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Abstract

Machine tools degrade during operations, yet knowledge of degradation is elusive; accurately 
detecting degradation of linear axes is typically a manual and time-consuming process. 
Manufacturers need automated and efficient methods to diagnose the condition of their machine 
tool linear axes with minimal disruptions to production. A method was developed to use data from 
an inertial measurement unit (IMU) for identification of changes in the translational and angular 
errors due to axis degradation. A linear axis testbed, established for the purpose of verification and 
validation, revealed that the IMU-based method was capable of measuring geometric errors with 
acceptable test uncertainty ratios.
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1. Introduction

Machine tool linear axes move the cutting tool and workpiece to their desired positions for 
parts production [1]. A typical machine tool has multiple linear axes, and their accuracies 
directly impact the quality of manufactured parts. However, over a machine tool’s lifetime, 
emerging faults lead to performance degradation, lowering accuracy and repeatability [2]. 
Typical sources of errors within feed drive systems are due to pitting, wear, corrosion, and 
cracks of the system components such as guideways and recirculating balls [3]. As 
degradation increases, tool-to-workpiece errors increase that eventually may result in a 
failure and/or a loss of production quality [4]. Yet knowledge of degradation is illusive; 
proper assessment of axis degradation is often a manual, time-consuming, and potentially 
cost-prohibitive process.

While direct methods for machine tool performance evaluation are well-established [5] and 
reliable for position-dependent error quantification, such measurements typically interrupt 
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production [6]. An online condition monitoring system for linear axes is needed to help 
achieve decreased machine downtime, higher productivity, higher product quality, and 
enhanced knowledge about manufacturing processes [7]. Efforts to monitor the condition of 
linear axes components have utilized various sensors, e.g., built-in rotary encoders [8], 
current sensors [4], and accelerometers [9,10]. These attempts at condition monitoring of 
linear axes were limited in success, partly because of the lack of robustness and defined 
relationships of signals to axis degradation composed of a wide range of spatial frequencies.

One potential solution for online monitoring of linear axis degradation is the use of an 
inertial measurement unit (IMU). As seen in Fig. 1, an IMU is mounted to a moving 
machine tool component. To diagnose axis degradation, the axis is moved back and forth at 
various speeds to capture data for different bandwidths. This data is then ‘fused’ to estimate 
the changes in the 6-degree-of-freedom (DOF) geometric errors of the axis. Because the 
linear axes are stacked, coordinate transformations may be used with all 6-DOF errors to 
estimate the errors at the functional point [5]. Ideally, data would be collected periodically to 
track axis degradation with minimal disruptions to production. With robust diagnostics and 
prognostics algorithms, incipient faults may be detected and future failures may be avoided. 
In essence, IMU data can be used to help optimize maintenance, production planning, and 
ultimately part quality.

Following the approach outlined in Fig. 1, this paper introduces a novel IMU-based method 
for diagnostics of machine tool linear axes. A linear axis testbed was designed to physically 
implement the custom IMU and the IMU-based method. Various degradation patterns were 
experimentally simulated by adjustments of a guideway rail or defects imparted on bearing 
balls. This paper outlines the major findings of these experiments, revealing the potential of 
the novel IMU-based approach for diagnostics and prognostics of machine tools.

2. Testbed setup

A testbed was designed for evaluation of the IMU-based method. As seen in Fig. 2(a), the 
testbed includes a linear axis, the IMU, a commercial laser-based system for measuring the 
geometric errors of the axis, and a direct current (DC) motor with encoder for motion 
control. While the metrology system measures the motion of the carriage with respect to the 
base of the linear axis, the carriage-mounted IMU measures the changes in the inertial 
motion of the carriage. The commercial metrology system is able to measure straightness 
and angular error motions over the travel length of 0.32 m with standard uncertainties of 0.7 
μm and 3.0 μrad. The laser-based system is used for verification and validation (V&V) of the 
IMU-based results.

For the detection of both translational and rotational motions, the IMU contains three 
accelerometers and one triaxial rate gyroscope, as seen in Fig. 2(b). Table 1 outlines key 
specifications of the IMU sensors. Each sensitive direction is nominally aligned with either 
the X-, Y-, or Z-axis of the testbed coordinate system. Consequently, these sensors enable 
the estimation of 6-DOF motion.
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3. IMU-based method

As outlined in Fig. 1, the IMU-based method relies on sensor data collected during a fixed-
cycle test, in which an axis is programmed to move unloaded at three constant speeds: Fast 
speed (v1 = 0.5 m/s), moderate speed (v2 = 0.1 m/s), and slow speed (v3 = 0.02 m/s). 
Constant speeds allow for simple correlation of error motions with axis position while 
minimizing transient dynamic effects. The different speeds allow for sensing of repeatable 
error motions, composed of low to high spatial frequencies, within different temporal 
bandwidths. Such a process takes advantage of the enhanced signal-to-noise and lower 
sensor drift at faster speeds, while taking advantage of the detection of higher spatial 
frequencies at slower speeds without violating sensor bandwidths. As seen in Fig. 1, 
matching the spatial cutoff frequencies enables the data fusion, while filtering allows for the 
attenuation of significant modal excitations, especially resulting from the initial and final 
accelerations during the fast speed cycle.

For the linear axis testbed, data is collected while the carriage moves back and forth 
sequentially at each of three speeds for 50 runs. Data collection for multiple runs allows 
averaging for convergence purposes. Once data is collected, data fusion follows.

3.1. Angular motions

Data fusion for estimation of angular motions is represented in Fig. 3. Rate gyroscope data 
for three speeds is integrated once, low-or band-pass filtered, processed, and summed to 
yield the total angular motions following the scheme in Fig. 3(a).

In contrast, the scheme in Fig. 3(b) may also be used to estimate the angular motions about 
the X- and Y-directions. Measuring down to 0 Hz (see Table 1), the three accelerometer 
signals (AX, AY and AZ) for the X-, Y-, and Z-directions relate to the inclination angles (θX 
and θY) as approximately [11]

(1a)

(1b)

(1c)

where g is the magnitude of acceleration due to gravity. Thus, Eqs. (1a) and (1b) yield the 
respective inclinations, θY and θX, when the accelerations (aX and aY) are negligible. 
However, the data fusion scheme in Fig. 3(b) may not be applied for the Z-axis, for which no 
‘inclinometer’ exists.
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3.2. Translational motions

Data fusion for estimation of translational error motions is represented in Fig. 4. The 
accelerometer data is integrated twice, low- or band-pass filtered, processed, and summed to 
yield the net translational motions. Similar to the schemes in Fig. 3, the scheme in Fig. 4 
relies upon the matching of spatial cutoff frequencies and the exclusion of significant modal 
excitations.

One main element of the processing utilized for the scheme in Fig. 4 involves accounting for 
corruptive effects due to inclinations as described by Eqs. (1a) and (1b). For the ith 
accelerometer, three signals are collected (Ai,1, Ai,2, and Ai,3) per run, one for each speed. 
Each signal may be represented as

(2)

where fi(x) is the common inclination-related component as a function of position, x, not of 
time, t. Eq. (2) is integrated in time and related to position as Vi,1(x), Vi,2(x), or Vi,3(x). Eq. 
(2) is then applied for two speeds (fast and moderate, or moderate and slow) to isolate the 
acceleration, ai,n(x), due to common geometric error motions, resulting in Eqs. (3a) and (3b).

(3a)

(3b)

Eqs. (3a) and (3b) are used to isolate accelerations for the ‘Fast’ and ‘Moderate’ regimes in 
Fig. 4.

4. Convergence and general results

The data fusion method is not very useful without convergence. Fig. 5 shows the typical 
convergence of an estimated straightness error motion and an estimated angular error motion 
with increasing number of runs for averaging. The errors are labelled per the convention in 
ISO 10791-1 [12]. As seen in Fig. 5, 10 runs is usually sufficient for convergence within 5 
μm or 15 μrad, which means the IMU-based method has the potential to estimate geometric 
motion errors with a test uncertainty ratio (TUR) of at least 4:1 per ISO 10791-1 [12].

In addition to convergence, the estimated error motions should match those of the laser-
based commercial system. Fig. 6 compares the laser-based and IMU-based results; the 
standard deviations of the differences are 11 μm, 2.3 μm, and 13 μrad for the linear 
positioning, straightness, and angular error motions, respectively. Lower-frequency 
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deviations are partly due to thermal drift, since the reference and IMU data were not 
collected simultaneously. Higher-frequency deviations are partially due to the fact that IMU-
based results are averaged for multiple runs, while laser-based results are not; differences 
include non-repeatable error motions.

However, due to the quadratic terms in Eq. (1c), the data fusion method is not robust for 
straightness error motions in the Z-axis direction. The quadratic nonlinearity implies that 
high-frequency angular vibrations cause low-frequency sensor offsets, which cannot be 
eliminated via Eq. (3a). One possible solution is to modify the IMU via rotation of the X- 
and Z-axis accelerometers about the Y-axis (see Fig. 2), such that all accelerometer signals 
depend linearly on angular motions as in Eqs. (1a) and (1b).

5. Experiments

Two experiments were performed to investigate the ability of the IMU-based method to 
resolve low- and high-frequency components of error motions.

In the first experiment outlined in Fig. 7(a), a linear axis rail was deformed with shims to 
simulate low spatial frequency degradations of a machine tool axis. The entire rail was 
raised with shims so that the centre shims could be changed without loosening more than 
one screw (the centre rail screw). The systematic change in centre height to 38 μm is 
evidenced in the change of the angle about the Y-axis, as seen in Fig. 7(b). Low spatial 
frequency changes over 200 μrad dominate the response with insignificant differences in 
high-frequency components among the curves of Fig. 7(b).

In the second experiment outlined in Fig. 8, bearing balls within a truck were degraded to 
simulate high spatial frequency degradations of a machine tool linear axis. Thirty-two balls 
of a truck were degraded via the abrasive removal of material, one ball at a time, resulting in 
defects in the form of flattened rougher surfaces as shown in Fig. 8(a). Case 0 in Fig. 8 is the 
nominal case of Grade 25 chrome steel balls with no defects (nominal diameter = 3.981 
mm). For each subsequent case, one extra defect was created on each ball at a random 
location, and the additional defect was of a greater nominal size. Defects ranged in depth 
from 3 μm to 10 μm. Consequently, differences are dominated by high-frequency terms 
among the curves of Fig. 8(b) once DC shifts (due to loosening/tightening of testbed screws 
between cases) are neglected.

6. Conclusions

Manufacturers need efficient and automated methods for diagnosis of machine tool linear 
axes with minimal disruptions to production. Towards this end, an inertial measurement unit 
and associated data fusion method were developed for machine tool application. The IMU-
based method uses data from both accelerometers and rate gyroscopes to identify changes in 
translational and angular error motions due to axis degradation. Data is fused in the spatial 
frequency domain via filtering in order to include both low- and high-frequency error 
motions while excluding significant modal excitations.
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The IMU-based method was verified and validated via a testbed containing a linear axis and 
a laser-based system for measurement of the geometric axis performance. The IMU-based 
results typically converge within 5 μm or 15 μrad when using 10 runs for averaging, needed 
for the estimation of changes in geometric motion errors with test uncertainty ratios of at 
least 4:1. Several experiments showed that the IMU-based method is capable of resolving 
both low- and high-frequency error motion components. Measurement results are prone to 
variations in system noise, but the method incorporates averaging along with convergence 
testing to accommodate increased noise.

Future application of the IMU-based method on machine tools will require the IMU to be 
mounted on the stacked axes. Possible limitations may include varying sensitivity to wear 
and cross-talk among the stacked axes. Final conformance of the method to a particular 
machine tool will require additional testing to adjust the spatial cutoff frequencies for data 
fusion and overcome these possible limitations.

Because the method is robust for the detection of defects, appropriate diagnostic metrics 
based on this method can be defined to facilitate industrial applications. Such metrics would 
use the IMU-based data to quantify machine tool linear axis degradation, and to inform the 
user of the magnitude and location of wear and any violations of performance tolerances. 
Further tests may show the value of additional metrics for prognostic purposes to estimate 
the remaining useful life of linear axes performance. Finally, if the data collection and 
analysis are integrated within a machine controller, the process may be streamlined for the 
optimization of maintenance, supporting the development of self-diagnosing smart machine 
tools.
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Fig. 1. 
IMU-based method for diagnostics of machine tool performance degradation.
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Fig. 2. 
(a) Linear axis testbed and (b) top view of IMU without its lid.
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Fig. 3. 
Data fusion scheme for angular motions via use of (a) rate gyroscope data or (b) 
accelerometer and rate gyroscope data. Filter cutoff frequencies are shown in parentheses.
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Fig. 4. 
Data fusion scheme for translational motions via use of accelerometer data. Filter cutoff 
frequencies are shown in parentheses.
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Fig. 5. 
Typical convergence of (a) an estimated straightness error motion (via accelerometer data) 
and (b) an estimated angular error motion (via rate gyroscope data) with increasing number 
of runs for averaging.
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Fig. 6. 
Example of converged (a) linear positioning error motion, (b) straightness error motion, and 
(c) angular error motion for various sensing methods.
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Fig. 7. 
(a) Experimental setup to represent low-frequency degradations of a guideway rail, resulting 
in (b) changes in pitch error motion (EBX) observed by IMU (data averaged for 50 runs).
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Fig. 8. 
For high-frequency degradations due to defects of bearing balls, (a) 32 balls of a truck were 
degraded via the abrasive removal of material, resulting in (b) changes in pitch error motion 
(EBX) observed by IMU (data averaged for 50 runs).
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Table 1

Specified properties of sensors used in the IMU.

Sensor Bandwidtha Noise

Accelerometer 0–1800 Hz 4.0 (μm/s2)/√Hz from 0 Hz to 100 Hz

Rate gyroscope 0–200 Hz 35 (μrad/s)/√Hz

a
Frequencies correspond to half-power points, also known as 3 dB points.
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