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Aims/Hypothesis: Large-scale prediabetes screening is still a challenge since fasting
blood glucose and HbA1c as the long-standing, recommended analytes have only
moderate diagnostic sensitivity, and the practicability of the oral glucose tolerance test
for population-based strategies is limited. To tackle this issue and to identify reliable
diagnostic patterns, we developed an innovative metabolomics-based strategy deviating
from common concepts by employing urine instead of blood samples, searching for sex-
specific biomarkers, and focusing on modified metabolites.

Methods: Non-targeted, modification group-assisted metabolomics by liquid
chromatography–mass spectrometry (LC-MS) was applied to second morning urine
samples of 340 individuals from a prediabetes cohort. Normal (n = 208) and impaired
glucose-tolerant (IGT; n = 132) individuals, matched for age and BMI, were randomly
divided in discovery and validation cohorts. ReliefF, a feature selection algorithm, was
used to extract sex-specific diagnostic patterns of modified metabolites for the detection
of IGT. The diagnostic performance was compared with conventional screening
parameters fasting plasma glucose (FPG), HbA1c, and fasting insulin.

Results: Female- and male-specific diagnostic patterns were identified in urine. Only
three biomarkers were identical in both. The patterns showed better AUC and diagnostic
sensitivity for prediabetes screening of IGT than FPG, HbA1c, insulin, or a combination of
FPG and HbA1c. The AUC of the male-specific pattern in the validation cohort was 0.889
with a diagnostic sensitivity of 92.6% and increased to an AUC of 0.977 in combination
with HbA1c. In comparison, the AUCs of FPG, HbA1c, and insulin alone reached 0.573,
0.668, and 0.571, respectively. Validation of the diagnostic pattern of female subjects
showed an AUC of 0.722, which still exceeded the AUCs of FPG, HbA1c, and insulin
n.org July 2022 | Volume 13 | Article 9350161

https://www.frontiersin.org/articles/10.3389/fendo.2022.935016/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.935016/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.935016/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.935016/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xugw@dicp.ac.cn
mailto:Rainer.Lehmann@med.uni-tuebingen.de
https://doi.org/10.3389/fendo.2022.935016
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.935016
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.935016&domain=pdf&date_stamp=2022-07-14


Li et al. Screening of Prediabetes in Urine

Frontiers in Endocrinology | www.frontiersi
(0.595, 0.604, and 0.634, respectively). Modified metabolites in the urinary patterns
include advanced glycation end products (pentosidine-glucuronide and glutamyl-lysine-
sulfate) and microbiota-associated compounds (indoxyl sulfate and dihydroxyphenyl-
gamma-valerolactone-glucuronide).

Conclusions/Interpretation: Our results demonstrate that the sex-specific search for
diagnostic metabolite biomarkers can be superior to common metabolomics strategies.
The diagnostic performance for IGT detection was significantly better than routinely
applied blood parameters. Together with recently developed fully automatic LC-MS
systems, this opens up future perspectives for the application of sex-specific diagnostic
patterns for prediabetes screening in urine.
Keywords: prediabetes, urine, sex-specific biomarkers, modified metabolite patterns, metabolomics, screening
INTRODUCTION

In the 21st century, prediabetes reached a pandemic scale with an
estimated prevalence of >860million people worldwide in 2021 (1).
Thismetabolic state lasts formany years before themanifestation of
type 2 diabetes (T2D). This state is not only pathologic, but also
particularly amenable for treatment. However, subjects with
prediabetes are often not aware of the disease (2) because the
only reliable diagnostic option at this stage is the oral glucose
tolerance test (OGTT), which is laborious and therefore
impracticable for population-based screening approaches. On the
other hand, early detection of individuals in the prediabetic phase
can open promising perspectives to prevent, or at least greatly delay
the onset of T2D by appropriate interventions (3).

The recommended and frequently applied screening parameters
for the diagnosis of T2D, i.e., fasting plasma glucose (FPG) and
hemoglobin A1c (HbA1c), show only a low diagnostic sensitivity in
the prediabetic state in comparison to the OGTT. Data from
screening studies in Europe, Asia, and America reported that
approximately 50% of people in the prediabetic state will miss
FPG or HbA1c application (4–9). Barry and colleagues concluded
from their meta-analysis that HbA1c is neither sensitive nor specific
for detecting prediabetes, and that a combination with FPG does
not considerably improve the diagnostic performance (5).
Consequently, up to now, no practicable and reliable diagnostic
tool is available, other than the OGTT.

Numerous analytical approaches have been employed to
detect novel biomarkers for the diagnosis of prediabetes,
including more than 60 metabolomics-driven investigations
recently summarized in two reviews (10, 11). Most of these
metabolomics-based studies used blood samples, and the results
were dominated by a few metabolite classes, namely, branched-
chain and other amino acids, acylcarnitines, lysophospholipids,
phosphatidylcholines, free fatty acids, and triglycerides (10, 11).
Although the results showcased altered metabolic pathways in
the prediabetic state and have been the basis for novel hypotheses
on pathomechanisms or therapeutic approaches, no biomarker
profile has made it into routine disease screening up to now.

In the present study, we took a diagnostic biomarker
discovery approach that differed in four essential aspects from
n.org 2
common metabolomics biomarker discovery studies in the
diabetes field. (A) Urine was used as sample material (in view
of easy, non-invasive sample collection). Up to the present, urine
was very seldom used as sample material in mass spectrometric
metabolomics approaches for the discovery of biomarkers in
metabolic diseases (12–14). (B) Considering the individual
diversity of this polygenetic disease, we aimed to discover a
pattern of several metabolites instead of the usual one or few
metabolite biomarkers. (C) We focused on sex-specific
diagnostic patterns. (D) Only metabolites containing
modifying groups were considered. The rationale to apply our
novel metabolomics strategy for the untargeted profiling of
modified metabolites (15) was that modified metabolites are
not only less covered by common metabolomics approaches but
also less represented in common metabolite databases (15, 16),
which suggests that this group of metabolites could have an
added value for diagnostic biomarker patterns.
MATERIALS AND METHODS

Study Design and Study Samples
An overview of the general study design is given in Figure 1.
Samples collected at baseline from a total of 340 study
participants of the TULIP prediabetes cohort, recruited and
studied at the University Hospital in Tuebingen, Germany,
were investigated in this study. Inclusion criteria for the
TULIP cohort were one or more of the following: a family
history of T2D, BMI > 27 kg/m2, impaired glucose tolerance,
and previous diagnosis of gestational diabetes. Individuals with
manifest diabetes (blood glucose at 120 min >11.0 mmol/L),
kidney dysfunction (GFR < 50 ml/min), liver disease, systemic
infection, or critical mental illness were excluded. Informed
written consent was obtained from all participants, and the
Ethics Committee of the University of Tuebingen approved the
protocol (ref. 422/2002) according to the Declaration of Helsinki
of 1964 and its later amendments. The cohort for biomarker
discovery comprised 119 individuals [59 normal glucose tolerant
(NGT) and 60 impaired glucose tolerant (IGT)] selected at
July 2022 | Volume 13 | Article 935016
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random. For validation of the discovered biomarker pattern,
samples of 221 individuals (149 NGT and 72 IGT) were analyzed
(Table 1). Second morning urines and blood samples were
collected after an overnight fast. Thereafter, each individual
performed an OGTT. Diagnostic criteria for IGT was blood
glucose >7.78 mM at 120 min OGTT.
Frontiers in Endocrinology | www.frontiersin.org 3
Urine samples for metabolomics analysis were stored at once at
−80°C. Glucose, insulin, urinary total protein, and creatinine were
analyzed immediately on ADVIA clinical chemistry and Centaur
immunoanalyzer systems (Siemens Healthineers, Germany). HbA1c

was quantified after blood drawing by HPLC (Tosoh
biosciences, Japan).
FIGURE 1 | Overview of the study design and cohorts for the discovery and validation of a diagnostic pattern in second morning urine for prediabetes screening.
TABLE 1 | Anthropometric and clinical characteristics of normal glucose-tolerant (NGT) and impaired glucose-tolerant (IGT) individuals of the cohorts of the study.

Characteristics Discovery cohort (n = 119) Validation cohort (n = 221)

All Male Female All Male Female

NGT IGT NGT IGT NGT IGT NGT IGT NGT IGT NGT IGT

n 59 60 29 30 30 30 149 72 46 27 103 45
Age (years) 55.7 ±

9.7
56.1 ±
9.5

56.2 ±
10.8

55.9 ±
7.5

55.2 ±
8.7

56.4 ±
11.3

55.2 ±
11.5

56.2 ±
10.9

56.1 ±
12.7

59.9 ±
9.7

54.7 ±
10.9

54 ± 11.1

BMI (kg/m2) 31.8 ±
5.2

32.5 ±
6.9

32.0 ±
4.8

33.0 ±
6.0

31.5 ±
5.6

32.0 ±
7.7

30.9 ±
5.6

31.5 ±
5.6

30.3 ±
4.2

31.7 ±
4.6

31.2 ±
6.1

31.3 ±
6.1

Fasting glucose
(mM)

5.58 ±
0.54

6.04 ±
0.61*

5.56 ±
0.43

6.05 ±
0.60*

5.61 ±
0.63

6.04 ±
0.63*

5.62 ±
0.56

5.85 ±
0.69*

5.65 ±
0.52

5.83 ±
0.69

5.61 ±
0.57

5.86 ±
0.70*

120 min glucose
(mM)

6.26 ±
0.91

9.29 ±
0.83*

6.29 ±
0.93

9.27 ±
0.86*

6.23 ±
0.90

9.31 ±
0.81*

6.00 ±
1.09

9.01 ±
1.17*

6.04 ±
1.22

8.99 ±
1.20*

5.97 ±
1.04

9.02 ±
1.17*

Fasting insulin
(pmol/L)

75 ± 32 101 ± 58* 79 ± 28 95 ± 52 72 ± 36 106 ± 65* 78 ± 45 103 ± 65* 81 ± 43 101 ± 71 77 ± 47 104 ± 62*

HbA1c (mmol/mol) 39 ± 4 40 ± 4* 38 ± 4 40 ± 4 40 ± 3 41 ± 5 39 ± 4 41 ± 4* 38 ± 4 40 ± 5* 39 ± 4 41 ± 4*
Urine creatinine
(mg/dl)

128 ± 63 154 ± 83 143 ± 53 180 ± 92 114 ± 69 129 ± 65 131 ± 71 117 ± 53 158 ± 84 127 ± 56 118 ± 61 110 ± 50

Urine protein (g/L) 0.09 ±
0.05

0.12 ±
0.11

0.08 ±
0.03

0.13 ±
0.11

0.09 ±
0.07

0.11 ±
0.11

0.10 ±
0.14

0.08 ±
0.04

0.13 ±
0.23

0.08 ±
0.04

0.09 ±
0.07

0.08 ±
0.05
July 2022 | Volum
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All, female and male subjects in one cohort; NGT, normal glucose tolerant; IGT, impaired glucose tolerant; *p < 0.05 (IGT vs. NGT; Mann–Whitney U test).
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Sample Preparation
Urine was thawed on ice and vortexed, then internal standard
mix (carnitine C2:0-d3, carnitine C6:0-d3, carnitine C10:0-d3,
leucine-d3, phenylalanine-d5, tryptophan-d5, cholic acid-2,2,4,4-
d4, chenodeoxycholic acid-2,2,4,4-d4, leucine enkephalin,
indoxyl sulfate-[13C6], L-valine-d8, sodium-2-hydroxybutyrate-
2,3,3-d3, and L-4-hydroxyphenyl-d4-alanine) was added (v/v,
1:10), samples were vortexed again and centrifuged at 18,000 ×
g (4 °C for 10 min), and 100 mL of the supernatant was
subsequently evaporated and stored at −80 °C. Before mass
spectrometric analysis, samples were dissolved in 300 µL of
H2O:methanol (v/v, 3:1).

Non-Targeted, Modifying Group-Assisted
Metabolomics
The coverage of common metabolomics approaches
was broadened applying our recently published analytical
strategy that focuses on modified metabolites (15). The
published approach was applied with one relevant variation.
To improve the coverage in urine, a UHPLC-column with a
pentafluorophenylpropyl (PFPP) stationary phase having
multiple selectivity mechanisms including that for polar
substances was used instead of an octyldecyl-silane stationary
phase. A total of 15 different types of modifications were profiled
in this study (Supplementary Table 1). In brief, an ACQUITY
Ultra Performance LC system (UPLC, Waters, Milford, U.S.A.)
equipped with a Discovery HS F5-3 column (2.1 mm × 150 mm,
3 mm, Sigma Aldrich, St. Louis, USA) hyphenated to a Triple
TOF 5600+ (AB SCIEX, Framingham, USA) was used for the
non-targeted profiling of modified metabolites. Mobile phase A
was water containing 0.1% formic acid, and mobile phase B
contained acetonitrile with 0.1% formic acid. The flow rate was
set as 0.35 mL/min and column temperature was set to 40 °C.
Gradient elution was started with 2% B, increased to 10% B at
5 min, 40% B at 15 min, and 98% B at 20 min, then switched back
to 2% B within 0.5 min and kept for 4.5 min. The injection
volume was 10 µL. Data acquisition was performed in full MS-
IDA scan mode with a mass range setting ofm/z 50–1000 Da and
30–1000 Da, respectively. Accumulation time for the full scan
and for the MS/MS acquisition were 0.25 s and 0.03 s,
respectively. Cycle time was 0.75 s. Declustering potential was
set at 90. The temperature of the electrospray ion source was set
at 500 °C and 450 °C for positive and negative ion mode,
respectively, and a spray voltage at 5,500 V for positive and
4,500 V for negative ion mode. Every tenth sample was followed
by a quality control (QC) analysis of pooled urine.

For modified metabolite profiling, collision energies of 15 V,
30 V, and 45 V were applied as described in detail in (15), and
MS/MS fragmentation patterns of the 15 most intense ions in full
scan were acquired. Curtain gas, gas 1, and gas 2 were 35, 50, and
50 psi, respectively.

Annotation of Biomarkers
Annotation of the modified metabolite features was performed
according to our recently published strategy (15) with slight
modifications of using five instead of three databases (OSI-
Frontiers in Endocrinology | www.frontiersin.org 4
SMMS, HMDB, Metlin, MyCompoundID, and Compound
Discovery 3.0). Since Compound Discovery 3.0 database
searches work only with high-resolution MS/MS spectra data
from Thermo Fisher Scientific instruments for this purpose, MS/
MS spectra from a QC sample were acquired on a QE-HF mass
spectrometer (ESM Method). Furthermore, enzymatic cleavage
experiments (16, 17) were applied to confirm two major types of
modifications (glucuronidation and sulfation). In brief, aliquots
of pooled urines were treated with either sulfatase or b-
glucuronidase from Type H-2 Helix pomatia (Sigma-Aldrich;
St. Louis, U.S.A.) and subsequently analyzed by LC-MS and
compared with data from untreated samples. Enzymolysis buffer
containing 500 mL of 0.15 M sodium acetate buffer (pH 4.3), 2.0
mg of L-ascorbic acid, and 5 mL of b-glucuronidase (≥85,000 U/
ml) or sulfatase solution (≥2,000 U/ml) was mixed with the same
volume of urine and incubated at 37 °C for 24 h. Control samples
were processed in the same way but without the addition of b-
glucuronidase or sulfatase.

Data Analysis
An overview of the data treatment strategy for the elucidation of
a diagnostic biomarker pattern of modified metabolites is
illustrated in Figure 2. Tolerance thresholds for mass accuracy
and retention time for peak detection and alignment were related
to the internal standards. Subsequent to detection and alignment
of mass spectrometric data using MarkerView software (AB
SCIEX, USA). The parameters for peak detection were as
follows: a minimum spectral peak width of 10 ppm, a
minimum RT peak width of 5 scans, and a noise threshold of
100. Retention time tolerance of 0.3 min and mass tolerance of 10
ppm were adopted for peak alignment. The features were
normalized to total peak area. Only features showing relative
standard deviations (RSD) <30% were kept. For the discovery of
significantly different features, first non-parametric tests were
applied (IBM SPSS Statistics Version 23 software). Next, MRM-
Ion Pair Finder software (18) was used to exclude unmodified
metabolites and extract solely metabolites with a modification in
their molecular structure. Mass tolerance between precursor ion
and product ion was 10 ppm. Subsequently, this biomarker list
was treated further by removing annotated xenobiotics and
xeno-metabolites according to HMDB database entries. Finally,
diagnostic biomarker patterns in urine were elucidated by ReliefF
algorithm (19). The binary logistic regression models were built
by SPSS (IBM SPSS Statistics Version 23 software). SIMCA-P
11.0 software was adopted for multivariate principal component
analysis (PCA) analysis using UV scaling.
RESULTS

Study Design and Cohorts
Figure 1 gives an overview of the study design, and Table 1
shows anthropometric and clinical characteristics of NGT and
IGT individuals of the discovery and the validation cohorts either
as one joint cohort of female and male subjects or both sexes
separately. NGT and IGT groups were matched for age and BMI.
July 2022 | Volume 13 | Article 935016
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Individuals with impaired fasting glucose (IFG) only were not
included, since reliable diagnosis of IFG is possible by easy,
simple-to-perform analysis of FPG. Per definition, IGT subjects
had higher OGTT glucose levels at 120 min, as well as fasting
glucose, insulin levels, and HbA1c levels compared to the joint
NGT group (Table 1). When separated into female and male
subjects, similar differences in prediabetic parameters were
obtained (Table 1). We used the second morning urine as
sample material for our metabolome screening approach, since
it is less influenced by diet compared to the first morning urine
(20) and sampling is not as cumbersome and error-prone as 24-h
collection urine (21). Total protein content and creatinine in the
second morning urine were not different between NGT and
IGT (Table 1).

Joint Discovery Cohort Composed of
Female and Male Subjects: Detection of a
Diagnostic Biomarker Pattern of Modified
Metabolites for Prediabetes Screening in
Second Morning Urine
The stepwise evaluation strategy of the metabolomics data
applied for the joint and the sex-separated cohorts of female
and male subjects to elucidate a diagnostic pattern for IGT is
illustrated in a workflow scheme shown in Figure 2.

In the joint discovery cohort composed of female and male
subjects, the non-parametric test revealed 1,296 significantly
different metabolite features between NGT and IGT.
Subsequently, after applying the MRM-Ion Pair Finder
software (15) to extract modified metabolites from these
potential biomarkers, 299 remained. Principal component
analysis (PCA) revealed a clustering of IGT and NGT based on
these 299 modified metabolite features (Supplementary
Figure 1A). We proceeded by applying a feature selection
algorithm [ReliefF (22)] to extract a diagnostic pattern for
prediabetes screening. The ReliefF algorithm was adjusted to
achieve the highest possible diagnostic sensitivity and, with
respect to the great diversity of the polygenetic diabetes
disease, we allowed a maximum of 20 modified metabolites in
Frontiers in Endocrinology | www.frontiersin.org 5
the diagnostic pattern. The ReliefF algorithm yielded a diagnostic
pattern of 18 biomarkers in urine (Supplementary Table 2).

FPG,HbA1c, and fasting insulin showed diagnostic sensitivities
between 35% and 67% (Supplementary Figure 1B; AUCs from
0.606 to 0.714). The combination of FPG and HbA1c was not
superior to FPG alone. We also tested glucose concentration in
urine, as another possible routine diabetes measure, but not
unexpectedly, all concentrations were within the reference range
and no difference between NGT and IGT was observed.

In contrast to the common prediabetes screening parameters,
the pattern of modified metabolites showed a better prediction
for IGT (AUC 0.894, Supplementary Figure 1B), and the
diagnostic sensitivity of the pattern was highest (85.0%,
Supplementary Figure 1B). Aiming to improve the diagnostic
performance by combining the pattern with HbA1c, a slight
increase in diagnostic sensitivity (88.3%) was achieved, but the
improvement of the AUC was small.

Sex-Specific Discovery Cohorts Improve
the Diagnostic Accuracy for Prediabetes
Screening
Routine diagnostic laboratory parameters often consider differences
between sexes. We hypothesized that similar differences might exist
for modified metabolites. Thus, the data of the discovery cohort
were re-evaluated after separation into female and male subjects.
The discovery cohort is composed of 29male subjects and 30 female
subjects with NGT, and 30 male subjects and 30 female subjects
with IGT, who were still well-matched for age and BMI (Figure 1
and Table 1). With the workflow shown in Figure 2, significant
differences in the levels of 760 and 707 metabolite features between
NGT and IGT in female and male subjects were detected,
respectively. Out of >700 biomarkers 118 and 81 modified
metabolites were extracted by the MRM-Ion Pair Finder software
in female and male subjects, respectively. Only 7 of these modified
metabolites were identical between sexes, which corroborated the
possible sex specificity of prediabetes biomarkers. Finally, after
removing annotated xenobiotics and xeno-metabolites, 62 and 82
modified metabolite features remained in the male and female
FIGURE 2 | Workflow of the mass spectrometric data analysis to elucidate patterns of modified metabolites for prediabetes screening in second morning urine.
July 2022 | Volume 13 | Article 935016
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discovery cohorts, respectively. The ReliefF pattern recognition
algorithm produced 20 and 18 modified metabolites for the
differentiation of IGT and NGT in male and female subjects,
respectively (Table 2). Only three biomarkers were identical in
the patterns of male and female subjects.

The diagnostic accuracy for prediabetes screening of the sex-
specific diagnostic patterns was improved compared to the 18
biomarker patterns identified in the joint cohort of female and
male subjects (Figures 3A, B vs. Supplementary Figure 1B). More
importantly, the sex-specific biomarker patterns were also
significantly better for IGT detection than FPG, fasting insulin, or
HbA1c. For male subjects, the 20 combined biomarkers showed a
superior AUC of 0.955 (diagnostic sensitivity of 86.7%), while the
AUCs of FPG, fasting insulin, and HbA1c were 0.741, 0.580, and
0.618, respectively, with diagnostic sensitivities between 50.0% and
83.3% (Figure 3A). In the female cohort shown in Figure 3B, the
biomarker pattern had a discriminating ability of 0.926 (diagnostic
sensitivity of 90.0%) in comparison toAUCs of FPG, fasting insulin,
and HbA1c of 0.686, 0.653, and 0.602, respectively (corresponding
sensitivities: 60.0%, 46.7%, and 40.0%).

Sex-Specific Validation Cohorts
As a next step, the reproducibility of the sex-specific prediabetes
screening patterns was studied in second morning urine samples
from the validation cohorts. For male subjects, the performance
of the pattern was confirmed (Figure 3C; an AUC of 0.889 and a
diagnostic sensitivity of 92.6%). The AUC of FPG, fasting
insulin, and HbA1c was 0.573, 0.571, and 0.668, respectively.
The combination of the biomarker pattern and HbA1c resulted in
an increase of the AUC to 0.977 (Figure 3C), and the sensitivity
and specificity reached 96.3% and 93.3%, respectively.
Frontiers in Endocrinology | www.frontiersin.org 6
The pattern of female subjects, composed out of 18
biomarkers, resulted in an AUC of 0.722 (Figure 3D), which is
better than the AUCs of FPG, fasting insulin, and HbA1c (0.595,
0.634, and 0.604, respectively). The diagnostic sensitivity was
75.6%, clearly higher than the sensitivity of the three clinical
parameters FPG, fasting insulin, and HbA1c (49%, 59%, and 47%,
respectively). For female subjects, the combination of 18
biomarkers with HbA1c led only to a slight improvement in
the AUC to 0.747 and sensitivity to 77.8% (Figure 3D).

Annotation of Modified Metabolite
Biomarkers for Prediabetes Screening
To investigate the identity of the biomarkers, MS/MS spectra and
enzymatic cleavage of modifications were applied. Finally, six and
nine modified metabolites in the diagnostic patterns of female and
male subjects, respectively, could be named (Table 2). Many of these
are compounds previously related to pathogenesis of diabetes or
diabetic late complications, like advanced glycation end products
(pentosidine-glucuronide and glutamyl-lysine-sulfate), modified
metabolites from microbiota (indoxyl sulfate and dihydroxyphenyl-
gamma-valerolactone-glucuronide), and hormones like
glucocorticoids. Detailed chemical characteristics for all sex-specific
biomarkers are provided in Supplementary Tables 3A, B.
DISCUSSION

In light of the millions of individuals with undiagnosed
prediabetes worldwide, a broad screening approach is of
utmost importance. However, screening for impaired glucose
tolerance has not yet become feasible because reliable diagnostic
TABLE 2 | List of sex-specific biomarkers of modified metabolites in the diagnostic patterns for prediabetes screening in urine of male and female subjects (further
analytical characteristics about each modified metabolite are given in Supplementary Tables 3A, B).

Male Female

Pentosidine glucuronide# Pentosidine glucuronide#

Glutamyl-lysine sulfate Indoxyl sulfate
5-(3’,4’-dihydroxyphenyl)-gamma-valerolactone-3’-O-glucuronide# 5-(3’,4’-dihydroxyphenyl)-gamma-valerolactone-3’-O-glucuronide#

5-Phenylvaleric acid glucuronide Suberic acid
3-Methoxy-4-hydroxyphenylethyleneglycol sulfate Aspartyl-threonine glucuronide
Hippuric acid glucuronide Glycyl-lysine
Cortisol glucuronide isomer a Malonylation (m/z 227.0225; tR 5.27 min)
Tetrahydrocortisone glucuronide Ribose conjugation (m/z 286.1018; tR 3.96 min)
Cortisol glucuronide isomer b Glucuronidation (m/z 387.1649; tR 10.63 min)
Phosphorylation (m/z 221.9842; tR 1.06 min) Acetylation (m/z 154.0611; tR 3.97 min)
Carboxylation (m/z 325.0087; tR 5.11 min) Carboxylation (m/z 209.057; tR 3.79 min)
Sulfation (m/z 366.0993; tR 10.76 min) Carboxylation (m/z 287.1508; tR 11.47 min)
Hexose conjugation (m/z 436.1928; tR 7.92 min) Carboxylation (m/z 212.0733; tR 3.73 min)
Glucuronidation (m/z 361.1014; tR 9.83 min) Sulfation (m/z 291.9590; tR 4.27 min)
Glucuronidation (m/z 303.0724; tR 4.25 min) Sulfation (m/z 338.0683; tR 9.23 min)
Glucuronidation (m/z 448.1612; tR 11.66 min)# Glucuronidation (m/z 448.1612; tR 11.66 min)#

Glucuronidation (m/z 325.0988; tR 11.06 min) Glucuronidation (m/z 340.1136; tR 12.58 min)
Glucuronidation (m/z 305.0862; tR 4.24 min) Glucuronidation (m/z 431.2461; tR 11.77 min)
Glucuronidation (m/z 448.1697; tR 9.22 min)
Glucuronidation (m/z 305.1235; tR 11.47 min)
# same biomarkers in the patterns of male and female subjects. The glucuronidated metabolite feature of unknown annotation shows the same chromatographic retention time and mass
spectrometric characteristics.
a and b represent isomers with different retention times, which cannot be differentiated by our mass spectrometric approach.
tR = retention time under the applied chromatographic conditions on a Discovery HS F5-3 column.
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tools aside from the laborious OGTT are lacking. Our biomarker
discovery approach, which differed substantially from the
common metabolomics strategies applied in the context of
diabetes up to now, proved sex-specific patterns consisting of
18 modified metabolites in the urine of female subjects and 20
biomarkers in the urine of male subjects to be the most
promising. For both sexes, these patterns proved to be
significantly better in the diagnostic power for IGT screening
compared to the conventional blood parameters FPG, fasting
Frontiers in Endocrinology | www.frontiersin.org 7
insulin, and HbA1c. The findings of our approach underline the
potential of sex-specific prediabetes screening in urine samples.

The measurement of FPG and HbA1c remains the mainstay
option for state-of-the-art routine medical care screening for and
diagnosis of prediabetes and diabetes, recommended by diabetes
associations and public healthcare organizations worldwide (1,
23). Because FPG analysis is very simple, it is the most common
approach. While being a very reliable diagnostic screening tool to
detect individuals with IFG, FPG measurements miss a relevant
A B

DC

FIGURE 3 | Receiver operating characteristic (ROC) curve analysis comparing the performance of a sex-specific biomarker pattern with common prediabetes
laboratory parameters of (A) the male discovery cohort; (B) the female discovery cohort; (C) the male validation cohort; (D) the female validation cohort. NGT, normal
glucose tolerant; IGT, impaired glucose tolerant, AUC, area under the ROC curve.
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proportion of individuals at risk to develop diabetes that have
normal FPG (4–9). Data from screening studies in Europe, Asia,
and America showed that approximately 30%–50% of cases were
missed using FPG as the diagnostic marker (4–6). These reports
are in line with the findings in our cohorts (Figure 3).
Approaches to adjust the diagnostic threshold of HbA1c (24–
26) or to combine FPG and HbA1c for screenings were not real
breakthroughs (5). Consequently, a considerable number of
individuals with prediabetes remain undiagnosed using the
available and recommended diagnostic parameters for
prediabetes screening.

At present, individuals at risk for diabetes can only reliably be
diagnosed by measuring the concentration of blood glucose
120 min after a 75-g glucose- OGTT (4, 6). The diagnostic
sensitivity and specificity of this metabolic challenge test are very
high, allowing the detection of prediabetes in a reliable manner.
However, this laborious, time-consuming test is unsuitable for
large-scale prediabetes screening. As a consequence, for more
than one decade, numerous studies aimed to discover novel
biomarkers for the diagnosis of prediabetes related to the
pathogenesis of T2D. Metabolomics approaches had been
performed foremost in blood samples (10, 11). The biomarkers
of the more than 60 reports summarized in two recent
comprehensive reviews are dominated by a small number of
metabolites originating from few metabolic pathways (10, 11);
among these, metabolites like lysophosphatidylcholines (LPCs)
and branched chain amino acids are regularly found not only in
diagnostic prediabetes patterns, but also in the context of other
diseases (27, 28), and therefore are not ideally suited as
biomarkers for a specific disease state. To keep the diagnostic
patterns for prediabetes screening simple from an analytical
point of view, the majority of studies suggested a single
biomarker (29, 30) or a pattern of very few metabolites (31–
40). However, diabetes is a complex, polygenetic metabolic
disease with a diverse pathogenesis (41). As a consequence,
shifts in the circulating metabolome of subjects with
prediabetes can be expected to be a combination of more
general and more prediabetes subtype-specific metabolic
pathway alterations. Thus, a pattern consisting of several
metabolites may be more suitable for the prediabetes screening
approaches than a single parameter.

Thus, we combined a metabolomics approach focused on
modified metabolites with the ReliefF algorithm (42) to identify
sex-specific metabolite patterns. Two patterns consisting of 18
modified metabolites for female subjects and 20 for male subjects
showed the best performance. In these patterns, only three
modified metabolites coincided, which underlines the sex
dependency of the discovered prediabetes marker compounds.
This is in line with the findings of a previous report using NMR
for the analysis of urine (43). However, NMR has a much lower
analytical sensitivity and, consequently, metabolite coverage than
mass spectrometry. Thus, the patterns identified in this study
were not superior to conventional parameters either in female or
in male subjects (43). Up to now, none of the metabolomics-
based studies reported reliable sex-specific biomarkers or
patterns for prediabetes diagnosis (29, 31–38, 43). On the
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other hand, sex-specific differences, e.g., reference ranges of
metabolites and other diagnostic parameters, are commonly
considered in daily clinical routine (44). Thus, our results also
show that there is a general need for re-thinking in the field of
mass spectrometric-driven prediabetes biomarker discovery
studies, considering sex-specific approaches to improve
diagnostic accuracy.

Both patterns showed better diagnostic sensitivity and AUC
for prediabetes screening than the routinely used parameters
FPG and HbA1c or a combination of both (Figure 3). For male
subjects, the validation confirmed a very good performance of
this sex-specific pattern (92.6% diagnostic sensitivity; AUC
0.889), which was even enhanced in combination with HbA1c

to a sensitivity of 96.3% and an AUC of 0.977. For female
subjects, the diagnostic performance in the validation cohort
was superior to the common blood parameters, but clearly lower
than in male subjects (Figure 3D). One possible explanation for
this lower diagnostic performance could be the higher variability
in the female metabolome caused by a greater heterogeneity in
the hormonal status (45–50). In addition to variations caused by
the menstrual cycle, the age of the majority of female subjects
intended to be screened for IGT lies between 40 and 60 years,
right in the climacteric period of life with heterogenous, marked
alterations of metabolic traits. We can only speculate whether
taking into account these factors could improve the discovery of
one or more diagnostic metabolite patterns for female subjects
with prediabetes. However, recent reports from us and others
clearly show that the menstrual cycle (45–47) and menopause
(48–50) affect the metabolome in the blood of female subjects.

During the pathogenesis of T2D, several alterations of the
metabolism and consequently the metabolome occur, some of
them known and others yet unknown, building the rationale for
metabolomics-based biomarker discovery studies. Among the
annotated metabolites in the diagnostic biomarker patterns of
male and female subjects identified in our study are compounds
like advanced glycation end products (pentosidine-glucuronide
and glutamyl-lysine-sulfate), modified metabolites from
microbiota (indoxyl sulfate and dihydroxyphenyl-gamma-
valerolactone-glucuronide), and hormones related to
carbohydrate metabolism like glucocorticoids, all of which
have previously been described in the pathophysiological
context of diabetes (13, 51–57). Nevertheless, the majority has
not been reported in any diabetes-related diagnostic biomarker
pattern up to now (10, 11). Interestingly, these biomarkers
originate from distinct pathogenetic reactions, which may
possibly increase the diagnostic robustness of the patterns.

Pentosidine, a glucose-derived AGE, has been associated
with arterial stiffness and thickness in diabetic subjects (58),
and the occurrence of diabetic nephropathy (59) and
retinopathy (60). e-(g-glutamyl)lysine, a major protein
crosslink, has been described as a marker for early-stage
decline in renal function (13, 61). The detection of these
AGEs as biomarkers for the prediabetic state could be a first
hint that there is an early decline of vascular, metabolic, and
renal health in the pathogenesis of diabetes, which underlines
the clinical need for improved prediabetes screening.
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Phenylvaleric acid, a common gut microbial metabolite of
dietary flavonoids, seems to be beneficial for b-cell function
and enhancement of glucose utilization in skeletal muscle (55,
62, 63). Another bacterial product of flavonoids, in this case
procyanidins, found in our patterns is dihydroxyphenyl-
gamma-valerolactone, which has been reported to exert
protective effects against diabetes and suggested to be a
marker of microbiota dysbiosis (56, 64). Another biomarker
of microbiota and human metabolism among the metabolites
in our patterns is indoxyl sulfate, which is described as a
cardio- and nephrotoxic compound associated with the
development of kidney and vascular diseases in diabetics (65,
66). 3-Methoxy-4-hydroxyphenylethyleneglycol sulfate
(MHPG-S), the best marker of central norepinephrine
metabolism (67), significantly correlates with blood glucose
(68) and may be associated with changes or differences in body
weight (69). Suberic acid is described as a ketosis marker
in urine (70), which may reflect medium-chain acyl
CoA-dehydrogenase (MCAD) activity (71). To the best of
our knowledge, several of these metabolites have not
been described in (pre)diabetes diagnostic patterns of
metabolomics approaches up to now.

A possible point of criticism is the general utility of patterns
consisting of a relatively large number of metabolites for
diagnostic use, due to the necessity to analyze several
biomarkers for a single diagnostic purpose. However, there
are three important points that indicate that such an approach
could be both beneficial and feasible in the future. Firstly,
diagnosing complex diseases that affect various metabolic
pathways in an individually different extent may only be
feasible when combining various different biomarkers. This is
also reflected by the low diagnostic sensitivity of single
biomarkers like blood glucose and HbA1c in the context of
IGT detection. Secondly, combinational markers are much
more robust than a single marker or a pattern of only a few
biomarkers (72, 73). Thirdly, the metabolites described here
can be analyzed in a single LC-MS run. Recently a fully
automatic LC-MS system, suitable for 24/7 use, was
introduced into routine diagnostics (74). This instrument,
which is easy to operate and does not call for specific LC-MS
expertise (74), not only opens up perspectives for every routine
diagnostic laboratory to apply LC-MS, but also analyzes
complex diagnostic patterns in a fully automatic, high-
throughput manner in the future.

A potential weakness with respect to the data presented here
is the relatively low number of male individuals in the validation
cohort. On the other hand, the pattern performed even superior
in the male validation than in the discovery cohort. Furthermore,
we cannot exclude that sex hormones are among the metabolites
in the biomarker pattern of female subjects for which only the
modification, exact mass, and retention time (but not the
identity) are known up to now. This may, in addition to
the potential effects of menstrual cycle or climacteric stage, be
Frontiers in Endocrinology | www.frontiersin.org 9
another underlying reason for the weaker separation power of
NGTs and IGTs in the female cohorts.

To conclude, a sex-specific, mass-spectrometry-driven
modified metabolomics approach may greatly advance the
discovery of novel biomarker patterns, at least in the context of
metabolic diseases. All annotated biomarkers in the prediabetes
patterns in our study showed a meaningful association to the
pathogenesis of diabetes. The diagnostic performance of the sex-
specific modified metabolite patterns in second morning urine to
detect IGT was superior to all currently used blood parameters
suitable for large-scale prediabetes screening. Together with the
recent introduction of fully automated LC-MS systems, our
results indicate that sex-specific metabolite patterns may
greatly advance the diagnosis and, thus, treatment and
counseling of subjects with prediabetes in the future.
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19. Kononenko I, Šimec E, Robnik-Šikonja M. Overcoming the Myopia of
Inductive Learning Algorithms With Relieff. Appl Intell (1997) 7(1):39–55.
doi: 10.1023/A:1008280620621

20. Liu X, Yin P, Shao Y, Wang Z, Wang B, Lehmann R, et al. Which Is the Urine
Sample Material of Choice for Metabolomics-Driven Biomarker Studies? Anal
Chim Acta (2020) 1105:120–7. doi: 10.1016/j.aca.2020.01.028

21. Lehmann R. From Bedside to Bench-Practical Considerations to Avoid Pre-
Analytical Pitfalls and Assess Sample Quality for High-Resolution
Metabolomics and Lipidomics Analyses of Body Fluids. Anal Bioanal Chem
(2021) 413(22):5567–85. doi: 10.1007/s00216-021-03450-0
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