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Abstract Craniofacial characteristics are highly informative for clinical geneticists when 

diagnosing genetic diseases. As a first step towards the high-throughput diagnosis of ultra-rare 

developmental diseases we introduce an automatic approach that implements recent developments 

in computer vision. This algorithm extracts phenotypic information from ordinary non-clinical 

photographs and, using machine learning, models human facial dysmorphisms in a multidimensional 

'Clinical Face Phenotype Space'. The space locates patients in the context of known syndromes and 

thereby facilitates the generation of diagnostic hypotheses. Consequently, the approach will aid 

clinicians by greatly narrowing (by 27.6-fold) the search space of potential diagnoses for patients 

with suspected developmental disorders. Furthermore, this Clinical Face Phenotype Space allows 

the clustering of patients by phenotype even when no known syndrome diagnosis exists, thereby 

aiding disease identification. We demonstrate that this approach provides a novel method for 

inferring causative genetic variants from clinical sequencing data through functional genetic 

pathway comparisons.

DOI: 10.7554/eLife.02020.001

Introduction
Genetic disorders affect almost 8% of people (Baird et al., 1988), about a third of whom will  

have symptoms that greatly reduce their quality of life. While there are over 7000 known inherited 

disorders, only a minority of patients with a suspected developmental disorder receive a clinical,  

let alone a genetic, diagnosis (Hart and Hart, 2009). A genetic diagnosis allows more specific 

therapeutic interventions to be investigated and can aid the identification of primary vs secondary 

symptoms.

The introduction of whole genome and exome sequencing into modern clinical medicine will be 

instrumental in raising the current low rate of genetic diagnoses for ultra-rare diseases. Nevertheless, 

tools to accurately assign functional and disease relevance to sequence variants are substantially 

lacking. Projects that apply next generation sequencing to patients in clinical settings fail to report 

genetic diagnoses for approximately 80% of cases (de Ligt et al., 2012). The difficulty lies in identify-

ing the causal variant in an individual patient: even when ignoring experimental error, each individual 

carries approximately 4 million differences, in the case of whole genome sequencing, relative to the 

reference genome. Computational analyses currently are able only to interpret the ∼2500 variants that 

alter protein sequence at evolutionarily conserved positions and ∼400 very rare variants that are likely 

to be causal for pathogenic processes (Abecasis et al., 2012). Notably, of the ∼10% of the genome that is 

functional all except the 1.2% that is protein-coding is often disregarded (Weischenfeldt et al., 2013). 
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Therefore, the prediction of causal inherited variants in an individual can result in high false positive 

and high false negative rates.

The most powerful approach to associate a particular gene with an ultra-rare disease is to identify 

multiple unrelated individuals with the disorder whose genomes harbor deleterious alleles in a shared 

gene, regulatory element or pathway (Schuurs-Hoeijmakers et al., 2012). However, this approach 

relies on at least two individuals with the same disorder being available for comparison, an unlikely 

event given that these two individuals are selected for comparison from the roughly 100 million people 

affected by rare developmental disorders (prevalence of less than 2 per 100,000 around the world) 

(Orphanet, 2013). For the past 65 years, clinical geneticists have studied, diagnosed, and character-

ized developmental disorders on the basis of common characteristics among patients (Rimoin and 

Hirschhorn, 2004). When a given causal variant is ultra-rare, however, this presents substantial 

difficulties. Consequently, to realize the full potential of next generation sequencing in clinical diag-

nostics, phenotypic characterization must also become correspondingly high throughput and sensitive 

(Hennekam and Biesecker, 2012).

The facial gestalt provides valuable information to identify similarities between patients because 

30–40% of genetic disorders manifest craniofacial abnormalities (Hart and Hart, 2009). The utility of 

computer vision for diagnosis and phenotyping of dysmorphic disorders has been explored previously 

by several groups and with varying approaches (Loos et al., 2003; Hammond et al., 2005; Hammond, 

2007; Boehringer et al., 2006; Dalal and Phadke, 2007; Vollmar et al., 2008; Boehringer et al., 

2011, reviewed in Hammond and Suttie, 2012; Baynam et al., 2013). The computational analysis of 

facial morphology using 3D imaging has been applied to conditions such as fetal alcohol syndrome 

(Suttie et al., 2013), schizophrenia (Buckley et al., 2005; Hennessy et al., 2006, 2007) and autism 

(Aldridge et al., 2011). While 3D imaging studies have shown high discriminatory power in terms of 

classification they have relied on specialized imaging equipment and patient cooperation. Previous 

work with 2D images has relied on manual annotation of images, controlling lighting, pose and expression 

to allow consistent analyses. These factors greatly limit the availability, and ultimately the potential 

widespread clinical utility of such approaches.

We have adopted a complementary approach that takes advantage of the wealth of data available 

for human faces, an indirect result of the ubiquitous availability of cameras. To do so we provide a new 

representation ('Clinical Face Phenotype Space'), which is an application of computer vision and 

machine learning algorithms for analyzing craniofacial dysmorphisms from ordinary photographs. 

eLife digest Rare genetic disorders affect around 8% of people, many of whom live with 

symptoms that greatly reduce their quality of life. Genetic diagnoses can provide doctors with 

information that cannot be obtained by assessing clinical symptoms, and this allows them to select 

more suitable treatments for patients. However, only a minority of patients currently receive a 

genetic diagnosis.

Alterations in the face and skull are present in 30–40% of genetic disorders, and these alterations 

can help doctors to identify certain disorders, such as Down’s syndrome or Fragile X. Extending this 

approach, Ferry et al. trained a computer-based model to identify the patterns of facial abnormalities 

associated with different genetic disorders. The model compares data extracted from a photograph 

of the patient’s face with data on the facial characteristics of 91 disorders, and then provides a list 

of the most likely diagnoses for that individual. The model used 36 points to describe the space, 

including 7 for the jaw, 6 for the mouth, 7 for the nose, 8 for the eyes and 8 for the brow.

This approach of Ferry et al. has three advantages. First, it provides clinicians with information 

that can aid their diagnosis of a rare genetic disorder. Second, it can narrow down the range of 

possible disorders for patients who have the same ultra-rare disorder, even if that disorder is currently 

unknown. Third, it can identify groups of patients who can have their genomes sequenced in order 

to identify the genetic variants that are associated with specific disorders.

The work by Ferry et al. lays out the basic principles for automated approaches to analyze the 

shape of the face and skull. The next challenge is to integrate photos with genetic data for use in 

clinical settings.

DOI: 10.7554/eLife.02020.002
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We have ensured that Clinical Face Phenotype Space is robust to spurious variations such as lighting, 

pose, and image quality which would otherwise bias analyses. The approach is fully automated and 

provides objective and consistent computational descriptions of facial gestalt. Our method both 

greatly narrows the search space for investigating known disorders and will increase the power of 

inferring causative variants in previously unidentified genetic disease.

Results
We sought to construct a database of patient photos within which faces would be automatically identi-

fied and their key features annotated. Our intent was to build a model of dysmorphic variation from a 

set of syndromes that, additionally, would be able to cluster syndromes not used in model training. 

Our schema by which a patient photo is automatically analyzed within the context of Clinical Face 

Phenotype Space is provided in Figure 1A.

Image database composition
We first collected a database of 2878 images, including 1515 healthy controls and 1363 pictures for 

eight known developmental disorders from publically available sources across the internet (Table 1, 

references for image sources are available from Supplementary file 1). Manual checks were per-

formed to exclude images where the face or an eye was not clearly visible, or where an expert clinician 

(DRF) could not verify the diagnosis. Manual annotation of facial features points was performed on all 

images to allow training and testing of an automated annotation algorithm. These initial requirements 

for manual intervention are dispensed with in the final automatic algorithm (see below).

Computer vision algorithms
We proceeded to train a computer vision algorithm for automatic annotation of 36 feature points of 

interest across the face (Figure 1A). Our approach takes advantage of a variety of facial detection 

algorithms (OpenCV [Bradski, 2000], Viola Jones [Viola and Jones, 2001] and Everingham [Everingham 

et al., 2009]) and custom learning (consensus of exemplars [Belhumeur et al., 2011]) to accurately 

place feature points on a given face (‘Materials and methods’). Across all images in our database, 

manual checking found that our algorithm detected and annotated 99.5% of tested faces correctly 

with accuracies in the range 6–60% of the width of an eye (individual feature point accuracies are pro-

vided in Figure 1—figure supplement 1).

We used an Active Appearance Model ('Materials and methods') to calculate an average face 

within any set of images, representing consistent shape and appearance features within the group 

(Figure 1B and animated morphs in Figure 2). The average faces for each syndrome show that the 

algorithm effectively captures characteristic features of dysmorphic syndromes (Figure 2—figure 

supplement 1). For each feature point, the algorithm extracts a feature vector describing appear-

ance of the surrounding patch. The algorithm then constructs a feature vector describing shape 

based on the relative pairwise distances between all feature points ('Materials and methods').  

We next sought to compare the syndrome relevant information content of the feature descriptors 

to previous studies (Hammond et al., 2005; Boehringer et al., 2006; Hammond, 2007; Vollmar 

et al., 2008). We found that classification analysis based on support vector machines provided 

similar accuracies to previous work, despite disparities in image variability (average classification 

accuracy 94.4%, see Figure 4—figure supplement 1, Figure 4—figure supplement 2 and 'Materials 

and methods').

It is important to emphasize that the analyzed images vary greatly, as there were minimal restric-

tions imposed on image selection placed by the two exclusion criteria (both eyes visible and diagnosis 

verified by DRF). Photos were analyzed irrespective of the subject's age, gender, facial expression or 

ethnicity or the background scenery. Principal component analysis (PCA) of facial descriptor vectors 

illustrates that the main sources of variation among images are indeed lighting, pose, and facial 

expression, rather than phenotypic features (Figure 1—figure supplement 2).

Constructing a Clinical Face Phenotype Space with metric learning
We next performed Metric Learning using a Large Margin Nearest Neighbor (Weinberger and 

Saul, 2009) approach for the eight syndromes in the database. This approach linearly transformed 

the multidimensional space of PCA feature vectors to optimize the separation of syndromes: 

dimensions informative for dysmorphism phenotypes are expanded while uninformative dimen-

sions are compressed (thus changing the relative importance for clustering). We denote the 

http://dx.doi.org/10.7554/eLife.02020
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Figure 1. Overview of the computational approach and average faces of syndromes. (A) A photo is automatically 

analyzed to detect faces and feature points are placed using computer vision algorithms. Facial feature annotation points 

delineate the supra-orbital ridge (8 points), the eyes (mid points of the eyelids and eye canthi, 8 points), nose (nasion, tip, 

ala, subnasale and outer nares, 7 points), mouth (vermilion border lateral and vertical midpoints, 6 points) and the jaw 

(zygoma mandibular border, gonion, mental protrubance and chin midpoint, 7 points). Shape and Appearance feature 

vectors are then extracted based on feature points and these determine the photo's location in Clinical Face Phenotype 

Space (further details on feature points in Figure 1—figure supplement 1). This location is then analyzed in the context 

of existing points in Clinical Face Phenotype Space to extract phenotype similarities and diagnosis hypotheses (further 

details on Clinical Face Phenotype Space with simulation examples in Figure 1—figure supplement 2). (B) Average 

faces of syndromes in the database constructed using AAM models (‘Materials and methods’) and number of 

individuals which each average face represents. See online version of this manuscript for animated morphing images that 

show facial features differing between controls and syndromes (Figure 2).

DOI: 10.7554/eLife.02020.003

Figure 1. Continued on next page
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resulting transformed 270 dimensional space as 'Clinical Face Phenotype Space' (see 'Materials 

and methods').

Due to its design, Clinical Face Phenotype Space clusters patient faces based on diagnostically 

relevant phenotypic features, while tolerating spurious variation. Relative importance of spurious and 

phenotypic variation for clustering in Clinical Face Phenotype Space was tested using simulated faces 

('Materials and methods'). For these faces feature dimensions that reflected known spurious variation 

such as lighting and head orientation were compressed and hence were of less relevance for clustering 

(Figure 1—figure supplement 2).

For the eight syndromes with which Clinical Face Phenotype Space was created, we performed 

tests with supervised learning and clustering. A kNN-classifier applied within Clinical Face Phenotype 

Space was able to correctly classify images with an accuracy of 99.5% using the leave-one-out method. 

However, to avoid biases introduced by training data size, we also assessed the improvements in clus-

tering by measuring the search space reduction (hereafter referred to as the Clustering Improvement 

Factor or CIF, 'Materials and methods'). This estimates the factor by which the Clinical Face Phenotype 

Space improves the clustering of syndromes when compared with random chance (to 95% confidence). 

On average, the clustering of the eight syndromes within the database was improved by 11.0-fold 

(geometric mean of improved clustering, CIF range 9.1–23.5, maximum possible mean 12.5; Figure 3).

Next, we tested and confirmed our hypothesis that Clinical Face Phenotype Space could be gener-

alized to dysmorphic syndromes that were not used in the training. We had access to 75 syndromes 

from the Gorlin collection (a kind gift curated and annotated by Professor Raoul Hennekam, Academic 

Medical Center, University of Amsterdam), which we supplemented with additional images of 22q11, 

Marfan and Sotos syndromes. Furthermore, we collected images of patients with verified genetic 

mutations in PACS1 or in specific genes from the RAS/MEK pathway (Supplementary file 1 references 

for image sources in 'Materials and methods'). The number of individuals within each syndrome varied 

between 2 and 223. The search space reduction was on average 27.6-fold better than random chance 

(CIF range 1.0–700.0, maximum possible average CIF was 150.0; Figure 4A). That is to say, that 

among 2754 patients' faces associated with any of 90 syndromes Clinical Face Phenotype Space 

makes it 27.6-fold easier to make the correct diagnosis. This demonstrates that Clinical Face Phenotype 

Space is an effective approach to the identification of multiple individuals sharing ultra-rare, previously 

undocumented, genetic disorders.

We proceeded to test if Clinical Face Phenotype Space recapitulates the modularity of genetic 

diseases, where clusters of phenotypically similar disorders reflect functional relationships among the 

genes involved (see Oti and Brunner, 2007 for a review). We have shown that individuals with the 

same underlying genetic disease automatically cluster in Clinical Face Phenotype Space. We next 

tested whether disorders caused by mutations in different genes result in meaningful clusters in Clinical 

Face Phenotype Space. We selected disorders with a known genetic origin, using either gene associa-

tions from OMIM or publications describing the identification of causative genes (see 'Materials and 

methods'). For each pair of genes, the shortest path in a protein–protein interaction network was 

obtained from Dapple (Rossin et al., 2011), giving a protein interaction distance relevant to that gene 

pair. We compared genes underlying monogenic syndromes linked by 1, 2, or 3 path distances, with 

those with a path distance of 4 or that was unknown; unknown distances are those where no genes are 

associated with a syndrome, the syndrome is multigenic, or when DAPPLE has no known interaction 

documented, see 'Materials and methods'. For each pair of syndromes, an average Euclidean distance 

in Clinical Face Phenotype Space was calculated. The distance in Clinical Face Phenotype Space is 

significantly shorter between syndromes associated to genes with protein interaction distances of 

1, 2, or 3 compared with syndromes with 4 or no known interactions (p< 0.01, p< 0.05 and p< 0.001 

respectively, Figure 5). This demonstrates that the distance in Clinical Face Phenotype Space partly 

The following figure supplements are available for figure 1:

Figure supplement 1. 

DOI: 10.7554/eLife.02020.004

Figure supplement 2. Phenotypic vs spurious feature variation in Clinical Face Phenotype Space using simulated 

faces. 

DOI: 10.7554/eLife.02020.005

Figure 1. Continued
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Table 1. Composition of the database

Syndrome Nr images Syndrome Nr images

Public images online Published images

 Angelman 205  PACS1 2

 Apert 203  BRAF 35

 Cornelia de Lange 179  CFC 1

 Down 199  Costello 10

 Fragile X 164  ERF 5

 Progeria 78  HRAS 5

 Treacher Collins 103  KRAS 12

 Williams-Beuren 232  MAP2K1 5

 MAP2K2 4

 Controls 1515  MEK1 5

 NRAS 2

 22q11 8  PTPN11 19

 Marfan 18  RAF1 9

 Sotos 36  SHOC2 8

 Turner 12  SOS1 30

The Gorlin Collection

 Aarskog 19  Klippel-Trenaunay 10

 Achondroplasia 12  Langer-Giedion 14

 Alagille 8  Larsen 11

 Albright 7  Lenz_Majewski 17

 Angelman 13  Lymphedema-Lymphangiectasia-MR 8

 Apert 49  Melnick_Needles 17

 Beckwith-Wiedemann 11  Moebius 9

 Bloom 9  Muenke 15

 BOF 15  Myotonicdystrophy 9

 Cartilagehair 13  Neurofibromatosis 7

 CHARGE 12  Noonan 29

 Cherubism 20  OAVdysplasia 18

 CleidoCranialdysostosis 13  ODD 21

 Coffin-Lowry 20  OFCD 10

 Costello 9  OFD 18

 CriduChat 17  OPD 31

 Crouzon 16  Osteopetrosis 2

 Crouzonodermoskeletal 5  Osteosclerosis 5

 Cutislaxa 11  Otodental 2

 DeLange 17  Poland 4

 Diastrophicdysplasia 5  Prader–Willi 16

 Down 8  Progeria 14

 Dubowitz 12  Proteus 6

 Dyggve-Melchior-Clausen 8  Rieger 4

 EEC 6  Rothmund-Thomson 13

 Ehlers-Danlos 17  Rubinstein-Taybi 8

 Ellis-vanCreveld 3  Saethre-Chotzen 25

Table 1. Continued on next page

http://dx.doi.org/10.7554/eLife.02020
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recapitulates the functional relatedness of underlying developmental processes known to be dis-

rupted in genetic diseases.

Querying Clinical Face Phenotype Space
Clinical Face Phenotype Space can provide clinical phenotyping and clustering to known genetic 

disorders that is objective and high-throughput. The method is, however, neither sufficiently accurate 

nor intended to determine diagnosis, yet it can help to narrow the diagnostic search space in an 

unprejudiced manner. A clinician could easily photograph a patient and immediately obtain clinically 

useful diagnostic hypotheses and matching cases. To this end, we implemented two primary methods 

to automatically and objectively query Clinical Face Phenotype Space.

For any given image located in Clinical Face Phenotype Space, we obtain confidence ranked 

classifications to known disorders (see 'Materials and methods' and Figure 4—figure supplement 4). 

In addition, we objectively compare the image to others within the space. For any given query image, 

a probabilistic ranking of similar syndromes is obtained through nearest neighbor representation com-

pared to random expectation of clustering among the 90 syndromes and 2754 faces. The classification 

confidence for a particular disorder depends on its location within the space, but also on the local 

densities of similar faces. We find that for the eight initial syndromes used to construct Clinical Face 

Phenotype Space, 93.1% (range 81.0–99.2%) are correctly classified as the top rank, cumulatively con-

verging on 99.1% (95.8–100%) by the 20th rank (Figure 4B). Of syndromes not part of the Clinical Face 

Phenotype Space training, the classification accuracies positively correlated strongly with the number 

of instances in the database (Figure 4B). For the 20 syndromes where the database held 5 or fewer 

examples (Table 1), we classify on average 20.3% correctly by the 6th rank (exceeding 16.3-fold better 

than by chance alone).

For individuals with a suspected ultra-rare or an undocumented novel disorder, we developed a 

metric, p0p1, which assesses their similarity to others within Clinical Face Phenotype Space. The met-

ric estimates the relative closeness of two faces given an average local density with the space: a 

p0p1 value exceeding 1 indicates a potentially new cluster, see 'Materials and methods'. The 2 PACS1 

cases reported by Schuurs-Hoeijmakers et al. (2012) placed within Clinical Face Phenotype Space 

have a p0p1 value of 1.05 meaning that they are 5% closer to one another than the geometric mean 

of the distances to their 20 nearest neighbors. Taking into account that this is a local density estimate 

among 2754 faces in Clinical Face Phenotype Space, the search space to find them has been reduced 

∼690.4-fold (CIF, see 'Materials and methods').

The combination of syndrome clustering and de novo similarity metrics should aid the diagnosis 

of known syndromes and provides a means of clustering patients where no documented diagnosis 

exists.

Discussion
We have developed our algorithm on normal-everyday 2D photographs and have focused on 36 facial 

feature points. Given the orders of magnitude lower dimensionality of our data as compared to a 3D 

Syndrome Nr images Syndrome Nr images

 FG 11  Sclerosteosis 4

 FragileX 27  SeckelMOD 7

 Frontometaphysealdysplasia 12  SEDcongenita 6

 Gorlin 91  Sotos 16

 Gorlin_Chaudry_Moss 13  Stickler 42

 Greig 7  TRP 24

 Hallermann-Streiff 9  Waardenburg 39

 Incontinentiapigmenti 4  Weaver 13

 Kabuki 25  Williams-Beuren 19

 Klippel-Feil 3

DOI: 10.7554/eLife.02020.006

Table 1. Continued
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Figure 2. Animated morphs of average faces from controls to syndromes. (A) Angelman, (B) Apert, (C) Cornelia de Lange, (D) Down, (E) Fragile X, (F) 

Progeria, (G) Treacher-Collins, (H) Williams-Beuren. Delineation of syndrome gestalt relative to controls with distortion graphs in Figure 2—figure 

supplement 1.

DOI: 10.7554/eLife.02020.008

The following figure supplements are available for figure 2:

Figure supplement 1. Distortion graphs representing the characteristic deformation of syndrome faces relative to the average control face. 

DOI: 10.7554/eLife.02020.009

imaging capture (Hammond et al., 2005), we were initially concerned that this would be insufficient 

to capture facial phenotypes. However, we then demonstrated that the approach is able to describe 

and discriminate between syndromes with a comparable accuracy to previous studies (Loos et al., 

2003; Hammond et al., 2005; Hammond, 2007; Boehringer et al., 2006; Dalal and Phadke, 2007; 

Vollmar et al., 2008; Boehringer et al., 2011). The accessibility of normal 2D photographs  

(as opposed to 3D imaging) should outweigh any lower data resolution obtained from any one image 

and in future developments using multiple profile perspectives will allow 3D structure to be inferred. 

With accurate registration of a person's face from multiple images across time, from a family photo 

album for instance, it would capture not only the 3D structure but also the progression and devel-

opment of dysmorphic gestalt. The automatic image analysis algorithm enables phenotypic metrics 

to be obtained with objective consistency from each image (Figure 1).

Clinical Face Phenotype Space was instantiated using eight syndromes that were well populated in 

our database so as to be robust against spurious variation. In doing so, it has become a generalizable 

model for craniofacial dysmorphic variation (Figure 5). The high fidelity of the current Clinical Face 

Phenotype Space (Figure 3) shows promise given that known deficiencies have yet to be addressed: 

(1) We used only single image examples of individuals. (2) The spectrum of phenotypes represented 

was limited. (3) The average image quality in the database was low. (4) The current 36 facial feature 

points only capture full frontal facial phenotypes, and thus miss valuable information from the full 

cranium and profile perspectives. Among the approaches that will be tested in future work are: increas-

ing the number of feature points across the cranium, using profile images and taking advantage of 

multiple images of the same individual. Furthermore, we will be exploring performing explicit mode-

lingmodeling of the 3D variation for 2D images (Ramnath et al., 2008), other types of feature descrip-

tors, alternative metric learning and dimensionality reduction approaches (Simonyan et al., 2013). 

As Clinical Face Phenotype Space is developed and populated with more individuals, the predictive 

http://dx.doi.org/10.7554/eLife.02020
http://dx.doi.org/10.7554/eLife.02020.008
http://dx.doi.org/10.7554/eLife.02020.009
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Progeria 

15.1 fold

Cornelia de Lange 

9.1 fold

Treacher 

Collins 

23.5 fold

Apert

10.2 fold

Angelman 

10.0 fold

Fragile X 

10.8 fold 

Williams-Beuren 

9.4 fold

Down 

11.6 fold

Figure 3. Clinical Face Phenotype Space enhances the separation of different dysmorphic syndromes. The graph 

shows a two dimensional representation of the full Clinical Face Phenotype Space, with links to the 10 nearest 

neighbors of each photo (circle) and photos placed with force-directed graphing. The Clustering Improvement 

Factor (CIF, fold better clustering than random expectation) estimate for each of the syndromes is shown along the 

periphery.

DOI: 10.7554/eLife.02020.010

power to infer novel causative genetics would be expected to increase linearly until it asymptotically 

approaches a theoretical maximum.

There are three anticipated primary applications for Clinical Face Phenotype Space in a clinical 

setting: narrowing the search space for documented developmental disorders, identifying multiple 

people that share an ultra-rare genetic disorders and aiding the inference of causative variants in clinical 

genetic sequencing (Figure 4).

We envisage Clinical Face Phenotype Space becoming a standard tool to support clinical genetic 

counseling. Since any normal 2D image can be analyzed, this approach is available to any clinician 

worldwide with access to a camera and a computer. This can also reduce the need for patient 

inconvenience in a clinical setting because a family photo album could provide the required image(s). 

A photograph will enable automatic digital phenotyping, and its placement in Clinical Face Phenotype 

Space will provide an unbiased list of candidate clinical hypotheses (exemplified in Figure 6). We 

anticipate that future developments of Clinical Face Phenotype Space will also identify sub-phenotypes 

or comorbidities. Where no known genetic disease or variant can be assigned, Clinical Face Phenotype 

Space can identify other patients with phenotypic similarities empowering the identification of ultra-

rare genetic disorders.

In summary, we have presented an algorithmic approach that provides a critical advance in applying 

computer vision and machine learning techniques as a tool for clinical geneticists. The conjunction of 

a computer vision and machine learning algorithm with Clinical Face Phenotype Space makes this 

http://dx.doi.org/10.7554/eLife.02020
http://dx.doi.org/10.7554/eLife.02020.010
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Figure 4. Clinical Face Phenotype Space is generalizable to dysmorphic syndromes that are absent from a training 

set. (A) Clustering Improvement Factor (CIF) estimates are plotted vs the number of individuals per syndrome 

grouping in the Gorlin collection or patients with similar genetic variant diagnoses. As expected, the stochastic 

variance in CIF is inversely proportional to the number of individuals available for sampling. The median CIF across 

all groups is 27.6-fold over what is expected by clustering syndromes randomly. That is to say, the CIF of a randomly 

placed set is 1. The maximum CIF is fixed by the total number of images in the database and by the cardinality of a 

syndrome set: the theoretical maximal CIF upper bound is plotted as a red dotted line. The CIF for the minimum 

and maximum, Cutislaxa syndrome and Otodental syndrome, were 1.0 and 700.0 respectively. (B) Average probabilistic 

classification accuracies of each individual face placed in Clinical Face Phenotype Space (class prioritization by 20 nearest 

neighbors weighted by prevalence in the database). The 8 initial syndromes used to train Clinical Face Phenotype 

Space are shown in color. For syndromes with fewer than 50 examples, accuracies were averaged across all syndromes 

binned by data set size (i.e., the average accuracy is shown for syndromes with 2–5, 6–10, 11–25, and 26–50 images 

in the database, Supplementary file 1). Classification accuracies increase proportional to the number of individu-

als with the syndrome present in the database. Accuracies using support vector machines with binary and forced 

choice classifications are shown in Figure 4—figure supplement 1 and Figure 4—figure supplement 2. A simulation 

example of probabilistic querying of Clinical Face Phenotype Space is shown in Figure 4—figure supplement 3.

DOI: 10.7554/eLife.02020.011

The following figure supplements are available for figure 4:

Figure supplement 1. SVM binary classification accuracies among the 8 syndromes in Table 1. 

DOI: 10.7554/eLife.02020.012

Figure 4. Continued on next page

http://dx.doi.org/10.7554/eLife.02020
http://dx.doi.org/10.7554/eLife.02020.011
http://dx.doi.org/10.7554/eLife.02020.012
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Figure supplement 2. SVM forced choice classification accuracies among the 8 syndromes in Table 1. 

DOI: 10.7554/eLife.02020.013

Figure supplement 3. Simulated example illustrating the Clustering Improvement Factor. 

DOI: 10.7554/eLife.02020.014

Figure supplement 4. Simulated example of probabilistic querying of Clinical Face Phenotype Space. 

DOI: 10.7554/eLife.02020.015

Figure 4. Continued

approach high-throughput, automatic, objective, and broadly accessible with existing digital photog-

raphy and computers. Our ongoing research has begun to apply the Clinical Face Phenotype Space 

approach within large clinical sequencing collaborations. Computer vision for aiding diagnosis of 

developmental disorders in clinical genetics will be tenable and broadly applicable in the near future.

Materials and methods

Database collection
We built a database of publically available or scientifically published pictures of patients collected 

across the internet. We collected 100–283 images per syndrome for Angelman, Apert, Cornelia de 

Lange, Down, Fragile X, Progeria, Treacher Collins, or Williams-Beuren. Images were collected 

through publically available resources online accessible though search terms relating to each syn-

drome, primarily through support group pages and awareness event photographs. Source URLs 

were converted to shortened versions for the purposes of publication using TinyUrl (http://tinyurl.

com/) (Supplementary file 1). The links provided are expected to decay with time and should only be 

considered exemplars of database composition. Images were captured through screen shots and 

saved as PNG or JPEG file formats.

The following two exclusion criteria were applied to the images: 1. The face needed to be clearly 

visible and oriented so that both eyes were visible. 2. The correct diagnosis was confirmed by an expert 

clinician (DRF). DRF inspected each image to validate the supposed syndrome diagnosis; images not 

validated were discarded. Variation in lighting, image resolution, pose, and occlusions has only been 

restricted when it obscures the facial characteristics (such as a hand covering the face). We also sought 

to avoid multiple images of the same individual at the same age in the database. No further restrictions 

were placed on variations in pose, facial expression, lighting, occlusions, or image quality.

In the same manner, smaller numbers of images were collected for Marfan, 22q11, Turner and Sotos 

syndromes (Table 1). Furthermore, we collected further published images of patients with confirmed 

genetic variants in genes of the RAS/MEK signaling pathways as well as in PACS1 (Rauen, 1993, 2006; 

Bertola et al., 2007; Gripp et al., 2007; Makita et al., 2007; Rauen, 2007; Zampino et al., 2007; 

Nystrom et al., 2008; Schulz et al., 2008; Tidyman and Rauen, 2008; Cordeddu et al., 2009; Kratz 

et al., 2009; Zenker, 2009; Allanson et al., 2010; Wright and Kerr, 2010; Kleefstra et al., 2011; 

Lepri et al., 2011; Siegel et al., 2011; Schuurs-Hoeijmakers et al., 2012; Hopper et al., 2013; Twigg 

et al., 2013).

3100 images were collected and manually annotated for training of the algorithms. Of these 2878 were 

successfully annotated by the automatic pipeline and are reported in the database counts of Table 1.

Data and code availability
Original database, excluding the Gorlin collection, and previously published images (which are avail-

able from the cited original publications) can be requested by contacting CN (christoffer.nellaker@

dpag.ox.ac.uk; Ferry Q, Steinberg J, Webber C, FitzPatrick DR, Ponting CP, Zisserman A, Nellåker C, 

2014, Diagnostically relevant facial gestalt information from ordinary photos database). Requests will 

be assessed by a Data Access Committee (DAC) comprised of CPP, DRF, AZ, CN and Dr Zameel Cader 

of the Division of Clinical Neurology, University of Oxford. The DAC will make data available to 

researchers in good standing with the relevant institution and funding agencies (i.e., no known sanctions). 

The data are provided without copyright.

Pipeline code was written in python 2.7 and uses the module Ruffus (Goodstadt, 2010) for task 

management. The code is available through an open source MIT license at https://github.com/

ChristofferNellaker/Clinical_Face_Phenotype_Space_Pipeline.

http://dx.doi.org/10.7554/eLife.02020
http://dx.doi.org/10.7554/eLife.02020.013
http://dx.doi.org/10.7554/eLife.02020.014
http://dx.doi.org/10.7554/eLife.02020.015
http://tinyurl.com/
http://tinyurl.com/
mailto:christoffer.nellaker@dpag.ox.ac.uk
mailto:christoffer.nellaker@dpag.ox.ac.uk
https://github.com/ChristofferNellaker/Clinical_Face_Phenotype_Space_Pipeline
https://github.com/ChristofferNellaker/Clinical_Face_Phenotype_Space_Pipeline
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Figure 5. Clinical Face Phenotype Space recapitulates features of functional gene links between syndromes. 

Protein–protein interaction distances of 1–3 for genetically characterized syndromes are associated with significantly 

shorter Euclidean distance (arbitrary units) between syndromes in Clinical Face Phenotype Space as compared to 

syndromes with distance 4 or no known interaction distance (shown in orange) (Kruskal–Wallis tests with Bonferroni 

corrected p-values indicated as *p<0.05, **p<0.01, ***p<0.001). The Spearman correlation across all distances was 

r = 0.09, p<0.001. The numbers of pairwise syndrome comparisons underlying each of the interaction distances are 

listed within the respective boxes.

DOI: 10.7554/eLife.02020.016

Ethics statement
The manner and method by which images were collected from publically available sources and stored 

were acceptable research practices and do not require special consent from a Research Ethics Committee. 

Advice from legal services, research ethics board members and the Information Commissioner's Office 

(UK) was sought in arriving at this conclusion.

Computer vision algorithm
The computer vision algorithm analyses a 2D photograph for the location of a face, annotates the 

facial landmark points, and extracts feature vectors for subsequent machine learning applications. 

MATLAB (MATLAB. R2011b Natick, Massachusetts: the MathWorks Inc.) with OpenCV (Bradski, 2000) 

was used to write scripts and functions for the algorithm. To identify a putative face in the photo, we 

used previously published algorithms (Viola and Jones, 2001). Within a box bounding the face, a 

pictorial structure model was used to identify 9 central facial feature points (Everingham et al., 2009), 

which then were used to initialize the placement of an additional 27 feature points. The resulting facial 

mesh structure was fitted to the image using Active Appearance Models (AAMs) (Cootes et al., 1998) 

to generate average face visualizations (Figure 2—figure supplement 1). The placement of the 

http://dx.doi.org/10.7554/eLife.02020
http://dx.doi.org/10.7554/eLife.02020.016
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Figure 6. Class priority of diagnostic classifications for images. The full computer vision algorithm and Clinical Face 

Phenotype Space analysis procedure with diagnostic hypothesis generation exemplified by: (A) a patient (Ferrero 

et al., 2007) with Williams-Beuren (this patient figure was published in 'Giovanni Battista Ferrero, Elisa Biamino, 

Lorena Sorasio, Elena Banaudi, Licia Peruzzi, Serena Forzano, Ludovica Verdun di Cantogno, Margherita Cirillo 

Silengo. Presenting phenotype and clinical evaluation in a cohort of 22 Williams–Beuren syndrome patients. European 

Journal of Medical Genetics; 2007;50(5):327–337 Copyright 2007 Elsevier Masson SAS. All rights reserved'.). Note 

that panel A does not fall under a creative commons license and would need permissions from the copyright 

holders for future reproductions. (B) Abraham Lincoln. The former US President is thought to have had a marfanoid 

disorder, if not Marfan syndrome (Gordon, 1962; Sotos, 2012). Bar graphs show class prioritization of diagnostic 

hypotheses determined by 20 nearest neighbors weighted by prevalence in the database. As expected, the 

classification of Marfan is not successfully assigned in the first instance as there were only 18 faces of individuals 

with Marfan in the database (making this an example of a difficult case with the current database). However, the 

seventh suggestion is Marfan, despite this being among 90 different syndromes and 2754 faces.

DOI: 10.7554/eLife.02020.017

36 feature points was also further refined using custom written scripts based on consensus of exem-

plars (Belhumeur et al., 2011) (see Methods).

From the fitted constellation of facial landmarks two feature vectors were extracted. (1) The appear-

ance as a concatenation of the pixel intensities of patches around the 9 inner facial feature points. (2) The 

shape vector was constructed as the normalized pairwise distances between all 36 facial feature points.

Face detection
Each image was converted to JPEG and submitted to the Facial Detection (FD) module of the algo-

rithm. Face detection was achieved using the OpenCV (Bradski, 2000) implementation of the Viola–

Jones object detection framework (using Haar like features and a cascade of classifiers) (Viola and 

Jones, 2001). The output takes the form of a square bounding box delimiting the area of the picture 

where the face was found. Pictures containing the faces of healthy relatives (or others) were either 

discarded or cropped to only conserve regions with the patient face.

Facial landmarks annotation
Manual annotation of the 36 feature points was performed on 3100 of the images in the image collec-

tion. These were used as the ground truth reference point for all subsequent training and test sets for 

evaluations of automated facial landmark annotation accuracies (Figure 1—figure supplement 1).

In the second step of the automatic algorithm detected faces were passed to a facial landmark 

annotation script (Everingham et al., 2009) (FLA module), which annotates the face with an initial set 

http://dx.doi.org/10.7554/eLife.02020
http://dx.doi.org/10.7554/eLife.02020.017
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of 9 well-characterized (salient) feature points. The 9 landmarks in that set were the medial and lateral 

canthi of the eyes, each subnasale, columella and the left and right vermilion border lateral midpoints. 

The FLA used the returned bounding box to approximate the location and size of the face to be anno-

tated. Automatic annotation relies on a generative model of feature point position combined with a 

discriminative model of appearances. This joint model was based on the parts-based pictorial struc-

ture representation introduced by Fischler and Elschlager (1973). For a given bounding box, the FLA 

module returns both a constellation of 9 landmarks and a corresponding confidence index computed 

via appearance mismatch with the model. We used this index to implement more robust, accurate and 

reliable annotation approaches (Figure 1—figure supplement 1) as described below.

Improved facial landmark annotation was performed with a custom script designed to refine the 

output from the FD-FLA modules in terms of annotation inaccuracies, false positive and false negative 

face detection. The images were transformed iteratively by mirror imaging, partial rotations (±45°), 

and by adding a frame around the image to produce 100 transformations of the original. Each image 

was subsequently submitted through the FD -FLA modules and returned a constellation of 9 points 

with associated confidence scores recorded. A consensus map is constructed by confidence weighted 

averaging of high confidence feature annotations thus reducing the number of spurious annotations 

and increasing annotation accuracy (Figure 1—figure supplement 1).

From the improved 9 facial feature points, we expanded the feature detection to 36 feature points 

encompassing the points indicated in Figure 1—figure supplement 1.

Consensus of exemplar
We developed a computational module inspired by Belhumeur et al. (2011) to determine the locali-

zation of the 36 landmarks. Consensus of exemplar (CoE) relies on part base classifiers used to localize 

potential candidate points and a database of face exemplars used to introduce a shape prior in the 

search for the best constellation.

While only a constellation of 9 feature points (C9) is required to compute the appearance feature 

vector, the shape feature vector relies on a constellation of 36 feature points (C36) covering the inner 

face in greater details along with its outlined (Jaw line). Anatomical landmarks covered in C36 are 

shown in Figure 1—figure supplement 1. We used the C9 obtained via the improved FLA module 

(see previous section) to initiate the automatic search for C36.

For each of the facial feature points in C36, we delimited a region of interest (ROI) for the algo-

rithm to consider using the following heuristic: 1000 exemplar faces are sample from among the 

controls in the database (Table 1). For each exemplar face i, we registered the C9i to the C9 of  

our query face using Procrustes algorithm. Next the sum of squares error was used to sort exem-

plars in order of accuracy with which C9i registered to C9. The top 20 exemplars were used to map 

their C36i to the query face using the transform Ti obtained during registration. A consensus C36 for 

the query face was then derived by averaging all registered C36i. Finally, for each feature point in 

C36, we defined a square ROI centered on the consensus point with two palpebral fissures (PF) 

length dimensions. The PF length was the average between right and left eyes and estimated 

based on C9.

The final C36 was derived from the ROIs by using a combination of part based detectors and a 

consensus of shape exemplars. Support Vector Machine (SVM) classifiers (using Gaussian kernels) were 

trained to recognize each feature point in C36. We used a database of manually annotated control 

patients to obtain positive and negative training sets for each part classifier. The feature vector asso-

ciated with a particular feature point was obtained by cropping a square patch centered on this point 

and describing its pixel content with a pyramidal histogram of gradients (PHOG).

Going back to the query face, each of the 36 ROIs was submitted to the corresponding part 

detector. From this we obtained a set of 20 potential candidates (PC) for each part within the ROI 

(where candidates were sorted based on the classifier decision values). Next, we randomly sampled 

exemplars of C36 from the control database and registered them to the query face in order to enforce 

a shape prior. To avoid spurious outlier PC to drive the registration off, we randomly select PC to 

represent three randomly selected points from C36. Exemplar C36i were registered via Procrustes 

algorithm to the query face using only these three PC. The registered C36i were scored by submitting 

its feature points to the part classifiers. We retained the top 20 C36i. Finally, each feature point of the 

final C36 for the query was derived independently as a consensus between probability density maps 

based on the PCs and the classifier decision values over the corresponding ROI.

http://dx.doi.org/10.7554/eLife.02020
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Appearance descriptor feature vector
Using the set of 9 inner points annotated to the face by the FLA module and refined by the CoE mod-

ule, four additional points were generated: left and right center of the eye, nasion (between the eyes) 

and center of the mouth. The points were then used to register the face, via an affine transformation 

T, to a canonical set of corresponding points (face shape template). Next, circular patches were gener-

ated around the canonical points which were mapped back to the original picture using the inverse of 

T. This process creates 13 ellipses which were then used to crop the image content by bilinear interpo-

lation. Extraction of the patch was performed as in Everingham et al. (2009).

The appearance feature vector was obtained by a concatenation of the pixel gray-scale content of 

the 13 cropped patches (size of the feature vector = 1937). While patch content could be further pro-

cessed before concatenation (gradients, HOG, PHOG, SIFT, Gabor Filter, Local binary Pattern, etc) the 

gain in terms of discriminative power and relevant feature extracted was negligible compared to the 

computational cost in terms of memory consumption.

Shape descriptor feature vector
The features vector was built from the constellation of the 36 landmarks annotations from the CoE 

module. We described the face shape as a vector d, the set of pair-wise distances through the constel-

lation, resulting in a feature vector with 630 elements.

To compare the different constellations, each was registered via Procrustes transformation to the 

average constellation of the AAM model (canonical face mesh, see below). The vector of pair-wise 

distances was then normalized so that any distance variations were relative to the corresponding 

distances measured on the average control face template.

Average faces and morphs using Active Appearance Model
Introduced in 1998 by Cootes et al. (1998), the active appearance model (AAM) was designed to 

identify a set of facial landmarks on a given face. This task is achieved by iteratively modifying both the 

shape and the position (location) of a structured face mesh in which nodes represent target landmarks.

We constructed a training set by manual annotation of 3100 patient images with the 36 landmarks 

(Figure 1—figure supplement 1). All constellations were registered together using an iterative 

Procrustes algorithm. We computed the average constellation and used it as a reference with which to 

build a canonical face mesh via Delaunay triangulation. Based on the obtained triangulation, we gen-

erated a face mesh dividing each patient's face into sub-regions. Using piecewise affine warping, 

we independently mapped the pixel content of each sub-region to the corresponding triangle in the 

canonical face mesh. We thus obtained a registered version of each patient's facial appearance. 

Shapes and appearance registrations were used in a principal component analysis (PCA) to generate 

both the shape and appearance models for use with the AAM.

Using the AAM statistical models of shape and appearance that derive from the training of the 

AAM, we created a visual representation of canonical traits/phenotypes. Average faces were created 

from the images of patient with the same genetic disorder. AAM models were generated for each 

group, and after registration of the constellations (annotation) to each we derived the average shape 

constellation. A face mesh was generated from these constellations by triangulation (Delaunay) and 

the appearance of each individual was mapped to the average face mesh by piecewise affine warping. 

Thus, this average face mesh recapitulated the canonical phenotype of the syndromes.

Furthermore, we created morphs between control and syndrome faces by registering appearance 

to the average shape of the controls (Figure 2—figure supplement 1). By computing the average 

across the syndrome group and the control group one can obtain the average appearance of the syn-

drome A0s and control A0c. Given that both A0s and A0c have identical dimensionality, we morphed 

appearance from one to the other with appearance for frame k where Ak = A0s + k/K*(A0c − A0s) and 

where K is the total number of frames. Similarly, we considered the average face mesh of the syndrome 

group M0s and the control group M0c to obtain the face mesh at frame k as Mk = M0s + k/K* (M0c − M0s). 

Finally, for each frame k, both shape (face mesh) and appearance were combined by piecewise affine 

warping of Ak to Mk.

Support Vector Machine classification
We used SVMs to fine tune both appearance and shape descriptors. Differences in binary classification 

accuracies allow us to infer relative feature delineation capacity by our descriptors. We employed 

http://dx.doi.org/10.7554/eLife.02020
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Libsvm to perform classification. The accuracies based on the raw feature vectors were comparable 

to accuracies reported in previous studies (Boehringer et al., 2006, 2011).

Binary classification
SVM classifiers were trained on both shape and appearance feature vectors separately for each  

36 pairwise combination of control and 8 syndromes (Table 1). Each binary classification was repeated 

10 times with randomly generated positive/negative training and test sets with a 4:1 ratio. The linear 

kernel SVM classification accuracies using the final shape and appearance descriptors are shown in 

Figure 4—figure supplement 1. We estimate a total accuracy when fusing information from shape 

and appearance feature vectors based SVMs by summing decision values returned by the shape and 

appearance classifiers respectively.

In all classification experiments, we used both original and mirror versions of each image. Given a 

binary experiment to distinguish group G1 from G2 (where G refers to a set of images of a syndrome), 

we randomly partitioned the sets into training and test sets: G1tr, G1te, G2tr, and G2te respectively. From 

these we generated the corresponding mirror image sets: G1tr
m, G1te

m, G2tr
m, and G2te

m. The SVM 

model was trained using G1tr + G1tr
m as the positive set and G2tr + G2tr

m as the negative set. Decision 

values were tuned to give equal error rates (the number of false positives = number of false negatives). 

With the trained SVM models, we next submitted the sets G1te + G2te and G1te
m + G2te

m separately to 

the classifier. Thus, for each instance in the test set we obtained two decision values. The final classifi-

cation was determined by the sum of the decision values.

Forced choice classification
We next applied the classification problem to assigning a face as being one of the 8 syndromes 

(Table 1). Each of the 8 syndrome groups was randomly split into training and test sets with a ratio of 

4:1. We used the training sets to train a linear binary SVM classifier for each of the 28 pairs. Each image 

in the training set was submitted to all 28 classifiers. The decision value was returned by each classified 

and used as a probabilistic estimate P for the test instance to belong to the positive class. Thus, after 

presenting instance i to the binary classifier distinguishing syndrome j (positive) from syndrome k 

(negative), we assigned i a vote of weight P for syndrome j and a vote of weight 1-P for syndrome k. 

After summation of the votes from the 28 classifiers, the instance i was labeled as belonging to the 

syndrome diagnosis with the highest probability.

The confusion matrix averaged from 10 repeats of the forced choice experiment is shown in 

Figure 4—figure supplement 2.

Clinical Face Phenotype Space construction
We performed PCA on the shape and appearance feature vectors to reduce dimensionality from 2567 

to a concatenation of 340 orthogonal vectors. This was then used to transform the feature space with 

Large Margin Nearest Neighbor (LMNN, Weinberger and Saul, 2009). LMNN is an optimization algo-

rithm that uses a training set of pairs of vector labels (xi; li) and learns a Mahalanobis distance that 

maximizes the kNN classification over a training set. Note that even if the system only considers local 

information (i.e., number of intruders for each instance) the final metric is global. The Mahalanobis 

distance was computed as dist(xi; xj) = (xi − xj)tLtL(xi − xj) where L is a linear matrix. It is equivalent 

to the Euclidean distance taken in the space after transformation by L. That is to say, LMNN linearly 

transforms dimensions in feature space to maximize the margins separating classes of labeled 

instances. This should, in principle expand dimensions with phenotypically relevant information and 

compresses dimensions uninformative for classification.

To validate the characteristics of the transformation of spurious and phenotypic vectors in Clinical 

Face Phenotype Space, we performed a series of experiments based on projected 3D faces. We used 

the 3D facial model proposed by Blanz & Vetter (Blanz, 2006) http://faces.cs.unibas.ch/bfm/ which 

allowed us to create faces with a direct control over shape, appearance, lighting, and facial pose. 

We synthesized 5 test faces at random moving along the first 15 components of both the shape and 

appearance models. For each face, we generated a set of 20 images for each combination of 5 head 

rotations and 4 lighting conditions. We use these simulated images to compare similarity measures in 

the raw feature space and in Clinical Face Phenotype Space (Figure 3, Figure 1—figure supplement 2). 

We performed a reorientation of the raw feature vectors and Clinical Face Phenotype Space using 

PCA without dimensionality reduction in order to sort the dimensions by variation magnitude. This 

allowed us to assess the relative contributions of phenotypic variation and spurious variations to 

http://dx.doi.org/10.7554/eLife.02020
http://faces.cs.unibas.ch/bfm/
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clustering of faces. The strongest influences on clustering would be expected to be encoded in the first 

modes of variation. Placing the synthetic faces in the reoriented spaces allowed us to describe the PCA 

signatures of phenotypic variations (shape, appearance) and spurious variation (lighting, head pose).

Clinical Face Phenotype Space validation and visualization
We used several dimensionality reduction methods and metrics for visualization and estimation of the 

properties of Clinical Face Phenotype Space. We developed an estimate of search space reduction to 

determine the improvements in clustering in Clinical Face Phenotype Space controlling for the com-

position of the database. Essentially, this calculates the degree to which intruders in a nearest neighbor 

search between instances of the same syndrome are excluded in Clinical Face Phenotype Space. This 

equates to a factor estimate of increased clustering, CIF (details of the procedure are provided below).

We used a 20 nearest neighbor linkage map to visualize Clinical Face Phenotype Space using force 

directed graphs implemented through Gephi (Bastian et al., 2009).

Protein–protein interaction data were obtained from DAPPLE (Rossin et al., 2011). After conver-

sion to Ensembl gene IDs, 126,586 interactions between 10,442 genes remained. We considered the 

data as a network of genes, with edges denoting an interaction. The shortest paths between two 

genes were computed using Dijkstra's algorithm (Dijkstra, 1959). We calculated the median pairwise 

Euclidean distance between syndromes in Clinical Face Phenotype Space. The correlation between 

these two data sets underlies Figure 5. Clinical Face Phenotype Space distance between groups was 

tested using Kruskal–Wallis (Kruskal and Wallis, 1952) tests with Bonferroni (Bonferroni, 1935, 1936) 

multiple testing correction.

Estimating improvements in clustering
Next, we performed estimations of clustering of syndromes in face space. Initial tests using kNN-

classifiers showed that the classification accuracies were heavily dependent on spread and cardinality 

of the syndrome in the database. We went on to develop an estimate of search space reduction, here-

after referred to Clustering Improvement Factor (CIF), to determine the improvements in clustering in 

Clinical Face Phenotype Space controlling for the composition of the database (a simulated example 

is provided in Figure 4—figure supplement 3).

We considered a syndrome with Np positive and Nn negative instances in the Clinical Face Phenotype 

Space. We defined the CIF as

expected rank (r) of nearest positive match under random ranking E(r)
CIF = =

observed average rank (r) of nearest positive match O(r)

with the average taken across all instances of the syndrome. O(r) was calculated from the observations 

in the Clinical Face Phenotype Space. To compute E(r), we used probability theory as follows.

Under a random ranking for a given positive query, the other Np−1 positive instances are each 

placed independently among the Nn negative instances, with a uniform discrete probability distribution. 

We defined the random variable Ni as the number of negative instances ranked higher than the first 

positive instance, so Ni takes integer values 0 ≤ Ni ≤ Nn.

For a given positive query, the expected rank of the nearest positive match is the expected value 

of Ni+1, denoted by E(Ni)+1. To calculate E(Ni), we used the definition of expectation:

nN

i i
j 0

E(N ) jPr(N j)∑
=

= =
 

since Ni can only take non-negative integer values, for each possible value j between 0 and Nn,

Pr(Ni = j) = Pr(Ni ≥ j) − Pr(Ni ≥ j + 1) 
Substituting this in the formula for E(Ni),

[ ].
nN
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For a given number j, Pr(Ni ≥ j) is the probability that all positive instances were placed after j 

negative instances. For any given individual positive instance, such placement has probability 1 − j

Nn + 1
.  

Since placement of all positive instances is independent, this gives Pr(N j) = 1
j

N +1
i

n

N 1p

≥ −
−







.
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Querying Clinical Face Phenotype Space
We developed two methods to retrieve information about the neighborhood of a given face placed in 

the Clinical Face Phenotype Space. Firstly, we assigned a syndrome classification based on the identity 

of its k nearest neighbors in Clinical Face Phenotype Space. Based on the neighbors' labels a list of 

syndromes to which the new face could belong was created. The number of neighbors supporting 

each hypothesis was compared with the probability to see N instances of that syndrome when sam-

pling k from the population of faces in Clinical Face Phenotype Space.

Secondly, we estimate the relative similarity between specific faces given the density of points in a local 

region of Clinical Face Phenotype Space. This is calculated as 0,1 0 1p0p1= d / d d , where d0,1 is the similarity 

measure between the query and its neighbor, d0 is the average of similarities between the query and k = 20 

neighbors and d1 is the average of similarities between the neighbor of the query and k of the neighbor's 

neighbors. Figure 4—figure supplement 4 illustrates the method and metrics using a simulated example.

We see Clinical Face Phenotype Space as a means to facilitate collaborative investigations of genetic 

diseases between clinicians. Of course, sharing of data raises questions regarding ethics approval and 

data security. These questions are tightly linked to the debate of how clinical sequencing information 

should be treated in global health care systems. We anticipate that it would be suitable for future imple-

mentations of Clinical Face Phenotype Space to follow similar guidelines as for clinical sequencing data.
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