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Abstract
Purpose: Artificial intelligence could play a key role in cardiac imaging analysis. To evaluate the
diagnostic accuracy of a deep learning (DL) algorithm predicting hemodynamically significant coronary
artery disease (CAD) by using a rest dataset of myocardial computed tomography perfusion (CTP) as
compared to invasive evaluation.

Methods: One hundred and twelve consecutive symptomatic patients scheduled for clinically indicated
invasive coronary angiography (ICA) underwent CCTA plus static stress CTP and ICA with invasive
fractional flow reserve (FFR) for stenoses ranging between 30% and 80%. Subsequently, a DL algorithm
for the prediction of significant CAD by using the rest dataset (CTP-DLrest) and stress dataset (CTP-
DLstress) was developed. The diagnostic accuracy for identification of significant CAD using CCTA,
CCTA+CTPStress, CCTA+CTP-DLrest, and CCTA+CTP-DLstress were measured and compared. The time of
analysis for CTPStress, CTP-DLrest and CTP-DLStress were recorded.

Results: Patient-specific sensitivity, specificity, NPV, PPV, accuracy and area under the curve (AUC) of
CCTA alone and CCTA+CTPStress were 100%, 33%, 100%, 54%, 63%, 67% and 86%, 89%, 89%, 86%, 88%,
87%, respectively. Patient-specific sensitivity, specificity, NPV, PPV, accuracy and AUC  of CCTA+DLrest and
CCTA+DLstress were 100%, 72%, 100%, 74%, 84%, 96% and 93%, 83%, 94%, 81%,88%,98%, respectively. All
CCTA+CTPStress, CCTA+CTP-DLRest and CCTA+CTP-DLStress significantly improved detection of
hemodynamically significant CAD (p<0.01).

Time of CTP-DL was significantly lower as compared to human analysis (39.2±3.2 vs. 379.6±68.0
seconds, p<0.001).

Conclusion: Evaluation of myocardial ischemia using a DL approach on rest CTP datasets is feasible and
accurate. This approach may be a useful gatekeeper prior to CTPStress.

Introduction
Coronary artery disease (CAD) represents one of the leading causes of mortality in the USA [1].
Traditionally, anatomical evaluation of coronaries was strictly confined to invasive coronary angiography
(ICA); today, coronary computed tomography angiography (CCTA) represents an important tool to rule out
CAD [2, 3].

Novel techniques have developed such as CT myocardial perfusion under stress conditions (CTPStress)
and fractional flow reserve computed tomography derived (FFRCT) demonstrating the possibility to bridge
the coronary anatomy with the physiology and evaluate myocardial ischemia [4, 5].

The applications of FFRCT and CTPStress are not widely applied in clinical practice. Ideally, CTPStress uses
image datasets acquired with last generation CT scanners [6] that are not available in all centers and the
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readers need specific training in order to avoid inaccurate interpretation of images [7, 8]. In addition,
CTPStress requires a double acquisition (rest and stress) with related iodine contrast agent administration,
radiation exposure concerns and the use of a stressor with potential side effects [4, 9].

Application of artificial intelligence in cardiac imaging is ranging from image acquisition to image
reporting and prognostic stratification [10–13]. An advantage of this approach was highlighted by the
possibility to speed up the time of reporting [10].

The aim of this article is to show the diagnostic accuracy of a deep learning (DL) model trained on rest
and stress CTP for the identification of reversible myocardial ischemia compared with CCTA+CTPStress

using ICA plus clinically indicated invasive FFR as the reference standard.

Methods

Population
One hundred and forty-seven consecutive patients with suspected CAD enrolled in the PERFECTION study
[14, 15] were retrospectively analyzed for this study. Patients with a history of previous myocardial
infarction, acute coronary syndrome, previous revascularization, impaired renal function or
contraindication to administration of contrast agent, pregnancy, cardiac arrhythmias, inability to sustain
breath hold, BMI> 35 and contraindication to administer B-blockers and nitrates were excluded from the
study as previously described [14, 15]. The institutional ethical committee approved the protocol and all
patients signed an informed consent.

Images Acquisition

Patient Preparation
Patients were asked to refrain from caffeine and smoking for 24 hours and fasting 6 hours prior the
CTCA examination.

During rest CCTA, in patients with heart rate > 65 beats/min (bpm), metoprolol with a titration dose up to
15 mg was administered intravenously in order to obtain a HR ≤65 bpm.

Before the rest scan, all patients received sublingual nitrates to ensure coronary vasodilatation.

CCTA
All examinations were performed using a Revolution CT scanner (GE Healthcare, Milwaukee, Wisconsin)
following the guidelines of the Society of Cardiovascular Computed Tomography (SCCT)[16]. The Rest
CCTA parameters have been described previously [5].
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Based on HR, CCTA was acquired in 70-80% of the cardiac cycle in patients with HR ≤65 bpm, while in
patients with > 65 bpm, CCTA was acquired between 40-80% of cardiac cycle. CCTA images were
acquired after the injection of 70 ml of iodine contrast agent (Visipaque 320 mg/ml) at 6.2 ml/sec
followed by 50 ml of saline at the same flow rate of contrast agent.

All scans were performed using the bolus tracking technique with visual assessment to determine the
correct timing for acquisition.

All images were reconstructed using an adaptative statistical iterative reconstruction (ASIR-V, GE
Healthcare, Milwaukee, Wisconsin)[17]. Datasets of CCTA were transferred to an image-processing
workstation (Advantage Workstation 4.7, GE Healthcare, Milwaukee, Wisconsin) to perform quantitative
coronary analysis according to SCCT guidelines for reporting by two certified expert readers with more
than 8 years of experience in cardiovascular imaging following the European Association Cardiovascular
Imaging (EACVI) guidelines for training and certification [18]. In case of disagreement, a third cardiac
radiologist evaluated the images.

CTPStress

The patient underwent intravenous administration of adenosine (0.14 mg/Kg/min) over 4 minutes. At the
end of the third minute of adenosine administration, a CCTA was acquired using the same technical
parameters previously described [5]. Subsequently, images were transferred to an offline workstation
(Advantage Workstation Version 4.7, GE Healthcare), reconstructed on short axis and long axis with an
average slice thickness between 4-8mm using a narrow window width and level of 350 W and 150 L,
respectively. Perfusion datasets were analyzed in consensus by two certified expert readers, blinded to
clinical history and CCTA findings, with more than 8 years of experience in cardiovascular imaging
following the EACVI guidelines for training and certification [18]. In case of disagreement, a third reader
evaluated the images.

Combined CCTA+CTPStress interpretation
Coronary arteries at CCTA were segmented according to the American Heart Association (AHA) model
[19]. Obstructive CAD was defined as coronary stenosis > 50%.

CTPStress was evaluated according to the AHA myocardial segmentation [20] model. Stress positivity was
defined as any subendocardial hypo-enhancement extending more than 25% of transmurality in a
specific territory that was not present at rest CCTA.

Matching between CCTA and CTPStress findings was performed according to the algorithm previously
described [14, 20, 21].

Briefly, the adjudication process was applied each time there was a coronary arterial lesion with >50%
diameter stenosis and at least 1 myocardial perfusion defect in the matched myocardial segment.
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Time of analysis of image reporting for CTPStress was recorded.

ICA and invasive FFR performance and interpretation
All patients underwent ICA following the guidelines of the American College of Cardiology/AHA Task
Force on Practice Guidelines and the Society for Cardiac Angiography and Interventions [22]. The
coronary arteries were classified according to the AHA Classification system [19]. An interventional
cardiologist blinded to results of CCTA analyzed ICA images with quantitative coronary angiography
(QCA) (QantCor QCA; Pie Medical Imaging, Maastricht, the Netherlands).

Coronary stenosis was evaluated calculating the percentage of narrowing using the minimum diameter
and reference diameter. In the presence of stenosis ranging between 30% and 80%, invasive FFR was
calculated [23]. In order to calculate FFR, the pressure wire (Certus Pressure Wire, St. Jude Medical
Systems, St. Paul, MI) was equalized with the aortic pressure and subsequently was placed distal to the
stenosis in the distal third of the coronary artery with stenosis. An injection of 100 mg of glyceryl trinitrate
was injected intracoronary in order to prevent vasospasm while 140 mg/Kg/min of adenosine was
administered intravenously in order to create an inducible stress. FFR was assessed at the peak of
hyperemia using the RadiAnalyzer Xpress (Radi Medical Systems, Uppsala, Sweden) by dividing the
mean coronary pressure, measured with the pressure sensor placed distal to the stenosis, by the mean
aortic pressure measured through the guide catheter. Intermediate stenoses showing values of invasive
FFR ≤0.8 or anatomical stenoses showing >80% diameter reduction or total occlusions were considered
functionally significant.

Deep Learning analysis

Dataset generation
We selected 112 patients from the 147 studied; 58 with invasive FFR ≤ 0.8 or stenosis > 80% (Group 0)
and 54 with invasive FFR > 0.8 (Group 1). Thirty five patients were excluded due to poor image quality or
an inconsistent dataset. First, we randomly split the dataset in two subsets: an "independent test set",
generated selecting 18 and 14 samples from Group 0 and Group 1, respectively, and a "learning set"
composed of the remaining 80. To limit the effect of overfitting during the training step, a data
augmentation step was applied. At the end, the learning set consisted of 80 group 0 and 80 group 1
samples. The learning set was used to train the algorithms and to identify its best configuration of
parameters and hyper-parameters; conversely, the independent test set was used to assess the
performance.

DICOM-to-Image pre-processing
Each dataset (rest and stress) scan was composed of 256 or 224 slices (512 x 512 pixels) and stored as
a DICOM. To focus our attention on the left ventricle, we manually defined a region of interest (a 250-by-
250 px window) around the left ventricle, allowing a decrease of computational burden and improving the
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overall network performance. Finally, the resulting slices were joined in a 10-by-10 squared image, resized
to 1280 x 1280 pixels.

Convolutional neural network (CNN) architecture
The keras package has been used to build and test the CNN. The convolutional section of the network
consisted of four consecutive layer blocks, each one containing a single convolutional layer and a max-
pooling layer. A densely connected network with 4 hidden layers (512, 256, 64 and 32 neurons) and the
output layer followed the convolutional section. To handle overfitting a dropout strategy was
implemented before the first hidden layer (dropout rate: 0.2) [24]. The ReLU activation function[25] was
used for each neuron (densely connected and convolutional ones), except for the output node (activation
function: ‘sigmoid’). Finally, we set the ‘Stochastic Gradient Descend’ optimizer to minimize the ‘binary
cross entropy’ loss function, the number of max epochs = 500 and the batch size = 20.

The CNN was trained in order to predict the ischemic myocardium by using both rest (CTP-DLRest) and
stress (CTP-DLStress) datasets based on the values of invasive FFR. The time of analysis for the
evaluation of algorithms for both CTP-DLRest and CTP-DLStress were recorded.

Statistical Analysis
Statistical analysis was performed using SPSS version 21.0 software (SPSS, Chicago, Illinois) and R
version 4.0.2 (R Foundation for statistical Computing, Vienna, Austria).

Continuous variables are presented as means ± SD, while categorical data are reported as frequencies
and percentages and compared with T-test Student or Chi-squared test, respectively. Association between
variables were assessed by Pearson's correlation coefficient (R).

Patient-based sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV),
diagnostic accuracy and area under the curve (AUC) were measured for CCTA, CCTA+CTPStress,

CCTA+CTP-DLRest and CCTA+CTP-DLStress on the independent test set and DeLong method used to
compare the differences in terms of AUC between all approaches.

Time of analysis between human and DL algorithm for both CTP-DLrest and CTP-DLStress were compared.

Differences were deemed significant if the p-value was < 0.05.

Results
Baseline characteristics of the overall population are summarized in Table 1. Obstructive CAD was
observed in 78 out of 112 patients (66%) while the prevalence of functionally significant CAD was
detected in 54 out of 112 patients (49%). CTPStress, CTP-DLRest and CTP-DLStress were successfully
performed in all patients.

Table 1 Characteristics of the Study Population
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The sensitivity, specificity, NPV, PPV, diagnostic accuracy and AUC of CCTA alone and CCTA+CTP in order
to detect significant CAD were 100%, 33%, 100%, 54%, 63%,67% and 86%, 89%, 89%, 86%, 88%, 87%,
respectively (Table 2 and Figure 1). Combining the anatomical data of CCTA and the CTP-DL applied to
rest and stress datasets, we observed a sensitivity, specificity, NPV, PPV, diagnostic accuracy and AUC of
100%, 72%, 100%, 74%, 84%, 96% and 93%, 83%, 94%, 81%, 88%, 98% for CCTA+CTP-DLrest and
CCTA+CTP-DLstress, respectively (Table 2 and Figure 1). 

Table 2. Diagnostic accuracy of CCTA, CCTA+CTP, DL Rest, DL Stress, CCTA+DL rest and CCTA+DL stress
for the evaluation of significant CAD using ICA+FFR as the reference standard

CCTA CCTA+Stress CTP CCTA+CTP-DL rest CCTA+CTP-DLstress

Sens 100% (77% - 100%) 86% (57% - 98%) 100% (77%-100%) 93% (66%-100%)

Spec 33% (13% - 59%) 89% (65% - 99%) 72% (47%-90%) 83% (59%-96%)

NPV 100% (100% - 100%) 89% (69% - 97%) 100% (100%-100%) 94% (69%-99%)

PPV 54% (46% - 62%) 86% (62% - 96%) 74% (57%-86%) 81% (60%-92%)

Acc 63% (44% - 79%) 88% (71% - 97%) 84% (67% – 95%) 88% (71%-97%)

AUC 67% (55%-78) 87% (75%-99%) 96% (91%-100%) 98% (94-100%)

Values are expressed as CI of 95%. AUC: Area Under Curve; Acc: Accuracy; CCTA: Coronary Computed
Tomography Angiography; CTP: CT perfusion; DL rest: Deep learning rest perfusion; DL stress: Deep
learning stress perfusion; FFR: Fractional flow reserve; ICA: Invasive coronary angiography; Sens:
sensitivity; Spec: Specificity; NPV: Negative predictive value; PPV: positive predictive value

 

The DL algorithm was associated with a correct prediction regardless of the vessel involved in stress and
rest datasets, while a significant but fair correlation observed with transmurality in the stress dataset. If
the significant pathology was located in the LAD and RCA the algorithm showed better prediction when
compared to the LCX (Figure 2).

The evaluation of myocardial perfusion using DL was significantly lower as compared to the standard
human approach (39.2±3.2 vs. 379.6 ± 68.0 seconds, p< 0.001) (Table 3). Representative cases are
shown in Figures 3 and 4.

Table 3. Associations of vascular territory and transmurality with the DL approach.
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Demographic Characteristics  

Age (years) 66.58 ± 9

Men 81 (73%)

BMI (Kg/m2) 26.5±3.7

Risk factors  

Hypertension 85 (75%)

Smoker 28 (25%)

Hyperlipidemia 40 (35%)

Diabetes 20 (17%)

Family history 67 (59%)

Symptoms  

Atypical angina 52 (46%)

Typical angina 60 (54%)

Pre-test likelihood of CAD 67,29±12,3

No previous testing 31 (27%)

Positive-exercise ecg 51 (45,5%)

Positive stress echocardiography 6 (5%)

Positive SPECT 21 (18%)

Positive stress MRI 3 (2%)

Rest scan protocol 

HR before scanning, beats/min 68±11

Beta-blocker 58 (50%)

Beta-blocker dosage (mg) 5.22± 6.4

HR during scanning, beats/min 62±9

Dose length product, mGy x cm 195.59±100.9

Effective dose, mSv 2.74±1.4

Stressscan protocol  

HR during scanning, beats/min  76±15

Dose length product, mGy x cm  180±67
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Effective dose, mSv  2.51±0.9

Prevalence of significant CAD at ICA+FFR  

Absence of obstructive CAD  34 (30%)

1-vessel disease  41 (37%)

2-vessel disease  15 (14%)

3-vessel disease  22  (19%)

Absence of functionally significant CAD 58 (51%)

1-vessel disease  25 (23%)

2-vessel disease  13 (12%)

3-vessel disease  16 (14%)

Values are expressed as mean±SD or absolute number and percentage 

BMI: body mass index; CAD: coronary artery disease; CCTA: coronary computed tomography
angiography; FFR: fractional flow reserve; ICA: invasive coronary angiography; MRI: magnetic
resonance imaging; SPECT: single photon emission computed tomography. 

  DL Stress

  R R2 p-value

LAD 0.56 0.31 0.0009

LCX 0.44 0.19 0.01

RCA 0.61 0.37 0.0002

Transmurality  0.36 0.13 0.038

DL Rest

LAD 0.55 0.30 0.0011

LCX 0.37 0.14 0.035

RCA 0.51 0.26 0.003

DL: Deep learning; LAD: Left anterior descending artery; LCX: Left circumflex artery; RCA: Right
coronary artery

Discussion
In this paper, we showed the possibility to provide information regarding ischemic myocardium using a
fully automated DL algorithm with comparable diagnostic accuracy and shorter time to human analysis.
The DL algorithm can be applied to both rest and stress datasets with similar high diagnostic accuracy.
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The clinical application of these findings can be further improved with the combination of anatomical
evaluation and myocardial perfusion using the DL analysis with an AUC, diagnostic accuracy and
negative predictive value of 96%, 84% and 100%, respectively. Irrespective of the vessel involved and
transmurality, for stress datasets, the DL algorithm seems to provide good performance.

Another important finding was demonstrated by the short time of analysis of myocardium using a DL
approach.

Few papers in the literature analyzed CTP using an artificial intelligence approach [26, 27].

Xiong et al developed a machine learning algorithm that was able to identify myocardial ischemia on rest
images [26]. The authors developed an algorithm that was helpful in providing the myocardial contours
and identify the myocardial segments susceptible for myocardial ischemia when compared with invasive
quantitative coronary angiography [26]. Despite the authors lack of a gold standard for detection of
myocardial ischemia, they developed an algorithm that was able to detect impairment of myocardial
perfusion in patient with significant stenosis with an accuracy, sensitivity and specificity of 70%, 79% and
64%. However, it is important to consider that the authors did not evaluate the presence of ischemia with
invasive FFR. Moreover, the analysis of rest perfusion using the DL approach was time consuming
considering the post-processing of images.

Another technique able to identify a rest perfusion defect was developed by Van Hamersvelt et al. [27].
The authors developed a DL algorithm that was able to identify the presence of myocardial ischemia
assessed by invasive FFR from a rest CCTA. Similar to our article, the authors reported an increase in
accuracy when the DL algorithm was combined with anatomical evaluation, AUC of 76% compared to
68% for anatomical evaluation alone [27]. Despite a robust gold standard represented by invasive FFR for
the training of the DL algorithm, the authors did not evaluate the impact of their algorithm in a dataset of
stress CTP. Furthermore, the analysis of perfusion using the DL approach required the segmentation of
myocardium[27], while in our manuscript, it was not performed.

In our manuscript, beyond the feasibility of a new DL approach, we showed that is possible to provide
better diagnostic accuracy compared to humans if the myocardium is analyzed with a DL technique in
both rest and stress datasets. Furthermore, in our approach, it was possible to identify significant CAD
with a fully automated technique. Importantly, the comparison between the human approach and the DL
algorithm showed similar accuracy despite the time of analysis with the DL approach being < 1 minute.

Following the ESC guidelines we hypothesize that the application of CCTA will exponentially grow
[3].Therefore, the application of AI algorithms in clinical practice could speed up the time of acquisition,
reporting and interpretation of images. A fully automated approach would be feasible in clinical practice
with the first step being the evaluation of coronary arteries as shown by Muscogiuri et al [10] followed by
evaluation of ischemia with a DL algorithm that could evaluate the myocardium. In particular, the
evaluation of myocardium on rest CCTA is performed without the administration of a stressor agent
allowing for a safe and cheap approach.
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Furthermore, the application of a DL algorithm that could identify myocardial ischemia on CCTA can
potentially break down the costs of ischemia testing following CCTA. This algorithm could potentially run
on a standard personal computer without any particular imaging skills.

Some limitations need to be addressed. First, the small sample size and the retrospective nature of the
study represents a limitation of the study. Furthermore, the prevalence of CAD in the population examined
is higher than expected in a normal population.

Second, a prospective larger study is needed in order to evaluate the prognostic impact of a CCTA+CTP-
DL rest approach.

In conclusion, evaluation of myocardial ischemia using a DL approach on rest CTP datasets is feasible
and accurate. This approach may be a useful gatekeeper prior to further testing such as CTPStress
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Figure 1

AUC comparisons of the diagnostic performance to detect significant stenosis using CCTA (AUC: 67% ),
CCTA+stress CTP (AUC: 87%), CCTA+DL rest (AUC: 96%), CCTA+DL stress (AUC: 98%).
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Figure 2

Time comparison for CTP analysis. Left column shows the human time of analysis while the column on
the right shows the time of analysis using the CNN approach. The majority of time in the deep learning
approach is represented by the importing time.
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Figure 3

Seventy-two year-old female patient with hypertension, dyslipidemia, who presented with typical chest
pain, and positive SPECT. Normal perfusion was observed in the rest dataset (A) while a mid-ventricle
lateral perfusion defect was observed on stress myocardial CTP (arrow, B); CCTA showed moderate
stenosis with fibro-calcific plaque in the LCX (arrowhead, C); FFR did not reveal a hemodynamically
significant stenosis(d). The prediction of both CTP-DLrest and CTP-DLstress correctly identified the
patient with hemodynamically insignificant CAD.
CCTA: computed tomography coronary angiography;
CTP: computed tomography perfusion; ICA: invasive coronary angiography; FFR: fractional flow reserve;
LCX: left circumflex coronary artery; SPECT: single photon emission computed tomography;
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Figure 4

Clinical case showing the additional value of CTP-DLrest over stress CTP to rule out functionally relevant
coronary stenoses. 44 year-old male with family history of CAD, smoking, and dyslipidemia presented
with severe epigastric pain and a negative stress myocardial CTP (A-B); CCTA showed moderate calcified
plaque in the proximal (arrow, C) and middle LAD (arrowhead, C). FFR assessment following ICA
demonstrated functionally significant stenosis (D, FFR=0.74). CTP-DLrest algorithm correctly identified
this patient as positive for significant CAD.
CAD: coronary artery disease; CTP: computed tomography
perfusion; CCTA: coronary computed tomography angiography; FFR: fractional flow reserve; ICA: invasive
coronary angiography.


