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ABSTRACT 

For the usual regression model without replications, we provide a 

diagnostic test for heteroscedasticity based on the score statistic. A 

graphical procedure to complement the score test is also presented. 

Key words: Infl~~nce, linear models, residuals, score tests 
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1. INTRODUCTION 

Diagnostic methods in linear regression are used to examine the 

appropriateness of assumptions underlying the modelling process and 

to locate unusual characteristics of the data that may influence 

conclusions. The recent literature on diagnostics is dominated by 

studies of methods for the detection of influential observations (Cook 

and Weisberg, 1982, provide a review). Diagnostics for the relevance 

of specific assumptions, however, have not received the same degree 

of attention, even though these may be of equal importance. Our 

purpose here is to provide appropriate diagnostic techniques to aid 

in an assessment of the validity of the usual assumption of homo­

scedasticity when little or no replication is present. 

Available methods for studying this assumption include both 

graphical -and nongraphical procedures. The usual graphical ·procedure 

consists of plotting the ordinary least squares residuals against 

fitted values or an explanatory variable. A megaphone shaped pattern 

is taken as evidence that the variance depends on the quantity plotted 

on the abscissa (Weisberg, 1980, Chapter 6). In section 3, we suggest 

several ways in which this standard graphical method may be improved, 

particularly in small to moderate sized data sets. 

A number of tests for homoscedasticity have been proposed, some 

based on a specific alternative model for heteroscedasticity (Anscombe, 

1961; Bickel, 1978) and others on plausible, but ad hoc grounds 

(Goldfield and Quant, 1965, Glejser, 1969; Harrison and McCabe, 1979; 

Horn, 1981). Robust tests for homoscedasticity have been proposed by 
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Bickel (1978; see al so Hammerstrom, 1981) and Carroll and Ruppert (1981). While some 

of these tests are appropriate for diagnostic use, others are not. Anscombe I s 

test, for example, requires the calculation of all elements of the 

matrix that projects onto the column space of the explanatory variables, 

which rules out its routine use. Bickel 1 s test, on the other hand, 

depends only on the ordinary residuals, fitted values and the diagonal 

elements of the projection matrix, and is therefore easier to compute 

and suitable for use as a diagnostic method. 

When heteroscedasticity occurs, the variance may often depend on 

the values of one or more of the explanatory variables or on additional 

relevant qu~ntities such as time or spacial ordering. The model used 

by Anscombe and Bickel assumes that variance is a function of expected 

response. In section 2, we develop a model that allows for dependence 

of the variance on an arbitrary set of variables, and thus includes 

the Anscombe-Bickel model as a special case. The tests that we propose 

are based on the score statistic, are easily computed using standard 

regression software and, in the special model considered by Anscombe 

and Bickel, reduce to a form similar to Bickel's test. 

2. TESTS CONCERNING HETEROSCEDASTICITY 

2.1 Models 

The usual linear regression model can be written in the fonn 

v = a
0 
1 + xa + e: (l) 
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where Y is an n-vector of observable responses, X is an n x p 

matrix of known constants, 1 is an n-vector of ones, a is a 

p-vector of unknown parameters, and £ is an n-vector of unobservable 
~ 

random errors. For ·convenience, we assume that the augmented matrix 

x0 = (1 X) has rank p + 1. We consider only models with the intercept 

a0 included, but modification to remove this assumption is straightfor­

ward. 

As a foundation for tests concerning the error variances, we assume 

that & follows a multivariate nonnal distribution with mean O and 

covariance matrix a2W, where W is a diagonal matrix with diagonal 

entries w1, ••• ,wn, with all w1 > 0. We next assume that the wi follow 

the functional fonn 

wi = w(zi, A) i = 1, 2, ••• , n (2) 

so that w. depends on a q -vector z. = (z. -) of known quantities 
., Z 1 lJ 

and a qA-vector of unknown parameters l. We further assume that 

w is a twice differentiable function of A and there is a unique 

value A* of l. such that w(z,A*) = 1 for all · z. Thus tests 

concerning heteroscedasticity are equivalent to tests of the hypothesis 

A= A*. 

For further progress, an explicit fonn for w must be chosen. 

While there are many ways in which this can be done, we will consider 

two specific families given by 

w(z
1
• ,A) = exp (I Li .. ) 

•. J lJ 
J 
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and 

n Aj n 
w { z 

1 
, A) = n z . . = exp { . I AJ. 1 og { z i J. ) } 

j=l lJ J=l 
(4) 

For each family, qz = qA = q. Of course, (4) requires that the zij 

be strictly ·positive, while no such restriction is needed for (3). 

Both (3) and {4) can be imbedded in·a single more general family, 

w (z.,A) = exp I A· z.~ 
( 

q a.) 
1 j~1 J lJ 

(5) 

I~ by convention, we take za = log{z) when a= 0, then (3) corresponds 

to a
1 

= ••• = aq = 1 and (4) corresponds to a
1 

= ••• = aq = 0. 

The class of weight functions (5) requires some modification when 

it is desirable to constrain the variance to depend on the expected 

response~ In this situation, we take wi. to be of the fonn 

where x1 i~ the i-th row of X, and qA = 1. Further, we take A*= O 

so that w is constant for all xi under the null hypothesis. 

For example the special case 

was considered by Anscombe {196i)~ The intercept Bo is not included 

(6) 

(7) 

in (6) or (7) because its inclusion may lead to an overparameterized model. 

In any event, the score test that follows is the same regardless whether 

Bo is included or not. 

2.2 Score tests 

For routine diagnostic work, ft is desirable to have available a test 

of the hypothesis A= A* that can be easily constructed using 

- 4 -



i' 

standard regression software. Methods that are based on the maximum 

likelihood estimator of. A, for example, require special and often 

complicated programs, and are not well suited for this purpose. The 

score statistic (see Cox and Hinkley, 1974, p.324) for the hypothesis 

A = A* furnishes· a suitable diagnostic test. We first describe the 

score test for the weight function given by (2), and later comment on 

the analogous approach when the variance is constrained to be a function 

of the expected response. In other applications, diagnostics based on the score 

have been proposed by Atkinson (1981,1982), Box (1980), and Pregibon (1981). 

Let U be an n-vector with elements e~ / 82 , where 
1 

A T A /\ A /\ 

e1 = (yi - Bo - x1 a) , a2 = te~ / n and Bo and a are maximum 

likelihood estimators of a0 · and B, respectively, under model (1) 

with W = I • Next, define w'(zi,A*) to be the qA-vector with 

j-th element ow(zi,A)/oAj evaluated at. A= A*, and let D be the 

n X q>. ma.trfx With i -th row -[w 1 (Zp>.*)r. Finally• let 

D = D - llTD/n, 

the n x qA matrix obtained from D by subtracting column averages. 

Then the score test statistic S for the hypothesis A= A* when the 

weight function is given by (2) is (as shown in the appendix) 

(8) 

assuming, of course, that 5 is of full rank. Computationally, 

S is one-half of the sum of squares for the regression of U on D in the 
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constructed model 

u = :yo 1 + Dy + £u 

~ 

and thus can be easily obtained using standard regression software. 

z. , 
1 

If (3) is chosen to be the weight function, then w"'(zi,A*) = 

while if (4) is used then w"'(zi,A*) has j-th element log(zij) • 

In practice, it will often be appropriate to choose the variables 

included in zi from the columns of X, and S is then obtained 

from the regression of U on the selected columns for weight function 

(3), or on their elementwise logarithns for weight function (4). 

The nominal asymptotic distribution of S when A= A* is central 

chi-squared with qA degrees of freedom, X~(qA). When qA = 1 , S 

can be written as 

[t {w'(zp>-*) - w'(zi'>.*)Hef/82 
- l} r 

s = 

2 L {W"'(z,. ,A*} - w'(z., A*}} 
2 

' 1 

(9} 

where w"'(zi,A*) = tw"'{zi,A*)/n. To investigate the small sample 

behavior of (9), it is sufficient to conside_r the numerator, since the 

denominator is nonstochastic. Apart from an unimportant constant, the 

signed square root of the numerator can be written as 

YT (I - V) A (I - V) Y 

s• = 

VT {I - V) Y 

T 
e (I - V) A (I - V) e 

= "(lo) 

T 
£ (I - V) e 
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where V = (v1j) = x0(~X0)-l~ and A= diag{w·(~i~l*)}. The inner 

product matrices in the numerator and denominator of (10) commute and 

thus can be simultaneously diagonalized with an orthogonal transfonnation: 

n-p-1 n-p-1 
s• = _L '1) i xf I L xf 

i=l i=l 

where x!,··-,X~-p-lare independent x2 (1) random variables and . 
n

1
, ••• ,nn-p-lare the (at most) n-p-1 nonzero eigenvalues of 

(I - V) A {I - V) • Durbin and Watson {1971) give an account of 

methods for approximating and finding the exact null distribution of 

{11); see also Harrison and McCabe (1979). 

When the variance is constrained to depend on the expected 

response and the weight function is of the fonn wi = w{AxTs), the 

score statistic Sf for the hypothesis . A = 0 is given by {9) with 

w""(~i'A*) ·. replaced by 

ow{A~I~) 

. a·A· A=O 

: TA 
CIC x.e I 1 . 

(11) 

or equivalently by y., the i-th fitted value from model {1) with W = I. 
1 . - ----- - . -· -··. .. . . . . -- ···---

In contrast to the previous development, this test does not depend on the 

particular choice of was long as it is of the form (6). 

The relationship between Sf and Bickel's {1978) Studentized 

version of Anscombe's {1961) test statistic can be seen by writing 

sf in the fonn 
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distributions. The nominal values fran the appropriate chi-squared 

distributions are also given. The results shown are representative of 

other percentage points. 

Table 1 Here 

Generally, use of the chi-squared approximation leads to a 

conservative test. For diagnostic purposes, the-approximation appears 

to be adequate. Bickel's test, however, does not fare as well, as it 

seems to be much too conservative if n/(n-p} is far from 1. Empirically, 

n/(n-p) times Bickel's test is closely approximated by the chi-squared 

percentage points. The correlation between Sf and Bickel's test is 

typically very high: in situation 5, the observed correlation is 0.94. 

3. GRAPHICAL METHODS 

The score tests developed in the previous section are based on the 

often unwarranted assumption that, except for the possibility of hetero­

scedasticity, the usual· normal theory regression model is appropriate. 

Most residual based tests for specific departures from the standard model 

are sensitive to several alternatives. Outliers, for example, will 

affect all residual based tests, including those described here. 

Graphical procedures provide a degree of robustness by helping the 

investigator distinguish between various alternatives, and thus are 

an important part of the diagnosti~ phase of any analysis. 

The graphical version of the score statistic with q
2 

= qA = 1 

given by (9) is simply a plot of ef/a2 versus w~(zi_,A*). When 

the weight function is w(zi,A) = exp_(Azi) and. z; = x1j for some 

some fixed j , this procedure is similar to the usual pr~ctice of 
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plotting ei/8 against the j-th column of X. On the other hand, 

if w(x1j,A) = x~j , the implied plot is of ef/82 versus the log 

transform of elements of the j-th column of X. We have found both 
, 

plots useful in practice. When a weight function of the fonn 

w(AxTa) is used, a graphical version of Sf is ·a plot of 

e~1a2 versus the fitted values, y .. 
1 1 

With smal 1 to moderate sample sizes, the usual plots using e1/a are often 

sparse and difficult to interpret, particularly when the positive and 

negative residuals do not appear to exhibit the same general pattern. 

This difficulty is at least partially removed by plotting e~/a2 

1 

rather than e./8, and.thus visually doubling the sample size. This 
1 

is accomplished without loss of infonnation since, as implied by the 

score tests, the signs of the residuals are unimportant for the study of 

heteroscedasticity. Nonconstant variance will be reflected by a wedge­

shaped pattern in a plot using ef/G2 
•. 

Depending on the structure of V, further improvement of the 

standard graphical methods is possible. It is easily verified that 

E(e) = ~ and 

i = 1, 2, ••• ,n. 

From this fonn we see that, even if W = I, a suggestive pattern may 

is chosen· to be proportional to 

(13) 

be seen if, for example, wi 

(1 - Vii), i = 1, 2, •.• ,n. 

the replacement.of ei. by 

To correct for this possibility, we suggest 

b~:=:e./(1 -v .. )½~ 
1 1 11 
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Clearly 

E(bi) = a
2 [(1 - v11 )wi + ~/\Yil(l - vii)] (14) 

and W = I ~now implies that £(b1} is constant since Vis idempotent. 

Next, suppose we expand w(z
1 

,_;q in 1 inear Taylor series about 

A= A*, 

Substituting (15) into (14} gives the approximate relationship 

(15} 

This last form implies that a plot of bi against the known quantity in 

curly brackets in (16} will have non-zero slope if heteroscedasticity 

is present. Each b~/a2 is di:stributed as a multiple of a x2 (1} 
. 1 

random variable, the multiplier being approximately equal to the right 

side of (16). Thus this plot will be wedge-shaped rather than clustered 

about the line E(b1)/a2
• Finally, since the second term in square 

brackets in (16) requires computation of the vij , a further approximation 

is desirable for routine application. The sumnation on the right side 

ot (16} will be unimportant if all the v1j are small, so that 

the sum is negligible (Cook and Weisberg, 1982, pages 11-14 and 211-13 discuss 

the magnitudes of the vij). If this term is ignored, the suggested abscissa 

!'I ,, 
;,/: 

for the plot is (1 - vii)w'(z;,A*). We have found little difference between 

this latter choice and using the entire term in square brackets in (16). In short we 

suggestplotting b1 = e1/(1-vii),orequivalentlythesquaredStudentizedresiduals 
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r1 = b1/s
2 ~ with s 2 = n82/(n-p-1) , against (1 - vii)w'(z

1
,A*), where 

w'(zi,A*) is zi or log(zi) , for models (3) and (4), respectively. -

If the variance is suspected to be a function of expected response, we 

suggest plotting r
1

2 versus (1 - v
11

)yi. 

4. ILLUSTRATIONS 

4.1 Cherry trees 

Ryan, Joiner and Ryan (1976, p.278) present data on black cherry 

· trees. The data consists of n = 31 cases (trees) with Y = tree volume, 

to be predicted from H = tree height and D = tree diameter. Previous 

analyses (Atkinson, 1982; Cook and Weisberg, 1982, Section 2.4) suggest that the model 

·J/S. . 
v .· = ~o +-.a.

1
H + a

2
o + £ 
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is reasonable. Using this model, we now consider the possibility that 

the variances are nonconstant. 

The us~al plot of ei versus fitted values given in Figure 1 

shows little evidence of heteroscedasticity. The score tests for both 

weight functions (3) and (4? are given in Table 2. The value Sf= 0.87 

agrees with our visual impression of Figure 1. However, the score 

statistics for zi = Hi under both weight functions approaches the .95 point 

of x2 (l) which suggests that the variance may be a function of H. The 

plot of r. 2 

1 
versus (1 - vii)H, given as Figure 2 does display an 

obvious wedge shape, suggesting that variance is increasing with H. 

This example illustrates that the usual practice of looking for hetero­

scedasticity as a function of the expected response is not always sufficient. 

Figures 1,2.and Table 2 go here 

4.2 Gas vapors 

Weisberg (1980, Table 6.7) presents a set of experimental data 

relating V = quantity of hydrocarbons recovered, in grams, to 4 predictors, 

x
1 

= initial tank temperature, °F; x
2 

= temperature of gasoline, °F; 

x
3 

= initial vapor pressure, psi; and x
4 

= vapor pressure of dispensed 

gasoline, psi, for a series of n = 32 fillings of a tank with gasoline. 

The data were collected to study a device for capturing emitted hydrocarbons. 

For our purposes, we study the linear regression model 
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and examine the assumption of homoscedasticity. 

Figure 3 goes here 

The fitted regression has R2 ~ 0.93 a usual, though often 

irrelevant indicator of a good fit. The scatter plot of r. versus 
. 1 

A 
Yi is shown in Figure 3. Although this plot is not entirely satisfactory, 

it is certainly not suggestive of nonconstant variance. We entertained 

the possibility ~hat ~ransformations may improve the model; Atkinson's (1973) 

score test for a transformation of the response in the power family has 

value t 0 = 0.21, so no transfonnation of the response is suggested. 

Methods for transforming the X's (see Cook and Weisberg, 1982, Section 2.4.4) 

indicate only a possible need to transform x
1

; however, since the range 

of values for X is narrow, an appropriate transformation is poorly 

detennineQ. We choose not to transform the explanatory variables. 

Influence analysis (Cook and Weisberg, 1982, Chapter 3) finds no overly 

influential cases. 

We next consider heteroscedasticity. The score tests for weight 

functions (3) and (6) are shown.in Table 3 (results are similar for 

weight function (4) ). The score statistic for (6) is very small. 

The score statistic with Z = (X
1

,x
2
,x

3
,x

4
), however, is large, 

giving definite evidence of heteroscedasticity. Further investigation 

indicates that the variance is a function of both 1 X
1 

and x
4

• 

Graphical support for these conclusions is given fn Figures 4 to 6.· 

Figures 4 a,d5are plots-of ri 2 versus (1 - v,i) times 9 · 
and x1, respectively. The wedge shape is 
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absent in each of these plots (the plot of r~ vs. (1 - v .. )x
4 

is 
1 11 

similar to Figure 5). Figure 6 is a plot of r~ versus 
1 

{l - vii)gi, where the gi = 0.778 + O.llOX1 - l.432X
4 

are the fitted 

values from the regression of ei 2/82 on x
1

,x4; the coefficients of 

x
1 

and x
4 

are quick estimates of the corresponding A's. In this plot, 

the wedge shape is clear and may be informally viewed as the graphical 

counterpart of the score statistic. 

Figures 4 to 6 and Table 3 go here 

At first glance, the finding that. the variance is an increasing 

function of the gi may seem unusual. Geometrically, however, this 

finding is not unreasonable. The score tests suggest that the residual 

variance is monotonic in some direction in the observation space. Usually, 

only certain special directions, such as those determined by the columns 

of X and the fitted values, are considered, but we have no reason to 

limit ours.elves to these directions (see Cook and Weisberg, 1982, Section 

2.3.1, for more discussion). The direction determined by the gi is an 

empirical estimate of the direction in which the variance is increasing. 

5. COMMENTS 

The methods for diagnosing heteroscedasticity proposed here can be 

easily carried out with only minor or no modification of existing 

software· for linear regression. We view the two procedures of computing 

the score test and the graphical method as complementary, and reconunend 

the use of both. The use.of the graphical methods alone can be misleading 

if the density of the plotted points along the x-axis is uneven, since 
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areas of higher density will tend on the average to have a greater spread 

in the y-direction even if heteroscedasticity is not present. The 

score statistic. serves to calibrat~ the plot. Similarly, the score test 

alone can be an inadequate indicator in the presence of outliers or 

influential cases. The graph can confinn the indications from the tes·t. 

Although we have presented our procedure in the context of the 

linear model, it is clear that the method will generalize to other 

regression situations. An analogous score test can be derived for other 

functional fonns or for other error distributions, such as those in 

the family of generalized linear models (Nelder and Wedderburn, 1972). 

Approximate graphical methods similar to the one proposed here can also 

be derived for these models in much the same way that linear model 

influence methods are applied to the larger class {Cook and Weisberg, 

1982, Chapter 5). 

The method described in this paper is designed to aid the analyst 

in finding heteroscedasticity. The problem of what to do when it is 

found is a topic of current research: see, for example, Box and Hill (1974) 

and Jobson and Fuller {1980). 

We are grateful to Christopher Bingham for his useful comnents 

on an earlier draft of this paper. 

- 16 -



APPENDIX 

~Derivation of equation (8) 

.. 

Let L(~,a2 ,A) denote the log likelihood fun~tion for model (1) with 

the weight function given by (2), and let LA(A*la,a2
) be the qA x 1 

score vector with j-th component 

Al so, 1 et 

(
A BT) 

J(a,a2,A) = B C 

be the expected information matrix partitioned so that ~ corresponds to 

second pa~tial derivatives with respect to (~,a2
) and f corresponds to 

the second partial derivatives with respect to elements of A. Denote -
the inverse of this matrix by 

(
A BT-) 

{J(a,a2 ,A)}~l = * * 
- - - B C 

* * 

Then the score statistic for the hypothesis A=A* is 

where a and 82 are the maximum likelihood estimates of a and a2 

· A ··A/\ 
when A=A* and C* = C*{a,a2 ,A*). Thus, to evaluate S we need 

to obtain the 1 og 1 i ke 1-i hood, the score vector, and. e* . 



The log likelihood function is 

l l T -1 
L = - ~- log(2,r)- ~ log(a2

)- 2 log I W I- 202 (~ - X~) W (Y - XB) 

Differentiating with respect to ! _we obtain 

where D and U are defined near (8) and 1 is a n-vector of ones. 

For the submatrices of J(~,~2 ,~*} we obtain 

an~ 

Using the usual relations to calculate the inverse of a partitioned 

matrix, we find 

and thus 

A c-r-)-1 
C* = 2 DD 

S = ~ (U - 1)
1
D(.~r,Df

1o1
{U - 1.} 

= l UTD(D:rDf 101u . 
2 - . 
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TABLE 1 - Simulated percen~age points from the small sample, 
null distribution of the score statistic 

Situation Level Score-10 Score-3 Score-1 sf Bickel 

(1) .90 16.48 5.01 2.54 2.66 1.43 
.95 19.48 6.19 3.01 3.63 1.98 
.975 22.92 7.93 3.36 4.54 2.37 

' (2) .90 14.52 5.04 2.59 2.20 1.42 
.95 17.66 6.43 3.50 3.32 2.04 
.975 19.42 8.31 4.42 4.42 .2.66 

(3) .90 15.20 4.90 2.45 2. 31 2.27 
.95 17. 73 6.16 3.48 3.15 3.24 
.975 20.63 7.51 4.46 3.94 3.76 

(4) .90 15. 11 6.13 2.38 2.23 1.90 
.95 17.97 7 .61 3.36 3.46 2.80 
.975 20.92 9.16 4.28 4.54 3.59 

(5) .90 15.83 5.85 2.63 2.55 2.41 
• 95 19.47 .7.65 3.45 3.77 3.49 
.975 22.40 9.41 4.91 4.70 4.37 

x2 .90 15.99 6.25 2.71 2. 71 2.71 
.95 18. 31 7.82 3.84 3.84 3.84 
.975 20.55 9.36 5.02 5.02 5.02 

Ci 

TABLE 2 ~ Score tests, tree data TABLE 3 - Score tests, gas vapor data 

Weight function z Score df Weight function z Score df 
-

(3) D 0.47 1 (3) x
1 

,x
2

.,x
3 

,X4 _.10. 299 4 

(3) H 3.24 1 (3) x
1

,x
4 9.283 2 

(3) D,H 3.32 2 (3) X1 2.791 1 

(4) D 0.83 1 (3) X4 0.010 1 

(4) (6) " H 3.23 1 y 0.000 1 

(4) D,H 3.23 2 

(6) 
,., 

0.87 1 y 



Legends for Figures 

1. e
1 

versus fitted values, tree data. 

2. r~ v~rsus (1 - v
11

)H, tree data. 

3. r
1 

versus fitted values, gas vapor data. 
2 A 

4. r
1 

versus (1 - v11 )y
1

, gas vapor data. 

2 5. r
1 

versus (1 - v
11

)x
1
, gas vapor data. 

6. ri versus (1 - v11 )g1, where the 9; are the fitted values from 

the regression of e~/~2 on x1 and x4, gas vapor data. 
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