day 
and analysed for both parasites and cell staining colour 
and quality according to a standard operating procedure. 
Only Giemsa stain that passed the quality control proce-
dures was allowed to be used for the slide staining on that 
day. Microscopes were maintained on a daily basis.

Quantification of P. falciparum parasite density 
by polymerase chain reaction (qPCR)
DNA was extracted directly from 180 µL of freshly col-
lected venous whole blood using Quick-DNA Miniprep 
kits (Zymo Research, Irvine, USA) and eluted with 50 
µL of elution buffer as recommended by manufacturer. 
DNA samples were kept at − 20 °C until analysis using 
the Bio-Rad CFX96 Real-Time PCR System (Bio-Rad 
Laboratories, California, USA). The PlasQ assay pre-
viously described by Schindler et al. [50] was used for 
quantification of Plasmodium spp. and P. falciparum 
parasites in the venous blood sample. This multiplex 
assay targets two independent Plasmodium genes 
namely the Pan-Plasmodium 18  S rDNA sequence 
(Pspp18S) and the P. falciparum-specific acidic termi-
nal sequence of the var genes (PfvarATS). The human 
Ribonuclease P gene (HsRNaseP) was used as a DNA 
extraction and qPCR amplification control. All qPCR 

assays were run in duplicate and both non-template 
control (molecular grade nuclease-free water) and P. 
falciparum 3D7 DNA were included in each PCR run 
as negative and positive controls, respectively. For the 
parasite density estimation, a serial dilution was made 
according to the 1st WHO International Standard for 
P. falciparum DNA Amplification Technique (NIBSC 
code: 04/176) to establish a calibration curve with the 
parasite densities ranging between 0.01 and 10,000 
p/µL. The actual parasite density of the tested sam-
ple by qPCR was then estimated from the calibration 
curve’s y-intercept and slope. The lower limit of detec-
tion for this qPCR assay was 50 copies/mL. The sam-
ple was considered P. falciparum positive if each of the 
two replicates for both PfvarATS and 18  S RNA gene 
targets had quantitation cycles (Cq) < 40 and Cq < 28 
for qPCR amplification control (HsRNaseP). In case 
of a discrepancy between duplicates, the assay was 
repeated, with at least two positive replicates out of 
four considered a positive result. The final results were 
used for the qPCR-based estimate of parasite density.

Controlled human malaria infection (CHMI)
From October 2018 to March 2019, 95 healthy Equatogu-
inean adults underwent CHMI [49]. Prior to CHMI, a 
full 3-day course of artemether/lumefantrine treatment 
was given to all volunteers. Eligibility criteria for CHMI 
were met if volunteers had received a complete regimen 
of PfSPZ Vaccine and were negative for malaria infec-
tion at the time of CHMI. During the ward observation 
period, volunteers were monitored daily for P. falciparum 
parasitaemia starting on day 8 to detect the parasite early 
and prevent the development of symptoms. Two millili-
tres of venous whole blood were collected in EDTA tubes 
daily on days 8–20 post-infection and transported to the 
laboratory in cooling boxes (4–8 °C) within 30 min of col-
lection. One mL blood was used for examining malaria 
parasites positivity and density by TBS and qPCR within 
4  h of collection and 1 mL was stored at − 80  °C for 8 
months before retrospectively analysing samples using 
uRDT and cRDT. The standard artemether/lumefantrine 
treatment was given to subjects once malaria parasites 
were detected by TBS or on day 28 post CHMI for vol-
unteers who remained negative throughout the post-
CHMI follow-up period. Positive TBS results confirmed 
by qPCR were used as the end-point for initiating par-
ticipant malaria treatment and termination of ward vis-
its and further diagnostic sample collection. Volunteers 
diagnosed as malaria positive by TBS during 28 days of 
CHMI follow-up were considered eligible for participa-
tion in this malaria diagnostics study.
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Sampling and statistical analyses
The aim of this study was to demonstrate differences in 
performance sensitivity between TBS, cRDT, and uRDT 
methods in detecting low density malaria infection, using 
qPCR as the gold standard for sensitivity. To obtain suf-
ficient samples, Epi Info 7 software was used to calculate 
the sample size assuming the following parameters: mini-
mum sensitivity of 90% for a reference method (qPCR) 
and 80% for cRDT, a 95% confidence and 90% power to 
detect a maximum sensitivity difference of 10%. cRDT 
was used to determine sample size due to its wider appli-
cation in the field [51]. This gave a minimum required 
sample size of 267 samples. Sensitivity of the various tests 
was compared using Fisher’s exact test.

Participating individuals were to be observed from day 
8 after challenge until the day of first positivity by TBS. 
Tests were not performed on samples collected after 
TBS diagnosis since volunteers were treated and positive 
results could still occur for RDTs and qPCR due to resid-
ual parasite material, which would confound results. Out 
of the eligible volunteers, a subset of 24 individuals were 
to be randomly selected to meet sample size require-
ments while maintaining the distribution of parasite 
densities observed using qPCR. Considering the low sen-
sitivity of most cRDTs at 100  p/µL, a stratified random 
sampling method was selected, whereby samples with 
parasite density > 100 p/µL and < 100 p/µL as detected by 
qPCR were put into two different strata. Using Microsoft 
Excel (2016), simple random sampling was performed 
within each stratum to obtain a total of 24 individuals.

To assess the distributions of the complete set, sampled 
and unsampled subsets were examined to ensure that 
they presented similar structure. Sampled individuals 
provided a total of 279 observed individual sample time 
points.

For this analysis, a multiplex qPCR targeting Pspp18S 
and PfvarATS was designated as the reference for detec-
tion of infection against which TBS, uRDT and cRDT 
positivity could be compared. A two-tailed Fishers exact 
test was used to determine the significant differences 
between the sensitivities of the various diagnostic tests. 
In this study, all samples were included in the sensitivity 
analysis of diagnostics. Only positive samples by either 
TBS, uRDT and cRDT were included in the analyses of 
the overall geometric mean (geomean) of parasite density 
of positive results and the geomean of parasite density at 
time of first detection (prepatent period). If a TBS, uRDT 
or cRDT test was negative, the respective sample point 
was deemed not applicable for the geomean parasite den-
sity and time to first detection analysis. TBS and qPCR 
both provided density measurements but TBS was con-
sidered to be more reliable as it did not involve conver-
sion from gene copy number using a reference standard.

Results were recorded by trained and qualified labora-
tory staff on case report forms (CRFs) during the CHMI 
ward observation period and later entered onto an Excel 
spreadsheet (Microsoft, Office 2019 Ver 16). All sam-
ples were assigned a sample specific number that was 
linked to each volunteer ID. No personal information 
was recorded on laboratory CRFs and for the laboratory 
staff the connection of each sample with the correspond-
ing donor volunteer was not possible. Retrospective RDT 
results were recorded on the same Excel spreadsheet. The 
geomean and geomean confidence intervals of parasite 
densities were calculated using R 4.0.1. Sensitivity and 
95% confidence intervals for all diagnostic methods were 
calculated in R 4.0.1 using the epiR package [52].

Results
Overview
A total of 48 volunteers were diagnosed positive for 
malaria by reference method (qPCR), qualifying them for 
inclusion in the malaria diagnostic comparison. Individu-
als had an average of 12 time points of observation-days 
(range 8 to 17), with each day-test-record representing an 
independent observation since each was obtained from a 
newly collected whole blood sample. Out of the eligible 
volunteers, 24 (50%) individuals were randomly selected 
while maintaining the distribution of parasite densities 
observed using qPCR. The subset of selected samples was 
evaluated against unselected samples by parasite density 
distribution and variance and the selected subset was 
determined to be an appropriate representation (Addi-
tional file 1: Figs. S1–S3).

A total of 279 samples were collected from the 24 
selected study participants; 123 and 156 samples were 
positive and negative for P. falciparum infection by 
qPCR, respectively. All 156 samples negative for P. falci-
parum by qPCR were also negative by TBS, uRDT and 
cRDT demonstrating 100% specificity for these tests. In 
total, 24 of 123 positive samples were detected by TBS, 21 
by uRDT and 10 by cRDT, providing sensitivities of 19.5% 
(95% CI 13.1–27.8%), 17.1% (95% CI 11.1–25.1%), and 
8.1% (95% CI 4.2–14.8%), respectively. qPCR detected 
more positives than any of the other tests (p < 0.001) and 
TBS and uRDT were both more sensitive than cRDT 
(TBS vs. cRDT, p = 0.015 by Fishers Exact two-tailed; 
uRDT vs. cRDT, p = 0.053). TBS detected 61.9% (13/21) 
of uRDT positive infections, while uRDT detected 54.2% 
(13/24) of TBS positive infections. The uRDT detected 
100% (10/10) of cRDT positive infections while TBS 
detected 90% (9/10). The cRDT detected 47.6% (10/21) of 
uRDT positive infections and 37.5% (9/24) of TBS posi-
tive infections. The summary of the findings are depicted 
in a Venn-diagram (Fig. 1).
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Parasite density by qPCR was calculated using a stand-
ard curve generated using a WHO reference sample that 
related copy number to density, and ranged from 0.14 

to 603.8 p/µL, with a geomean of 2.57 p/µL. Using this 
scale TBS detected parasites in the range of 5.9–603.8 p/
µL (geomean 97.6 p/µL) and uRDT detected parasites in 
the range of 0.8–603.8 p/µL (geomean 103.4 p/µL), com-
pared to cRDT, which detected parasites in the range of 
2.6–603.8 p/µL (geomean = 149.4 p/µL) (Table 1).

Parasite density by TBS ranged from 3.7 to 201.8 p/µL 
(geomean 12.81 p/µL). Using this scale, uRDT detected 
parasites in the range of 3.7–201.8 p/µL (geomean 20.6 p/
µL), compared to cRDT, which detected parasites in the 
range of 5.6–201.8 p/µL (geomean = 30.2 p/µL) (Table 2).

Examining just infections positive by both qPCR and 
TBS, the geomean ratio established from parasite density 
of qPCR and TBS (qPCR/TBS) was 7.62 p/µL (Table 3). 
PCR detects gene copy number in a specimen and each 
P. falciparum genome has at least 5–8 copies [53], and 
in addition qPCR can detect free DNA in a specimens. 
These variables make it difficult to calculate parasite den-
sity accurately using qPCR, even when using a standard 
curve to convert copy numbers to density based on a 
WHO reference sample. TBS detects parasites, regard-
less of how many genes and nuclei are present, but is 
hindered by the possible loss of significant numbers of 
parasites during processing [54]. All these factors were 
suspected to have contributed to the higher densities 
found using qPCR compared to TBS.

Fig. 1  Similarities and discrepancies in detection of P. falciparum 
cases by different diagnostic methods. Venn-diagram showing 
distribution of positive results according to the diagnostic test used 
with qPCR as the reference method. All samples were sorted by thick 
blood smear (TBS), ultrasensitive rapid diagnostic test (uRDT), and 
conventional rapid diagnostic test (cRDT). All cases were low parasite 
density P. falciparum infections that occurred during CHMI

Table 1  Overall geomean and sensitivity of TBS, uRDT, and cRDT compared to the qPCR method

Number of positive and negative samples, overall geomean and sensitivity of TBS, uRDT, and cRDT compared to the reference qPCR method. All cases were low 
parasite density infections that occurred during CHMI. Parasite densities of positive samples by qPCR ranged from 0.14–603.84 p/µL

Diagnostic test TBS (+) TBS (−) uRDT (+) uRDT (−) cRDT (+) cRDT (−) Total

PCR Pf (+) 24 99 21 102 10 113  123 

PCR Pf (−) 0 156 0 156 0 156  156 

 Total  24  255  21  258  10  269  279 

Range of positive 
samples (p/µL by 
qPCR)

5.9–603.8 0.8–603.8 2.6–603.8

Geomean of positive 
samples (p/µL by 
qPCR)

97.6 103.4 149.4

Sensitivity (%) 19.5% (13.1–27.8) 17.1% (11.1–25.1) 8.1% (4.2–14.8)

Table 2  Overall geomean and sensitivity of uRDT and cRDT compared to the TBS method

Overall geomean, sensitivity and number of positive and negative samples of uRDT, and cRDT compared to TBS. All cases occurred during CHMI. Parasite densities of 
positive samples by TBS ranged from 3.7 to 201.8 p/µL

Diagnostic test uRDT (+) uRDT (−) cRDT (+) cRDT (−) Total

TBS (+) 13 11 9 15  24 

TBS (−) 8 247 1 254  255 

 Total  21  258  10  269  279 

Geomean of positive samples (p/
µL by TBS)

20.6 30.2

Sensitivity (%) 54.2% (33.2–73.8) 37.5% (19.6–59.2)
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Next, the diagnostic test sensitivities of TBS, uRDT 
and cRDT were stratified by ranges of parasite density 
of qPCR (Table  4). None of the three diagnostic tests 
detected P. falciparum infections below 1 p/µL as deter-
mined by qPCR. For TBS, the lowest parasite density 
detected as quantified by qPCR was 5.86 p/µL and as 
quantified by TBS was 3.7 p/µL. At parasite densities of 
1–50 p/µL, uRDT and TBS appeared roughly equally 
sensitive and both appeared more sensitive than cRDT. 
At parasite densities of 51–100 p/µL by qPCR, uRDT 
appeared more sensitive (71% [95% CI 29–96%]) com-
pared to TBS and cRDT with, 29% (4–71%) and 29% 
(4–71%) sensitivity, respectively. However, numbers 
were small and differences in sensitivity amongst the 

tests across the density categories were not statistically 
significant.

Finally, the uRDT and cRDT diagnostic test sensitivi-
ties were stratified by ranges of parasite density measured 
by TBS (Table 5). At parasite densities range between 1 
and 50 p/µL, uRDT had higher sensitivity compared to 
cRDT; 33% (95% CI 12–62) for 1–10 p/µL and 100% (95% 
CI 48–100) at 11–50 p/µL compared to 13% (95% CI 
2–40) for 1–10 p/µL and 80% (95% CI 28–99) at 11–50 
p/µL respectively. Above 50 p/µL, both uRDT and cRDT 
had the same sensitivity but again numbers were too 
small to allow a meaningful comparison.

Finally, the range and distribution of parasite densities 
of samples determined to be positive by qPCR (n = 123), 
by TBS (n = 24), by uRDT (n = 21) and by cRDT (n = 10) 
were examined over the follow up period for the 24 vol-
unteers who were TBS positive. TBS and uRDT recorded 
a trend for lower geomean parasite densities detected 
compared to cRDT, which did not reach statistical signifi-
cance [p = 0.19 and p = 0.26, respectively] (Fig. 2).

Time to first detection
To investigate the efficiency of cRDT and uRDT to detect 
asexual blood stage parasites during CHMI follow-up, 
the median times to first detection of parasites (in days) 
by qPCR, TBS, uRDT and cRDT were compared. There 

Table 3  Overall geomean, ranges and the ratio of parasite 
density established from qPCR and TBS

Comparison of geomean, ranges and the ratio of parasite density established 
from qPCR and TBS using paired samples in which both tests were positive. All 
cases were low parasite density infections that occurred during CHMI. The Ratio 
was determined by dividing the geomean of qPCR by geomean of TBS (qPCR/
TBS). N = 24

qPCR (Pf/µL) TBS (Pf/µL) Ratio qPCR/TBS

 GeoMean 97.57 12.81 7.62

 Range [5.86–603.84] [3.70–201.80] [0.07–53.84]

Table 4  Comparison of TBS, uRDT and cRDT sensitivity stratified by parasite density (p/µL) as determined by qPCR

Number of samples and sensitivity of TBS, uRDT and cRDT stratified by parasite density (p/µL). All cases were low parasite density samples that occurred during CHMI 
follow-up and were 100% specific compared to qPCR

Group density 
(p/µL)

# samples qPCR (+) 
(reference)

TBS (+) TBS sensitivity (95% CI) uRDT uRDT sensitivity 
(95% CI)

cRDT cRDT 
sensitivity 
(95% CI)

 < 1 37 0 – 0 – 0 –

 1–10 38 1 3% (0–14) 1 3% (0–14) 1 3% (0–14)

 11–50 25 7 28% (12–49) 4 16% (5–36) 0 –

 51–100 7 2 29% (4–71) 5 71% (29–96) 2 29% (4–71)

 > 100 16 14 88% (62–98) 11 69% (41–89) 7 44% (20–70)

Table 5  Comparison of uRDT and cRDT sensitivity stratified by parasite density (p/µL) as determined by TBS

Number of samples and sensitivity of uRDT and cRDT stratified by parasite density (p/µL). Diagnostic methods are compared to TBS as reference and all cases were low 
parasite density samples that occurred during CHMI follow-up

Group density 
(p/µL)

# samples TBS (+) 
(reference)

uRDT (+) uRDT sensitivity (95% CI) cRDT (+) cRDT sensitivity (95% CI)

< 1 0 0 – 0 –

1–10 15 5 33% (12–62) 2 13% (2–40)

11–50 5 5 100% (48–100) 4 80% (28–99)

51–100 2 2 100% (16–100) 2 100% (16–100)

> 100 2 1 50% (1–99) 1 50% (1–99)
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was no evidence to support differences in prepatent 
period when using TBS, uRDT and cRDT since these 
methods all reported a median of 18.0 days to first para-
site detection. The median days to detection of asexual 
blood stage parasitaemia by qPCR was 14.5, 3.5 days ear-
lier than TBS, uRDT and cRDT (p < 0.001 log-rank test) 
(Fig. 3).

Discussion
As progress against malaria is made, asymptomatic infec-
tions at lower parasite densities become a significant 
challenge for malaria control and elimination efforts due 
to their contribution to ongoing transmission [3, 4, 55, 
56]. Mass testing of a population with treatment of those 

found positive is one approach to address this problem 
[57]. However, it is difficult to diagnose low density para-
sitaemias and the most sensitive and, therefore, the best 
method, qPCR, is expensive, requires special laborato-
ries and skilled personnel. Thus, the development of an 
inexpensive rapid test with equivalent sensitivity would 
be of great benefit, especially as conventional rapid diag-
nostic tests (cRDTs) are significantly less sensitive. Other 
applications could also benefit from a simple, rapid test 
that is more sensitive than cRDTs, such as detection of 
parasitaemia following sporozoite or blood stage CHMI, 
both important procedures for evaluating vaccine and 
drug efficacy [44, 45, 58–61] or for exploring innate and 
acquired immunity [62–66]. PfSPZ CHMI in particular is 

Fig. 2  Distribution of parasite density by qPCR of all malaria positive samples by TBS, uRDT, and cRDT. Red dots represent the geomean and error 
bars represent the 95% confidence intervals of each respective diagnostic test. Significance values were calculated using two-tailed Wilcoxon-test
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now gaining attention by investigators, since it can now 
be used by any clinical centre without the need for infec-
tious mosquitoes [67–69]. In CHMI, detection of low 
parasite densities is useful because it allows the identifi-
cation and treatment of positive study subjects earlier in 
the course of their parasitaemia thereby preventing or 
ameliorating clinical manifestations. Therefore, on many 
fronts, there is a need to develop simpler, highly sensitive 
methods to diagnose low parasite densities that could 
augment the success of mass testing and treatment, pro-
mote epidemiological studies and simplify and lessen the 
costs associated with CHMI.

cRDTs have been a tremendous boon to diagnosing 
clinical malaria, where parasite densities are relatively 
high and the tests adequately sensitive. An uRDT has 
recently been developed, and might extend the usefulness 
of RDTs particularly in low to moderate transmission 
areas, in pre-elimination settings, and in experimental 
uses such as CHMI follow-up. For example, it has been 
reported that the uRDT is significantly more sensi-
tive than cRDTs and TBS, detecting PfHRP2 at parasite 
densities as low as 0.1–1.0 p/µL in culture-derived sam-
ples [7, 23]. For this reason, the current study tested the 

uRDT and a cRDT during follow-up in a CHMI trial, and 
compared their sensitivities to those of TBS, using qPCR 
as the reference standard.

This study indeed found that both TBS and the uRDT 
were more sensitive than the cRDT. However, the data 
demonstrated that in samples from malaria-experienced 
subjects undergoing CHMI with parasites that contained 
PfHRP2, the sensitivity of uRDT (17.1%) was about three-
fold lower than that reported for pretreatment specimens 
from an IBSM study (47%) and in samples from a low 
transmission setting (44%), and fivefold lower than that 
reported in samples from a high transmission setting 
(84%) [23]. None of 37 specimens less than 1.0 p/µL by 
qPCR were identified. In 15 specimens that had 1–10 p/
µL by TBS, uRDT identified 5 (33%), and cRDT 2 (13%). 
In 5 specimens with 11–50 parasites/µL by TBS, uRDT 
identified all 5 as positive (100%) and cRDT identified 4 
(80%). Overall, uRDT and TBS gave similar results, and 
both tests were more sensitive than cRDTs in a setting of 
CHMI with PfHRP2-containing parasites.

Currently, CHMI requires highly trained clinical and 
laboratory staff including expert microscopists. Con-
sidering the comparable outcomes of TBS and uRDT 

Fig. 3  Comparison of time to detection of parasites. Kaplan–Meier plot of the number of infections detected by time since CHMI qPCR (N = 24), TBS 
(N = 24), uRDT (N = 14) and cRDT (N = 10). All cases were low parasite density Pf infections that occurred during CHMI. P-value < 0.001 calculated 
using the log-rank test
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in this study, uRDT could be considered to replace TBS 
microscopy, especially in settings with inexperienced 
microscopists. However, parasite density estimation 
using qPCR has become a standard method utilized in 
many malaria studies [70, 71] and has been particularly 
useful in CHMI follow-up where it can detect parasi-
taemia earlier than TBS and allow treatment before 
signs and symptoms of clinical malaria develop [72–
74]. Thus, uRDT would need to show advantages over 
TBS in the early identification of positive study sub-
jects, as TBS itself is now being supplanted by qPCR. 
As expected, the study showed a significant difference 
in prepatent period amongst qPCR on the one hand 
and TBS, uRDT and cRDT on the other, confirming 
that qPCR is the most sensitive diagnostic method. The 
study further demonstrated that the median time to 
first malaria parasite detection by qPCR was 3.5 days 
earlier (14.5 days) compared to the other tests, and also 
that TBS, uRDT and cRDT were substantially equiva-
lent to each other, each providing a prepatent period 
of 18 days. Similar to these findings, the CHMI stud-
ies conducted in semi-immune participants [44, 58, 
73, 75] and in malaria naïve participants [76] have 
reported comparable prepatent periods using qPCR as 
the reference method. The fact that in this setting of 
progressively rising parasitaemias, the prepatent peri-
ods calculated by TBS, uRDT and cRDT were similar 
even though positive samples diagnosed by uRDT had 
a lower overall geomean of parasite density by qPCR 
than did TBS, suggests that uRDT may not have any 
particular advantage over TBS other than reduced 
costs and easier performance, or even over cRDT, as 
in this study the day of treatment would not have been 
affected had it been cRDT- rather than TBS-based. It 
would be expected that the same relative detection abil-
ities would hold for blood stage CHMI, although this 
was not evaluated in this study, and Das et al. reported 
that uRDT detected parasitaemia 1.5 days earlier than 
cRDT in this setting [23].

In a field setting, the greater sensitivity of the uRDT 
over cRDTs could allow the detection of more asympto-
matic carriers. This question was not directly examined 
in this CHMI-based study. However, the results showed 
that despite the uRDT being hailed as a significant 
improvement in malaria diagnostics, leading to increased 
sensitivity and specificity, satisfactory RDT performance 
for parasite density infections < 10 p/µL remains elusive. 
Field studies of mass testing and treatment are needed to 
further explore the potential contribution of the uRDT in 
identifying and treating asymptomatic carriers with low 
parasite densities contributing to ongoing transmission.

One important consideration for evaluating RDTs 
based on the detection of PfHRP2 is the increase in 

prevalence of parasites carrying PfHRP2 deletions, not 
only in Southeast Asia [77], but within the study area as 
well [12]. In 2018, approximately 65% of all suspected 
malaria cases in public health facilities in sub-Saharan 
African were tested with RDTs (~ 150 million cases) [1]. 
During CHMI, a standardized infectious PfSPZ dose 
of PfSPZ Challenge (NF54) was used, a parasite that 
expresses PfHRP2 to initiate the infection. Conducting 
a similar study in hospitals and field environment with 
important confounders, such as a deleted Pfhrp2 gene, 
would likely have had different results.

Limitations
Anticoagulated (EDTA) fresh whole blood was used 
for to prepare samples for qPCR and TBS assessments. 
Anticoagulated (EDTA) cryopreserved (temperature of 
− 80 °C) whole blood held for 8 months and thawed was 
used to prepare samples for uRDT and cRDT. It is pos-
sible, but unlikely that HRP2 degraded during storage. 
Whole blood samples were temperature monitored dur-
ing storage. When proper procedures are followed for 
long-term storage of whole blood, the quality of DNA, 
RNA or HRP2 is not compromised [7, 78]. Considering 
the strict temperature monitoring in this study and the 
fact that samples were only thawed once for processing, 
the difference in quality of samples over time is unlikely 
to have been different.

Another limitation is the discrepancy in parasite densi-
ties estimated by qPCR and TBS. qPCR may have over-
estimated parasite density due to variable numbers of 
copies of the amplification target and the persistence of 
nucleic acid from non-viable parasites [79], and TBS may 
have underestimated parasite density due to the loss of 
parasites during processing.

Because the research subjects were semi-immune, they 
may have had variable levels of anti-HRP2 or anti-LDH 
antibodies, which could have affected results [80, 81]. 
Some may also have had ongoing infections at the time of 
clearance with artemether/lumefantrine prior to CHMI. 
Although the current study did not measure the level of 
HRP2 in the participants before and after CHMI, none of 
the individuals were RDT positive between days 8 and 14 
after CHMI. Therefore, it is likely that this factor did not 
affect the current performance comparison.

This study was designed to evaluate the performance 
of malaria diagnostic tests in independent samples and 
was analysed accordingly, even though several samples 
were collected from each individual post CHMI. This was 
based on the reasoning that, since each test was measur-
ing a different parameter (DNA for qPCR, whole para-
sites for TBS, HRP2 for uRDT, HRP2/LDH for cRDT) 
and these parameters would vary independently from 
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day to day due to the presence of multiple clones of NF54 
parasites released from individual hepatocytes over sev-
eral days each with its own asynchronous 48 h reproduc-
tive/sequestration cycle, it would be difficult to propose a 
biological metric characterizing an individual that could 
introduce bias or similarities in observations. Neverthe-
less, such a bias or similarities could exist and might have 
affected the data.

Conclusions
TBS has been the classical approach to malaria diagno-
sis for clinical use, malaria control programs, research 
studies such as CHMI and field epidemiology. TBS can 
distinguish the five malaria species that infect humans, 
which cannot yet be achieved by using RDTs or a sin-
gle reaction qPCR, and provides a reasonable estimate 
of parasite density. TBS, however, requires laboratories 
that support and maintain microscopes, staining solu-
tions and human resources with the requisite micros-
copy skills. qPCR, with much greater sensitivity, is now 
supplanting TBS for many applications such as detec-
tion of parasitaemia following CHMI, but also requires 
a high level of laboratory capability and involves 
higher costs than TBS. cRDTs have, therefore, been a 
welcome addition to malaria diagnostics and in many 
places have supplanted TBS for the clinical diagnosis 
of malaria, where parasite densities are high, but have 
not been useful for applications requiring greater sen-
sitivity. This study compared qPCR, TBS, a cRDT to a 
new uRDT advertised as rivaling qPCR in sensitivity, to 
assess its value for detection of parasitaemia following 
PfSPZ CHMI, an application where early diagnosis and 
treatment is important to reduce the severity of adverse 
events. The major conclusions were that for this spe-
cific application, while the uRDT was better than the 
cRDT, and approached TBS in sensitivity, it did not 
close the gap with respect to qPCR, and thus could be 
considered for replacing TBS only in studies unable 
to use qPCR or TBS due to resource limitations. The 
added value of the uRDT in field studies, particularly in 
mass testing and treatment, requires further study.
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