
Diagnostic Powertracing for Sensor Node Failure Analysis

Mohammad Maifi Hasan Khan, Hieu K. Le, Michael LeMay,
Parya Moinzadeh, Lili Wang, Yong Yang, Dong K. Noh,
Tarek Abdelzaher, Carl A. Gunter, Jiawei Han, Xin Jin

{mmkhan2, hieule2, mdlemay2,moinzad1,liliwang,
yang25, dnoh, zaher, cgunter, hanj, xinjin3}@illinois.edu

Department of Computer Science
University of Illinois, Urbana-Champaign

201 N. Goodwin Ave, USA

ABSTRACT

Troubleshooting unresponsive sensor nodes is a significant
challenge in remote sensor network deployments. This paper
introduces the tele-diagnostic powertracer, an in-situ trou-
bleshooting tool that uses external power measurements to
determine the internal health condition of an unresponsive
host and the most likely cause of its failure. We developed
our own low-cost power meter with low-bandwidth radio
to report power measurements and findings, hence allow-
ing remote (i.e., tele-) diagnosis. The tool was deployed and
tested in a remote solar-powered sensing network for acous-
tic and visual environmental monitoring. It was shown to
successfully distinguish between several categories of failures
that cause unresponsive behavior including energy deple-
tion, antenna damage, radio disconnection, system crashes,
and anomalous reboots. It was also able to determine the
internal health conditions of an unresponsive node, such as
the presence or absence of sensing and data storage activities
(for each of multiple sensors). The paper explores the fea-
sibility of building such a remote diagnostic tool from the
standpoint of economy, scale and diagnostic accuracy. To
the authors’ knowledge, this is the first paper that presents
a remote diagnostic tool that uses power measurements to
diagnose sensor system failures.

Categories and Subject Descriptors

C.2.3 [Computer Systems Organization]: Network Op-
erations—Network Monitoring ; D.2.5 [Software]: Testing
and Debugging—Diagnostics; G.3 [Mathematics of Com-
puting]: Probability and Statistics—Time Series Analysis

General Terms

Algorithms, Design, Experimentation, Measurement, Relia-
bility

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’10, April 12–16, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$10.00.

Keywords

Energy, Sensor networks, Troubleshooting

1. INTRODUCTION
This paper introduces a novel diagnostic system, called

the tele-diagnostic powertracer , geared for remote high-end
sensor network deployments, where the cost of in-situ node
maintenance is high. The tele-diagnostic system uses ex-
ternal low-bandwidth measurements of power consumed by
sensor nodes to distinguish between several types of node
failures, such as failures induced by energy depletion, radio
failures, and software failures (e.g., system crashes). It is
also able to infer the state of the application from power
traces, such as whether or not sensing and data storage are
operational on an unresponsive node.

The work described in this paper is motivated by the
need to reduce the cost of troubleshooting remotely-deployed
sensing systems. When remotely-deployed nodes become
unresponsive, it is generally hard to determine what caused
some node to become silent, without sending a person to the
field. If the cost of such field trips is high, remote damage
assessment becomes highly desirable to assess the need for
intervention. For example, if the cause of the problem is
energy depletion (in a solar-powered system), there may not
be much that can be done about it until the energy source is
restored (e.g., weather improves). On the other hand, if the
cause is attributed to a transient error (e.g., a system crash),
power-cycling the system remotely may fix the problem. If
the cause is attributed to a hardware malfunction (e.g., a
radio failure), the urgency of repair may depend on whether
or not the failure has affected the ability of the application
to sample and store data. If the application continues to
sample and locally store data, then there may be no need
for immediate intervention. In contrast, some failures may
require urgent attention. For instance, it is urgent to inter-
vene if there is evidence of water damage that may cascade
to other nodes or devices. Another example, experienced
by the authors on one occasion, was a node that entered
a cycle of repeated reboots. The cycle ultimately led to a
hardware failure. Early intervention could have saved the
node. Our tele-diagnostic system provides strong clues as
to what might be wrong with a node, making it possible to
plan intervention accordingly.

While the approach of exploiting power traces to diagnose
problems using our tele-diagnostic system is applicable, in
principle, to a wide array of sensing systems, we present it
and evaluate its performance on a specific deployed platform,
called SolarStore [34]. The platform is intended for high-
bandwidth sensing applications such as structural, acoustic,
or video monitoring. It bundles higher-end solar-powered
sensor node hardware with data storage and communica-
tion services. It therefore serves as a good example of the
types of high-end sensing systems that our powertracer is
designed to help troubleshoot. We show that, by remotely
analyzing low-bandwidth power traces collected by cheap
wireless power meters attached to the deployed SolarStore
nodes, it is possible to infer useful information about the na-
ture of node failures when they occur, as well as recognize
some coarse-grained application states.

We emphasize that the diagnostic system, described in
this paper, is intended to help a remote operator deter-
mine the status of deployed, unresponsive nodes. Nodes
that remain responsive can, in general, use other solutions
for health monitoring. For example, they can run a local di-
agnostic routine and report its outcome periodically. Such
solutions have been discussed at length in previous litera-
ture and hence are not a part of the contribution of the
work presented in this paper.

The rest of this paper is organized as follows. Section 2
introduces related work on sensor network troubleshooting.
Section 3 presents the design of the tele-diagnostic power-
tracer on SolarStore. Section 4 explores several power-based
diagnostic algorithms that vary in complexity and efficacy.
It empirically evaluates algorithmic trade-offs in implement-
ing power-based diagnostic solutions. Section 5 discusses the
limitations of our current work along with possible future
extensions and improvements. The paper concludes with
Section 6.

2. RELATED WORK
Debugging wireless sensor network applications attracted

significant attention in the research community recently [14,
20, 12, 13, 4, 25, 33, 32]. Various techniques that are de-
veloped to aid sensor network application debugging and
troubleshooting at various steps of the development cycle
include simulation- and emulation-based tools [17, 30, 23],
laboratory testbeds [31, 5, 8], techniques that are developed
to assist in finding programming bugs or code-level bugs on
real hardware [32, 33], techniques to diagnose protocol bugs
such as design errors or corner case bugs [14, 12, 13], real-
time network monitoring and troubleshooting tools [25, 20,
28], and formal verification tools [29, 3, 9, 21]. This paper
is the first to explore the use of low-bandwidth power traces
for diagnostic purposes.

Simulation- and emulation-based tools, such as S2DB [30],
TOSSIM [17], and Atemu [23] are good at the early stages
of development to diagnose problems. Emstar [8] is a hy-
brid pre-deployment tool that can provide visibility into
system states by using a callback mechanism during emu-
lation. It allows system states inside an application node
to be sent back to a central station, where they can be in-
spected for possible problems and anomalies. To facilitate
debugging sensor network software after deployment, several
recent tools [32, 33] provide powerful runtime troubleshoot-
ing support, such as breakpoints and watchpoint-style de-

bugging primitives. These tools facilitate inspecting system
variables and memory states.

Passive diagnosis techniques [14, 20] have been developed
that require minimal help from the application developer
to diagnose the root cause of problems with a deployed sys-
tem. SNTS [14] deploys additional hardware to overhear and
record radio communication in the network to troubleshoot
protocol bugs by performing offline analysis. Pad [20] col-
lects data on a central PC to diagnose problems based on
the partial information provided by each node. SNMS [28] is
a sensor network management service that collects and sum-
marizes different types of measurements such as packet loss
and radio energy consumption. SNMS provides passively
stored information on the node when asked.

Sympathy [25] identifies and localizes failures based on
reduced throughput using a decision-tree approach. It is
close in spirit to the goals of our approach in that it attempts
to determine the root cause of “silence” from nodes in the
field. Sympathy can attribute the silence to either a node or
a link failure. It nicely complements our approach in that
we provide the next level of detail trying to determine the
type of node failure when such a failure is responsible for
the silence.

Finally, formal methods [29, 9, 21] have been used to verify
component correctness. Their techniques are orthogonal to
ours in that a system with verified code can also fail, for
example, due to a hardware malfunction.

Unlike techniques that require the application nodes to
assist in the diagnosis process, for example, by providing
internal system states [28, 25, 8], we consider the comple-
mentary problem of troubleshooting nodes that become un-
responsive. The novelty of our approach comes from using
low-bandwidth power traces as a side-channel for diagnosis,
which has not been attempted in prior work.

A variety of side-channels have been used to extract in-
formation from systems. For example, Non-Intrusive Load
Monitoring (NILM) algorithms analyze the energy consump-
tion of a segment of a building and determine what appli-
ances are in use in that segment without requiring meters to
be individually attached to those appliances. The seminal
work on NILM classifies loads into categories based on their
power consumption profiles [10] and presents a clustering-
based algorithm for detecting transitions between discrete
appliance states based on predetermined profiles of those
states. Many other NILM algorithms have been developed,
but they typically require electric meters with high sampling
rates [27, 18]. The Energy Detective (TED) is an example
of a product that enables monitoring of home energy con-
sumption to help home owners determine how they use elec-
trical power, primarily to give ideas about how to save on
energy costs1. Such monitoring enables real-time graphical
feeds and profiling of individual appliances, enabling own-
ers to find unnecessary loads like appliances that run when
they are not needed or discover appliances that consume
the most power. At a grander scale, there is a prospect
that power companies will use wireless power meters to aid
outage management. For instance, the extent of a black-
out can be known much more precisely through advanced
meters than by information collected at power substations.
This suggests investigating advantages of power diagnostics
as a way to gather information about sensor nodes.

1http://www.theenergydetective.com

This work is also inspired by security research. In the field
of computer security, side-channels have long been pursued
for the purpose of obtaining confidential information from
computers. Electromagnetic emanations can be a rich source
of data [15]. Particular attention has been paid to analyzing
the emanations of smartcards, and it has been demonstrated
that private keys can be extracted from smartcards by an-
alyzing their power consumption and radiation [6]. Recent
smartcard designs explicitly prevent such attacks. Acous-
tic emanations from certain machines also carry informa-
tion, although it is not clear if it can be used to compromise
cryptographic material without the assistance of a malicious
agent on the machine in question [2, 16]. We borrow the idea
of exploiting side channels from security research. Favoring
simplicity, we investigate the merits of using low-frequency
power traces as the side channel.

3. TELE-DIAGNOSTIC SYSTEM DESIGN
This section presents, in respective subsections, the gen-

eral design of the tele-diagnostic powertracer and its specific
use in the SolarStore system. The objective of the power-
tracer is to perform remote gross-level damage assessment
on unresponsive nodes, such as what may have caused them
to stop communicating and what the status of the applica-
tion might be. This is to be contrasted, for example, with
fine-grained debugging tools that attempt to find bugs in
lines of code. Fine-grained attribution of causes of error is
not a goal of powertracer.

3.1 General Design
Unresponsive behavior of deployed sensor nodes can oc-

cur for many reasons, such as broken antennas (e.g., due
to storm), software crashes, environmentally-induced dam-
age, or simply energy depletion. When a node stops com-
municating, an external measurement tool is needed that
exploits side-channels to infer further information on node
state. Perhaps the most obvious side-channel to exploit is
one of power measurement. Sensing, communication, com-
putation, and storage need power in order to be properly
carried out. This suggests the possibility of using a power-
based tele-diagnostic system to identify the causes of node
failure. The question investigated in this work is the degree
to which low-frequency sampling of power consumption of
an unresponsive node can be used as a side-channel to help
diagnose the causes of node silence. Our results show that
a sensing node does indeed have a different low-frequency
power consumption signature in different normal and abnor-
mal states, leading to the design of a tele-diagnostic power-
tracer. Our design follows two main objectives:
Diagnostic subsystem independence: The diagnostic
subsystem should operate as an independent external mea-
surement tool. It should therefore be self-sufficient and
should not require any changes to the system being mon-
itored.
Diagnostic subsystem cost: The diagnostic subsystem
should not cost, in either components or energy, a sizable
fraction of original sensing node cost. Costs in the range of
1-5% are deemed acceptable, although we demonstrate that
costs of around 3% are currently achievable for single units.

Figure 1 shows the tele-diagnostic powertracer. It includes
a low-cost power meter, one per sensor node, that periodi-
cally samples the current and voltage of its host node. These
meters are wirelessly connected via direct, low-bandwidth

�✂✁☎✄☎✆

✝✟✞✡✠☞☛☎✌

✍✎✞✑✏✓✒ ✔

✕✎✞✗✖ ✖ ☛☎✘ ✙

✚✛☛✜✖ ☛☎✘

✚✛☛✜✖ ☛☎✘
✍✎✞✑✏✓✒ ✔

✢✓✒ ✞✑✣✤✠✥✔✧✦★✖✩✒ ✪
✕✎✞✑✦★☛ ✫ ✦✟✖✩✞✬✖✩✒ ✔✭✠ ✮✰✯✧✯ ✌ ✒ ✪☞✞✗✖✩✒ ✔✭✠

✕✎✞✑✦★☛ ✫ ✦✟✖✩✞✬✖✩✒ ✔✭✠

�✂✁☎✄☎✆

✝★✞✤✠☞☛☎✌

✍✎✞✑✏✧✒ ✔

✕✎✞✗✖ ✖✩☛☎✘ ✙

✚✂☛✑✖✩☛☎✘

✚✂☛✑✖✩☛☎✘
✍✎✞✑✏✧✒ ✔

�✂✁☎✄☎✆

✝★✞✤✠☞☛☎✌

✍✎✞✑✏✧✒ ✔

✕✎✞✗✖ ✖✩☛☎✘ ✙

✚✂☛✑✖✩☛☎✘

✚✂☛✑✖✩☛☎✘
✍✎✞✑✏✧✒ ✔

Figure 1: A power-based tele-diagnostic system as
an “add-on” to a sensing system

links to a low-end base-station, called the diagnostic base-
station, that collects the power traces and makes them avail-
able to a human operator on request. In our testbed, the
deployed diagnostic base-station has wired Internet access.

High sampling frequencies can increase the accuracy of
system state estimations. However, high-frequency Analog-
to-Digital Converters (ADCs) are more expensive than low-
frequency ADCs, and more energy is required to transmit
and process their measurements. Therefore, we aim to de-
vise diagnostic algorithms that can accurately identify node
states using meters with low sampling rates. The meters
we use simply record and relay power measurements to the
base-station at a 4.5 Hz effective rate.

Per our design guidelines, the diagnostic subsystem must
be independent from the monitored subsystem. Thus, the
energy needed for the power meter itself must come from an
independent battery. This is needed to reduce the chances
of correlated failures such as energy depletion that causes
both the host node and its power meter to fail. However, in
our solar-powered testbed, we connect both the meter and
the monitored system to the same battery, charged by the
solar cell, leveraging the fact that the power meter needs a
lower voltage to operate, compared to the monitored system.
Hence, in the common case, when the battery is depleted to a
point where its voltage can no longer sustain the monitored
system, the meter can still operate, reporting the battery
depletion. For example, in our case, the lowest voltage at
which the power meter operates reliably is 6.2V whereas the
voltage threshold for the monitored system is 11V. To date,
no battery failure was observed that would affect both the
meter and the monitored system simultaneously, although
such a correlated failure remains possible.

In principle, the availability of independent low-
bandwidth wireless communication on the power meter can
also be exploited by the monitored node to send a distress
signal if the node’s main radio fails. We do not exploit it
in this paper for two reasons. First, it is not a general so-
lution. If node failure is brought about, for example, by a
system crash or energy depletion, having an extra radio on
the failed node would not help as the node would not be
able to use it anyway. Second, and more importantly, such

a design choice would violate our design goal of diagnostic
subsystem independence.

Finally, one should understand that adding a diagnostic
subsystem to a remotely-deployed sensor network, necessar-
ily increases the number of components that are deployed
in the field and hence increases the odds of component fail-
ure. The simplicity of the meter, however, where it merely
measures and communicates power samples at a low rate,
makes it likely that the more complex monitored sensing
application will fail first. For example, residential power
meters are presently contemplated that should operate un-
interrupted for approximately 10 years. Failure of diagnosis,
from a user’s perspective, occurs only when both systems
have failed, which has a lower probability than failure of the
monitored system alone.

3.2 A Specific Testbed
We deployed the tele-diagnostic system in conjunction

with an environmental monitoring application that runs on
SolarStore. SolarStore [34] is a previously published sensor
network service that views the network as a data storage
system in which the sensory data collected are the most
valuable system output. SolarStore manages these sensory
data in the network, when disconnected, and delivers the
data to the base station, when one comes in contact with
the sensing nodes.

The applications that run on top of SolarStore, in our
current deployment, perform acoustic and video recording
of local wildlife near a forest. Two actual studies are being
performed on the testbed; namely, collection of bird vocal-
izations in CD-quality sound, and detection of predators of
bird eggs using infrared cameras. From a hardware per-
spective, each node on SolarStore can be broken into (i) an
energy delivery subsystem that includes two solar panels to
harvest solar energy, and (ii) a computing subsystem that
comprises of an embedded PC-grade computer to provide
the node’s computing capabilities, a Wi-Fi router to support
high-bandwidth communication between nodes, and various
sensors (e.g., microphones and cameras) to serve different
applications. Figure 2(b) shows an outside view of a node.

Separately from the above components, the tele-diagnostic
powertracer system is installed. Its power meter intercepts
the connection between the energy subsystem and the com-
puting subsystem of each node, and reports readings back
to a diagnostic base station. The meter is composed of two
circuit boards. The first is a custom design that incorpo-
rates an Allegro ACS712 hall effect current sensor capable
of measuring current consumption of up to 5 amps and an
op-amp based difference amplifier to enhance the precision
of the meter. The output from the amplifier is connected
to an ADC on an off-the-shelf Digi XBee radio, which is it-
self the second circuit board. The XBee radio we selected
is the basic XBee that uses the 802.15.4 protocol and has
a 1 mW maximum transmit power. The base station has a
matching XBee radio to receive measurements. The entire
meter requires around 71mA of current, which means that
the meter draws 871mW at the 12.27V provided by our in-
door prototype. We use a linear voltage regulator, which
should theoretically draw a constant current regardless of
voltage, meaning that the efficiency of the system would be
higher if the supply voltage were lower. Another mechanism
to increase efficiency would be to reduce the sampling rate
of the meter and permit the radio to sleep between samples.

(a)

(b)

Figure 2: (a)Calibrate the power consumption of the
computing subsystems indoor for the initial training
of our tele-diagnostic system, (b)Outside look of a
node in the solar-powered sensor network testbed

Currently we sample at 1 kHz from the ADC and average
the measurements in batches of 220 to achieve an effective
sampling rate of about 4.5 Hz. This compensates for the
noise in the measurements. Regardless, the current level of
power consumption is acceptable.

The total cost for the parts in each powertracer is around
$59.41. This figure includes an enclosure and the cost of
custom-producing a single PCB. We excluded minor parts
such as wire and solder, as well as labor and shipping from
this cost metric. This cost of wireless power meters, in gen-
eral, should soon be much lower, brought about by econ-
omy of scale due to the impending proliferation of smart
residential power meters, intended to allow remote (wire-
less) real-time collection of subscriber power consumption
by utility providers. It is true that residential meters are
AC, not DC, but a large category of AC meters can mea-
sure DC current as a side-effect. These AC meters contain
circuitry to rectify the sinusoidal waveform of AC current,
average it, then scale the result to convert the average to
the root mean square (RMS) value. The scaling factor is
approximately 1.1, or RMS(sin(θ))/AV G(|sin(θ)|). If an
AC meter is used to measure DC current, rectification cir-
cuits have no effect. The result will therefore be a somewhat
smoothed waveform that is about 1.1 of the real DC value.
This is demonstrated in Figure 3, where we show the re-
sults of measuring the same sensor node current using both
a DC and an AC meter simultaneously, for three different
software execution scenarios. Indeed, the AC meter yields a
somewhat smoother output that is magnified by a factor of

0 400 800 1200 1600 2000

10

12

14

16

18

C
o
n
s
u

m
e
d
 P

o
w

e
r

(W
a
tt
)

 Sample Index
0 400 800 1200 1600 2000

10

12

14

16

18

C
o
n
s
u

m
e
d
 P

o
w

e
r

(W
a
tt
)

 Sample Index
0 400 800 1200 1600 2000

10

12

14

16

18

C
o
n
s
u

m
e
d
 P

o
w

e
r

(W
a
tt
)

 Sample Index

(DC1) f2 (DC2) f5 (DC3) f9

0 400 800 1200 1600 2000

10

12

14

16

18

C
o
n

s
u

m
e
d

 P
o
w

e
r

(W
a
tt

)

 Sample Index
0 400 800 1200 1600 2000

10

12

14

16

18

C
o
n

s
u

m
e
d

 P
o
w

e
r

(W
a
tt

)

 Sample Index
0 400 800 1200 1600 2000

10

12

14

16

18

 Sample Index

C
o

n
s
u
m

e
d
 P

o
w

e
r

(W
a
tt

)

(AC1) f2 (AC2) f5 (AC3) f9

Figure 3: Power traces by a DC/AC meter in three failure states: f2 (router fails and application is sampling
sound), f5 (antenna fails and application crashes), and f9 (OS crash).

approximately 1.1, compared to the DC meter. This output
is equally acceptable for purposes of classifier training. The
availability of low-cost AC and DC meters suggests that a
diagnostic subsystem, built from off-the-shelf components is
indeed feasible both technically and economically.

For the sake of this experimental study, we also set up
an indoor testbed, where the computing subsystem of each
node is a clone of the one in the outdoor testbed, while the
energy subsystem is replaced by power supplies that can be
connected or disconnected using X10 modules to emulate the
action of the load controller of a solar cell. Figure 2 shows
an indoor node with a power meter measuring its power
consumption.

4. POWER-BASED DIAGNOSTICS
This section presents an exploration of different algo-

rithms for diagnosing different node failure states from
recorded power traces. The goal is to understand the trade-
offs between algorithm complexity and diagnostic accuracy.

4.1 Problem Statement
Our goal is to determine whether low-frequency power

traces can be used to (i) distinguish among a range of
common failure causes and (ii) infer gross-level application
state on unresponsive nodes. Typically, the common failure
causes in remote deployments are known from past expe-
rience. For example, our initial experience with a solar-
powered deployment suggests that the most common failure
cause is energy depletion. Other causes of unresponsive be-
havior of nodes include software crashes and communication
device failures. We have also encountered cases of infinite

Figure 4: One node drowned in the flood by heavy
rains.

loops involving a node reboot, and short-circuit due to water
damage (shown in Figure 4).

We take the above cases as a proof-of-concept portfolio of
failures that we purport to distinguish. In general, as more
failures are observed during deployment, and their power
traces recorded, they can be added to the portfolio. The tele-
diagnostic system is trained to recognize failures from their
recorded power traces. Common failures can be emulated
in the lab prior to deployment for purposes of diagnostic
subsystem training. As new failures are encountered after
deployment, their traces are used to re-train the diagnostic
subsystem to recognize them in the future. Observe that,

in the architecture described in Section 3, the diagnostic
algorithm is run on the operator’s machine, as opposed to
in the field. Hence, retraining simply involves updating the
classifier at the operator’s desk using data received from the
field. It does not entail a need to upload new software to
remotely deployed nodes.

Some failure modes, such as system crashes, entail appli-
cation failure. Others, such as radio failures, do not give in-
formation on application status. It is therefore desired that
the diagnostic subsystem can tell, upon occurrence of such
failures, which applications are still running (i.e., are able
to save their sensed data to disk). We exploit the fact that
sensor networks do not typically run a wide range of differ-
ent applications concurrently. Remotely deployed networks
often have very specific purposes. Hence, the application
count is limited. This significantly simplifies the diagnostic
task. Indeed, the techniques presented in this paper are not
likely to scale to a large number of applications. However,
in a sensor networks context, they may still be useful for
the cases of dedicated deployments. For example, only two
applications are running in our current deployment.

To test the accuracy of the diagnostic techniques, we
therefore set, as a benchmark, the goal of distinguishing
among the twelve failure states shown in Figure 5. These
include router failures (radio device is out), antenna fail-
ures (radio device is on, but the antenna is damaged), oper-
ating system crashes, solar energy-depletion, short-circuits
(presumably induced by water damage but emulated in our
tests by shunting power inputs using a small resistor), and
infinite loops involving a system reboot (since, unlike other
infinite loops, these would interfere with both the applica-
tion execution and operating system functions, causing the
node to potentially become unresponsive). The above fail-
ures were chosen because they had been observed in the field.
Moreover, in cases that do not necessarily entail application
failure (namely radio and antenna failures), it is desired to
tell which of the installed applications is running. The two
installed applications in our system are acoustic monitoring
and camera surveillance. This leads to the diagnostic tree
shown in Figure 5.

System

State

Router

Failure

OS crash (f9)

Power outage (f10)

Short circuit (f11)

System Reboot (f12)

App-I (f2)

App-II (f3)

App-I + App-II (f4)

Antenna

Failure

App-I (f6)

App-II (f7)

App-I + App-II (f8)

No App (f1)

No App (f5)

Figure 5: Possible failure states in our system. App-
I is the application responsible for sensing sound us-
ing microphone. App-II is the application responsi-
ble for recording images.

When a failure occurs, diagnosing it within a few min-
utes is considered good enough. We thus use a classifier to
determine the state of the system every τ minutes which
we call the detection period. When invoked, the classifier
uses a window of size δ samples, to determine the system
state. The following subsections explore the space of possi-
ble power trace analysis algorithms from simplest to more
complicated, that can be used for classification in order of
increasing complexity, as well as hybrid schemes that avoid
their individual limitations.

4.2 Static Power Consumption Features
In the simplest case, we characterize the power consump-

tion pattern for a particular failure state by the parameters
of the probability distribution of power in the sampled power
time-series observed for this state. These parameters are the
mean, µk, and the standard deviation, σk, for the time se-
ries of state k. In other words, rather than modeling how
exactly the values in the time series change, we lump such
changes into a feature vector (µk, σk) for each state k.

Assume the series of power consumption measure-
ments for system state k is given by the power samples
x1, x2, x3, ..., xN . The mean, µk, and standard deviation,
σk, over a training window of n samples in state k, are cal-
culated as follows:

µk =

n
X

i=1

xi

!

/n (1)

σk =

v

u

u

t

n
X

i=1

(xi − µk)2

!

/n (2)

After training, each state is represented using a (µk, σk)
pair and stored for later reference. At run-time, when a node
becomes unresponsive, our diagnostic system is launched.
The power trace data recorded for the unresponsive node
are inspected. The vector (µ, σ) is computed over a sliding
time window (e.g., 30 minutes) for the observed data, and
matched to the nearest known failure state by finding k such
that the Euclidean distance between feature vectors is mini-
mized: mink(

p

(µk − µ)2 + (σk − σ)2). The observed state
is thus classified as failure state k.

To test the accuracy of the above scheme, we collected
80,000 samples at the rate of 4.5 samples per second for
each of the system states shown in Figure 5. We used the
first 40,000 samples to extract the static features and the
remaining 40,000 samples to test the accuracy of the model.
To investigate the effect of window size on accuracy, we use
window sizes of 1, 5, 10, 15, 20, and 30 minutes, respec-
tively. The diagnostic accuracy for different window sizes is
given in Figure 6. Our experiments show that the improve-
ment in classification accuracy with increased window size
diminishes after a size of approximately 10 minutes. In the
next section, we seek to remedy the above inaccuracies using
more involved classifiers.

4.3 Capturing Power Consumption Dynamics
A disadvantage of static features is that they do not cap-

ture the dynamics of the sampled power time-series. For-
tunately, analyzing dynamic time series data and identify-
ing time-varying patterns are very mature research areas in
the machine learning and data mining communities. Several
techniques that vary in complexity, accuracy and efficiency

Accuracy of Static Classifier

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 30

Window Size (minutes)

A
c

c
u

ra
c

y
 (

%
)

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

Figure 6: Effect of the window size on classification
accuracy for static feature based classification(Data
preprocessing used: Outlier filtering)

can be borrowed from the literature [19, 22, 26, 24]. We
explore the use of Markov Models.

4.3.1 Modeling

A popular method for capturing the dynamics of com-
plex time-series is the Hidden Markov Model (HMM). The
model determines system states and probabilities of state
transitions that best describe a particular time-series. In
this case, we use a simplified version of Markov Models,
where the states are predetermined. To build a model for
the power trace of a given failure scenario, we process the
power trace corresponding to the failure scenario using the
following three stages:
Preprocessing: As the meter is somewhat noisy, we always
perform an outlier filtering step. We collect data for each
system state and subsequently calculate the mean(µ) and
standard deviation(σ) for that system state, then discard
any value that is outside the range of [µ − 5 ∗ σ, µ + 5 ∗ σ]
as an outlier. Next, we can perform an optional step where
we may perform smoothing or normalization to input data
based on system configuration.
Discretization: Power consumption produces continuous-
valued time-series data, which are difficult to analyze as the
possible values for continuous data are infinite. To address
this issue, we discretize the power measurements, reducing
the numeric values of power samples to a small finite num-
ber of symbols. For example, 0-1 Watts can be represented
as “a”, 1-2 Watts as “b”, and so on. These symbols repre-
sent measured power consumption levels, henceforth called
power states. The entire power trace is therefore converted
to a string of symbols.
Model construction: We build a state transition diagram
that expresses which states are followed by which other
states. For example, a substring “ab” in the power trace
string represents a state transition from “a” to “b”. By ob-
serving how often “ab” occurs in the string, we can deter-
mine the probability of state transition ab. For instance, in
string “aaabbcd”, there are total of 6 transitions (e.g., the
first “a” is followed by the second “a”, second “a” is followed

by the third “a”, third “a” is followed by the “b” and so on).
Hence, the transition probability p(aa)=2/6 (i.e., there are
two transitions from state “a” to “a”), and p(cb)=1/6. Any
trace can be summarized by a two-dimensional probability
matrix that states the probabilities of state transitions from
any power state i to any power state j in the trace. The
aforementioned state transition diagram is also known as a
Markov Model. For each system state, we build a model
that represents that state.

The models built above are subsequently used for clas-
sifying system states during runtime diagnosis. When a
node becomes unresponsive, we collect δ power samples and
build a transition probability matrix for the collected sam-
ples. Next, we calculate the probability that the observed se-
quence of samples is indeed generated by the Markov Model
for system state k, using the transition probability matrix
generated during the training stage for system state k. The
state which has the highest probability of generating the
observed sequence is returned as the classification result.

To test the accuracy of the above family of classifiers, we
used the same training and testing data set that is used for
the static feature based classification. We used this approach
to answer the following questions regarding the classifier de-
sign.

• What is a sufficient number of model states to use?

• What is an acceptable sampling frequency of the power
trace?

• What is the effect of the data window size used for
diagnosis?

• What are the pros and cons of different data pre-
processing techniques?

• What are the pros and cons of improved data dis-
cretization techniques?

These questions are addressed below. In the following, for
brevity, we refer to the Markov Model as an HMM (although
technically the states in our HMM are not “hidden”).

4.3.2 Effect of HMM Size

To see the effect of the number of HMM states on classifier
accuracy, we varied the number of states as 5, 10, 15, 20, 30,
40, 50, 60 and 70 and tested the HMM with a window size of
30 minutes. The effect of the number of states on accuracy is
given in Figure 7. For this experiment, we trained the HMM
on raw data (after noise reduction). As we can see from
Figure 7, the accuracy increases with number of states and
becomes stable after the number of states reaches 50. More
interestingly, the figure highlights the fact that increasing
the number of HMM states far beyond that value is a “bad”
idea as well, because accuracy starts to drop if the number of
states becomes “too large”. This is because with too many
states, the amount of data available in the used window
might become insufficient to accurately determine all the
state transition probability. In the rest of the paper, we use
50 states for HMMs unless we specify otherwise.

4.3.3 Effect of Sampling Frequency

Since reducing the sampling interval increases energy con-
sumption, we evaluate the effect of accuracy of the HMM
classifier with various sampling intervals. We train the

Effect of Number of HMM States on Accuracy

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 30 40 50 60 70
Number of HMM States

A
c

c
u

ra
c

y
 (

%
)

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

Figure 7: Effect of number of HMM states on clas-
sification accuracy(Window size=30 minutes, Data
preprocessing used: Outlier filtering)

HMM classifier at the sampling interval of 222 ms, 444 ms,
888 ms, 1776 ms, 3552 ms, 7104 ms, 14208 ms, 28416 ms, and
56832 ms respectively. The lower sampling intervals were
obtained from the same data by down-sampling the original
time series (i.e., selecting one every N original samples for
N = 1, 2, 4, ..., 256). We present the effect of the sampling
interval on accuracy in Figure 8. As we can see, if the sam-
pling interval is reduced to 444ms, accuracy starts to drop
and after that point the accuracy decreases monotonically
due to the loss of information on finer-grained dynamics.

Effect of Sampling Interval on Accuracy

0

10

20

30

40

50

60

70

80

90

100

222 444 888 1776 3552 7104 14208 28416 56832

Sampling Interval (millisec)

A
c
c
u

ra
c
y
 (

%
)

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

Figure 8: Effect of sampling rate on the classification
accuracy of HMM (Window size=30 minutes, Num-
ber of states=50, Data preprocessing used: Outlier
filtering)

4.3.4 Effect of Window Size

To test the effect of window size on accuracy, we trained
the HMM on the original data (after outliers are removed)
with 50 states and tested its accuracy with window sizes of
1, 5, 10, 15, 20, and 30 minutes respectively. Regardless of
window size, we considered all windows shifted by 1 minute
intervals. We show the effect of varying window size on ac-
curacy in Figure 9. In general, increasing window size helps
increase the overall accuracy. The amount of improvement
varies between different failure states.

Accuracy of HMM Classifier

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 30

Window Size (minutes)

A
c

c
u

ra
c

y
 (

%
)

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

Figure 9: Effect of window size on the classification
accuracy of HMM(Number of states=50, Data pre-
processing used: Outlier filtering)

We also show the confusion matrix to determine the prob-
ability of misclassification and illustrate which states are
most likely to get confused. Table 1 gives the confusion ma-
trix for a window size of 30 minutes. A cell (i,j) in the con-
fusion matrix represents the probability that of system state
i (the row) will be classified as system state j (the column).
The performance of the HMM with a 30 minute window
size is significantly better than the static feature-based clas-
sification scheme. We have 100% accuracy for all the states
except f3 and f4. f3 occassionally gets misclassified as f4 and
vice versa. It is worth noting that these misclassifications do
not affect the ability to recognize which component failed.
However, they err in infering which application is running.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1

f2 1

f3 .6 .4

f4 .36 .64

f5 1

f6 1

f7 1

f8 1

f9 1

f10 1

f11 1

f12 1

Table 1: Confusion matrix for classification us-
ing HMM (window size=30 minutes, Number of
states=50, Normalization used: Outlier filtering)

4.3.5 Effect of Data Preprocessing

In this section, we consider techniques for data preprocess-
ing that have the potential to eliminate extraneous informa-
tion from the sampled power signal, allowing us to focus on
essential features. For example, the status of a CPU fan
(“on” or “off”) can affect power consumption by adding or
subtracting a constant offset. An HMM trained with the
fan on may lead to misclassifications if the fan is turned off.
To address this problem, we resort to data normalization
prior to discretization. We explore two alternatives for nor-
malization; namely, (a) z-score based normalization, and (b)
normalization based on relative difference. We describe each
of these techniques below.

Normalization based on z-score: To normalize the
data using z-score, we use the following formula:

x′

i = (xi − µk)/σk

where xi is the raw data, µk is the mean and σk is the stan-
dard deviation for the training data for a particular system
state. Intuitively, the z-score represents the distance be-
tween the raw score and the population mean in units of the
standard deviation. The z-score is negative when the raw
score is below the mean, and positive when it is above. It
is a very common technique for data normalization in data
mining literature. In Figure 10 we present the impact of
varying window size on accuracy of an HMM trained based
on z-score data. It turns out that the accuracy of HMMs us-
ing z-score normalization is not encouraging and can not be
used for diagnosis effectively. We omit the confusion matrix
due to space limitations.

Accuracy of HMM Classifier Based on z-score Normalization

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 30
Window Size (minutes)

A
c

c
u

ra
c

y
 (

%
)

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

Figure 10: Effect of window size on the classifica-
tion accuracy of HMM(Number of states=50, Data
preprocessing used: Outlier filtering, z-score nor-
malization)

Normalization based on difference signal: As an
alternative, we normalize the data using a simpler scheme,
that uses the difference signal obtained from the following
formula:

x′

i = xi − xi−1

where xi is the raw data. Note that this scheme is similar to
obtaining the derivative of the sampled signal. Hence, any
constant bias (such as the power consumption of an irrele-

vant fan) is eliminated due to differentiation. In Figure 11
we present the impact of window size on the accuracy of the
trained HMM. As we can see from Figure 11, the window
size has a significant impact on HMM classifier accuracy.
The accuracy is considerably less compared to HMM when
no normalization is done.

The intuition behind such poor performance when nor-
malization is used is that because the absolute power con-
sumption level does play an important role in identifying
what is running and what is not. Data normalization causes
information loss. We omit the confusion matrix due to space
limitations.

Accuracy of HMM Classifier Based on Difference Signal

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 30

Window Size (minutes)

A
c

c
u

ra
c

y
 (

%
)

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

Figure 11: Effect of window size on the classifica-
tion accuracy of HMM(Number of states=50, Data
preprocessing used: Outlier filtering, difference be-
tween consecutive signal)

4.3.6 Discretization by Clustering

Discretization of the power signal is an important step
towards computing the HMM. In all previous sections, we
used a simple discretization technique that simply cut the
range of input data into uniform bins and assigned them
names. In reality, the power measured for a system in dif-
ferent states may not necessarily be uniformly distributed
across its range. The discretization algorithm introduced
earlier does not capture nor take advantage of this knowl-
edge. For example, it may put different clusters of power
measurements into the same bin. Conversely, there may be
bins into which no measurements fall. The first case causes
information loss while the latter produces unnecessary states
for the HMM.

In this section, instead of using even ranges, we employ
the hierarchical clustering technique [11] to identify repre-
sentative power levels, and use those representative levels
as anchor points to discretize the time-series input. Hierar-
chical clustering is a common technique used in statistical
data analysis. It uses a bottom-up approach, where the
scheme starts with each data point as a cluster and repeat-
edly merges each two closest clusters to one until the desired
number of clusters is left. Distance between two clusters is
given by the average distance between points belonging to
the different clusters. Table 2 shows the confusion matrix for

Accuracy of HMM with Clustering without Normalization

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 30

Window Size (minutes)

A
c

c
u

ra
c

y
 (

%
)

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

Figure 12: Effect of window size on the classification
accuracy of HMM with clustering(Number of clus-
ters=50, Data preprocessing used: Outlier filtering)

the HMM with the clustering scheme with 50 clusters. As
the results show, the HMM classifiers with clustering per-
form better than earlier schemes. This result is encouraging
since with the same number of states, the HMM classifier
with clustering performs better. Figure 12 shows the de-
tailed accuracy of each failure state of the system versus the
window size.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

f1 1

f2 1

f3 .01 .94 .05

f4 .14 .86

f5 1

f6 1

f7 1

f8 1

f9 1

f10 1

f11 1

f12 1

Table 2: Confusion matrix for HMM with clustering
(window size=30 minutes, Number of clusters=50,
Normalization used: Outlier filtering)

4.4 Discussion
To summarize, from our evaluation it is clear that the

static feature-based classifiers exhibit poor performance.
HMMs trained using original signal (after removing outliers)
without any normalization schemes are better and give rea-
sonable performance. HMM that uses clustering for dis-
cretization performs best. One way to improve accuracy is
to train a separate HMM for the states that are misclassi-
fied. For example, in our case we trained one HMM for all
the states and another HMM with 300 states only for state
f3 and f4. The idea is to first use the HMM with 50 states
to classify the sample and if it is classified as any other state
except f3 and f4, we know that it is correct. The secondary
HMM is used only when any state is classified as f3 or f4
by the 50 state HMM. Using this two stage scheme we ob-
tained an overall classification accuracy of 98.3% for f3 and
86% for f4. Another point to note is that even if we have less

than 100% classification accuracy for a particular state, as
we are doing remote diagnosis, we can afford to collect data
for more than 30 minutes and try to identify the cause of
the problem across multiple 30 minute windows and narrow
down the cause of the problem. In the future, we plan to ex-
plore the idea of ensemble classifier approaches widely used
in machine learning for classification [1, 7] where classifica-
tion accuracy is improved by combining a group of weaker
ones, called subclassifiers.

4.5 On-site Evaluation
In the previous section, a near perfect classifier was de-

veloped that uses low-frequency power samples to identify
several problems with sensor network nodes in our lab. Be-
low, we describe the experience of using this classifier in an
outdoor deployment.

Our experimental testbed bundles higher-end solar pow-
ered sensor node hardware with data storage and communi-
cation services. It comprises of 10 nodes, where each node
is powered by one 12 Volt deep cycle battery (DEKA 8G31)
with a capacity of 98 AH, charged by a set of two solar pan-
els. Aiming at high-end data acquisition, we chose Asus EEE
PCs for their powerful computing capabilities, reasonably
large local storage and high power efficiency. In addition,
each node is equipped with a Linksys WRT54GL router,
which is configured to the ad-hoc mode to support high-
bandwidth communication between nodes. To experiment
with using power consumption measurements to diagnose
node failures, we developed a compact remote power meter
discussed in Section 3.2.

To evaluate our diagnostic system, we collected real data
from the real deployment described in section 3. For testing
purposes, we artificially induced problems such as operating
system crashes, antenna and router failures. Our scheme was
able to identify correctly which component failed. Since in a
live system we have access to several 30 minute windows of
meter data (each shifted a small interval with respect to the
previous one), it is easy to take majority vote. Hence, while
individual windows may have led to classification errors, tak-
ing majority vote over a sequence of windows compensated
for these.

5. LIMITATIONS AND FUTURE WORK
In principle, the approach used in this paper to trou-

bleshoot unresponsive sensor nodes remotely based on power
consumption characteristics can be applied to a wide range
of systems. However, it is crucial to understand the assump-
tions made in our current work before it can be extended to
other contexts.

We developed the tool presented in this paper specifically
for high-end sensing systems such as SolarStore [34] that
justify the cost of using an additional power meter. For low-
end systems that use low-power devices, such as Tmote and
MicaZ motes, we may need to develop power meters that can
run at a lower voltage (our current meter needs a minimum
of 6.2 Volt to operate reliably). For such low-power devices,
noise may become a problem. Exploring efficient algorithms
for identifying patterns in the presence of a low signal-to-
noise ratio will be an important challenge to investigate.

The current system does not consider resource efficiency
of upload of meter readings. We simply note that the upload

requirements are low due to the low sampling frequency of
the meter. Efficient and optimized mechanisms for upload-
ing meter readings could present another avenue of future
improvement. Different optimizations may depend on the
availability of infrastructure, such as connectivity to wired
backbone networks or wireless networks including 3G tech-
nologies and WiMax.

From an algorithmic perspective, one limitation of our
current diagnostic analysis is that it has no notion of “un-
known” state. Currently, it classifies any state as either a
“normal” state or a “failed” state depending on its distance
measure from the trained states. To fix this, one can use a
threshold-based scheme, such that if the distance measure
from all the known states is larger than a predefined value, it
is classified as an “unknown” state. Exploring classification
algorithms that admit explicit unknown states is a worth-
while avenue for future work.

Another algorithmic limitation of the current system is
its general lack of scalability. As the number of applications
increases, the number of possible system states grows expo-
nentially making them increasingly more difficult to classify.
Rather than learning to tell the difference among an expo-
nentially growing number of states, future incarnations of
our algorithm will need to find characteristic energy fea-
tures of each application or failure state that are invariant
in that they do not change with the introduction of other
concurrent applications or failures. Finding such invariant
energy features is a non-trivial undertaking that would be
of great interest to explore. A related topic is one of possi-
bly adding “energy watermarks” to the execution of different
applications in order to create such invariant features where
they do not exist naturally.

In the current paper, the authors artificially restricted the
system to one meter. Obviously, measuring the power used
by different components of the system separately can signif-
icantly enrich the set of identifiable energy features, hence
making classification more accurate and effective. If the
price of meters is small enough to allow using more than
one device, this can be an important direction for improv-
ing the current scheme.

Finally, it is worth mentioning that we currently assume
that all application failure signatures are known to the di-
agnostic algorithm in advance by virtue of prior training.
Hence, once our algorithm is trained for a specific system
with specific applications, it may not be used to troubleshoot
other systems without re-training. Designing an adaptive
algorithm that can learn new system states dynamically is
a good direction for future work. Of particular interest is
to design predictive algorithms that anticipate failure signa-
tures of a modified system given previously recorded signa-
tures and a description of the nature of modification. This
will remove the need, for example, to retrain the system
upon every software upgrade.

In summary, the diagnostic powertracer presents an ini-
tial proof of concept that demonstrates how energy measure-
ments can be indicative of the nature of failures. We hope
that this initial investigation will set the stage for many
future extensions and improvements that address the limi-
tations outlined above. We should stress that the above ex-
tensions mostly increase the scope of applicability of the ap-
proach. In our own outdoors deployment, the approach has
already proven adequate and valuable in identifying sources
of failures in our system. The powertracer, as it currently

stands, is good at diagnosing failures in static, high-end sens-
ing systems, dedicated to a single or to a small number of
applications.

6. CONCLUSIONS
This paper presented a case and a proof of concept for the

use of power as a side-channel for remote diagnostics, where
damage assessment is performed on unresponsive, remotely
deployed nodes. An independent power-metering subsystem
was used to collect power consumption traces of high-end
sensor nodes. A number of algorithms were compared in
their ability to determine possible causes of failure and in-
fer application states by analyzing the power traces. It was
shown that accurate diagnostics were possible. The cost of
such a system is likely to decrease given the modern trends in
metering hardware. The powertracer is currently deployed
in conjunction with an outdoor solar-powered high-end sen-
sor system for acoustic and video monitoring. To the au-
thors’ knowledge, this paper is the first in exploring the
use of power traces for diagnostic purposes in sensor net-
works. Future work will focus on algorithm scalability and
robustness as described in the previous section, as well as
on experiences with the deployed system.

7. ACKNOWLEDGMENTS
This work was supported in part by NSF CNS 06-26342,

NSF CNS 09-05014, NSF CNS 09-17218, NSF CNS 07-
16626, NSF CNS 07-16421, ONR N00014-08-1-0248, NSF
CNS 05-24695, and grants from the MacArthur Foundation,
Boeing Corporation, and Lockheed Martin. The views ex-
pressed are those of the authors only. We would also like
to thank numerous anonymous reviewers and our shepherd
Ákos Lédeczi for their valuable feedback.

8. REFERENCES
[1] L. Asker and R. Maclin. Ensembles as a sequence of

classifiers. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence, pages
860–865, Nagoya, Japan, 1997. Morgan Kaufmann.

[2] D. Asonov and R. Agrawal. Keyboard acoustic
emanations. In Proceedings of IEEE Symposium on
Security and Privacy, pages 3–11, CA,USA, 2004.

[3] P. Ballarini and A. Miller. Model checking medium
access control for sensor networks. In Proceedings of
the 2nd International Symposium On Leveraging
Applications of Formal Methods, Verification and
Validation (ISOLA’06), pages 255–262, Paphos,
Cyprus, November 2006.

[4] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse,
and L. Luo. Declarative tracepoints: A programmable
and application independent debugging system for
wireless sensor networks. In Proceedings of the 6th
SenSys, 2008. Raleigh, NC, USA.

[5] E. Ertin, A. Arora, R. Ramnath, M. Nesterenko,
V. Naik, I. Bapat, V. Kulathumani, M. Sridharan,
H. Zhang, and H. Cao. Kansei: A testbed for sensing
at scale. In Proceedings of the 4th IPSN (SPOTS
track), pages 399–406. ACM Press, 2006.

[6] K. Gandolfi, C. Mourtel, and F. Olivier.
Electromagnetic analysis: Concrete results. In
Proceedings of the 3rd International Workshop on

Cryptographic Hardware and Embedded Systems, pages
251–261. Springer-Verlag London, UK, 2001.

[7] G. Giacinto, F. Roli, and G. Fumera. Design of
effective multiple classifier systems by clustering of
classifiers. In Proceedings of ICPR2000, 15th Int.
Conference on Pattern Recognition, pages 3–8, 2000.

[8] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos,
N. Ramanathan, and D. Estrin. Emstar: a software
environment for developing and deploying wireless
sensor networks. In Proceedings of the ATEC, pages
24–24, Boston, MA, 2004.

[9] Y. Hanna, H. Rajan, and W. Zhang. Slede: A
domain-specific verification framework for sensor
network security protocol implementations. In
Proceedings of the 1st ACM Conference on Wireless
Network Security (WiSec), Alexandria, VA,
March-April 2008.

[10] G. Hart. Nonintrusive appliance load monitoring. In
Proceedings of the IEEE, 80(12):1870–1891, Dec 1992.

[11] S. C. Johnson. Hierarchical clustering schemes. In
Psychometrika, pages 241–254. Springer New York,
1967.

[12] M. M. H. Khan, T. Abdelzaher, and K. K. Gupta.
Towards diagnostic simulation in sensor networks. In
Proceedings of the 4th DCOSS, pages 252–265, 2008.
Greece.

[13] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F.
Abdelzaher, and J. Han. Dustminer: Troubleshooting
interactive complexity bugs in sensor networks. In
Proceedings of the 6th SenSys, pages 99–112, 2008.
Raleigh, NC, USA.

[14] M. M. H. Khan, L. Luo, C. Huang, and
T. Abdelzaher. Snts: Sensor network troubleshooting
suite. In Proceedings of the 3rd DCOSS, pages
142–157, 2007. Santa Fe, New Mexico, USA.

[15] M. G. Kuhn. Security limits for compromising
emanations. In Proceedings of CHES 2005, volume
3659 of LNCS. Springer, 2005.

[16] M. LeMay and J. Tan. Acoustic surveillance of
physically unmodified pcs. In Proceedings of Security
and Management, pages 328–334, 2006.

[17] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim:
accurate and scalable simulation of entire tinyos
applications. In Proceedings of the 1st SenSys, Los
Angeles, California, USA, 2003.

[18] B. Li, C. Quan, S. Zhao, W. Tong, and P. Tao. The
research of electric appliance running status detecting
based on dsp. In Proceedings of Transmission and
Distribution Conference and Exhibition: Asia and
Pacific, 2005 IEEE/PES, pages 1–4, 2005.

[19] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic
representation of time series, with implications for
streaming algorithms. In Proceedings of the 8th ACM
SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, pages 2–11. ACM
Press, 2003.

[20] K. Liu, M. Li, Y. Liu, M. Li, Z. Guo, and F. Hong.
Pad: Passive diagnosis for wireless sensor networks. In
Proceedings of the 6th SenSys, 2008. Raleigh, NC,
USA.

[21] P. Olveczky and S. Thorvaldsen. Formal modeling and
analysis of wireless sensor network algorithms in

real-time maude. In Proceedings of the IPDPS, Rhodes
Island, Greece, April 2006.

[22] P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining
motifs in massive time series databases. In Proceedings
of IEEE International Conference on Data Mining
(ICDM), pages 370–377, 2002.

[23] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S.
Baras. Atemu: A fine-grained sensor network
simulator. In Proceedings of the 1st SECON, pages
145–152, Santa Clara, CA, October 2004.

[24] D. Rafiei and A. Mendelzon. Similarity-based queries
for time series data. In Proceedings of SIGMOD, pages
13–25, Tucson, Arizona, United States, 1997. ACM,
New York, USA.

[25] N. Ramanathan, K. Chang, R. Kapur, L. Girod,
E. Kohler, and D. Estrin. Sympathy for the sensor
network debugger. In Proceedings of the 3rd SenSys,
pages 255–267, 2005.

[26] D. E. Shasha and Y. Zhu. High Performance
Discovery in Time Series: Techniques and Case
Studies. Monographs in computer science. Springer,
first edition, June 2004. ISBN-0387008578.

[27] F. Sultanem. Using appliance signatures for
monitoring residential loads at meter panel level.
IEEE Transactions on Power Delivery,
6(4):1380–1385, 1991.

[28] G. Tolle and D. Culler. Design of an
application-cooperative management system for
wireless sensor networks. In Proceedings of the 2nd
EWSN, pages 121–132, Istanbul, Turkey, February
2005.

[29] P. Volgyesi, M. Maroti, S. Dora, E. Osses, and
A. Ledeczi. Software composition and verification for
sensor networks. Science of Computer Programming,
56(1-2):191–210, 2005.

[30] Y. Wen and R. Wolski. s2db: a novel simulation-based
debugger for sensor network applications. In
Proceedings of the 6th EMSOFT, pages 102–111. ACM
Press, October 2006.

[31] G. Werner-Allen, P. Swieskowski, and M. Welsh.
Motelab: A wireless sensor network testbed. In
Proceedings of the 4th IPSN(SPOTS track), pages
483–488, April 2005.

[32] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim,
J. Jeong, J. Hui, P. Dutta, and D. Culler. Marionette:
Using rpc for interactive development and debugging
of wireless embedded networks. In Proceedings of the
5th IPSN(SPOTS track), pages 416–423, Nashville,
TN, April 2006.

[33] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse.
Clairvoyant: a comprehensive source-level debugger
for wireless sensor networks. In Proceedings of the 5th
SenSys, pages 189 – 203, 2007.

[34] Y. Yang, L. Wang, D. K. Noh, H. K. Le, and T. F.
Abdelzaher. Solarstore: enhancing data reliability in
solar-powered storage-centric sensor networks. In
Proceedings of the 7th MobiSys, pages 333–346, New
York, NY, USA, 2009. ACM.

