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In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals 

generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals 

of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor 

bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. 

Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest 

Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the 

identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance 

and the number of faulty motors in the industry.  
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1.  INTRODUCTION 

OWADAYS the increased competition in the high 
availability of production motors causes the formation 
of new diagnostic techniques. There are some 

objectives such as: greater competitiveness, safety, cheaper 
production. These objectives are reached when the produced 
motors are kept in shape. The examination can be carried 
out directly after manufacturing, during testing and 
confirmation as a tool for predictive maintenance as well as 
for locating any type of flaws. The non-destructive 
diagnostic methods use physical phenomena as an extension 
of our senses and a prognosis of the integrity of the 
machinery, and are performed without interrupting the 
industrial process [1]. 

Mechanical and magnetic properties of materials are very 
essential in diagnostics [2]-[8]. More durable materials 
mean longer motor life. Nowadays, non-contact 
measurement systems have been applied in the diagnostics 
of electrical machines for the detection, localization and 
assessment of flaws [9]-[10]. 

 

 
 

Fig.1.  Investigated induction motors. 
 

Diagnostics of faulty machines is related to finding flaws 
arising in machines. It is essential for rotating machinery. 
These types of machines are often encountered in mining, 
fuel production, materials processing, and in the electric 
power industry. In diagnostics of faulty machines many 
methods are used for data processing. Some methods are 
concerned with feature extraction. Other methods deal with 
classification of processed data. There are also various types 
of signals used for diagnostics. These signals are the 
following: magnetic signals, acoustic signals, electric 
signals, and thermal signals [11]-[15]. In this paper, the 
research focuses on measurements and recognition of 
acoustic signals of Direct Current motor and induction 
motors (Fig.1.). Technical data of motors are in chapters 3 
and 4. The results of the research can improve the 
diagnostics of electric motors. 
 

2.  THE PROCESS OF ACOUSTIC SIGNAL RECOGNITION OF 

ELECTRIC MOTOR 

The OLYMPUS WS 200S digital voice recorder was used 
for recording all of the acoustic signals of the electric 
motors. Soundtracks were recorded with the following 
parameters: sampling frequency - 44100 Hz, number of 
channels – 1, number of bits - 16. The process of acoustic 
signal recognition of Direct Current motors contained the 
pattern creation process and the identification process 
(Fig.2.). At the beginning of the pattern creation process 
soundtracks were recorded. After that, the data were 
divided. Next, the signals were normalized and filtrated. 
Afterwards, the data were converted using the MUSIC 
method or log area ratio coefficients. In the pattern creation 
process 20 feature vectors were created. Each vector had 1-8 
features. The training step of the Bayes classifier was 
performed soon afterwards. 

The steps of the identification process were similar to the 
steps of the pattern creation process. Some changes were 
made in the classification step. In this step the Bayes 

N 

10.2478/msr-2014-0035 



 

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 5, 2014 
 
 

 258 

classifier computes the posterior probability of sample 
belonging to each class. After that the method classifies the 
test sample according to the higher posterior probability 
[16]. Acoustic signal recognition has also a second classifier 
– Nearest Neighbor classifier. This classifier compares 
feature vectors with each other. 

 

 
 

Fig.2.  The process of acoustic signal recognition of a Direct 
Current motor with the use of MUSIC method and the Bayes 

Classifier. 

 
2.1.  Multiple Signal Classification. 

The MUltiple SIgnal Classification (MUSIC) method 
estimates the pseudospectrum of a signal. It uses Schmidt's 
eigenspace method. This method performs eigenspace 
analysis of the signal's correlation matrix [16]. The MUSIC 
pseudospectrum estimate is defined as follows: 

 

∑
1+=

2

1
=)( N

li

H

music fP

e(f)v i

                     (1) 

 
where vi is the eigenvector with i index, N is the dimension 
of the eigenvectors, l is an integer. The eigenvectors vi are 
used in the sum. Complex exponentials are included in the 
vector e(f). The inner product is expressed by formula (2): 
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H                                (2) 

It amounts to a Fourier transform. This is used in order to 
compute a pseudospectrum estimate. The FFT is computed 
for each vi. Next the squared magnitudes are summed. 
Pseudospectrum estimate is used in the classification step 
(Fig.3.). 

 

 
 

Fig.3.  Comparison of pseudospectra estimates of acoustic signals 
of Direct Current  motor after filtration 223-235 Hz.  

 
2.2.  Linear Predictive Coding. 

Linear Predictive Coding (LPC) is an approximation of 
speech production. LPC can be used to analyze the acoustic 
signals of electrical machines. In this model the throat and 
mouth form a tube. This coding assumes that an acoustic 
signal is generated by the tube. The acoustic signal can be 
also characterized by the frequency and intensity [16], [17]. 
LPC calculates a set of coefficients. Next, these coefficients 
form feature vectors. These vectors are used by Nearest 
Neighbor classifier in the classification step. The 
coefficients can be used to model the shaping filter. The 
model of this filter is defined as: 
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where ak is the prediction coefficient, p is the order of the 
filter. 

 

2.3.  Reflection coefficients. 

The reflection coefficients are obtained from the linear 
prediction coefficients. To obtain these coefficients the 
acoustic signal recognition system uses the LPC to RC 
block. This block is based on backward Levinson recursion. 
The block calculates the N-th reflection coefficient value 
using the formula rcN= -aNN for N-th order LPC vector 
LN=[1, aN1, aN2,…, aNN]. After that it finds the lower order 
LPC vectors, LN-1, LN-2,…, L1 [16], [17]. Next the 
reflection coefficients are obtained [rc1,  rc2,…, rcN]. 

 

2.4.  Log Area Ratio Coefficients. 

The log area ratio coefficients (LAR) are obtained from 
the reflection coefficients. The LAR model can also 
characterize the vocal tract of an acoustic signal of machine. 
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In LAR analysis, the vocal tract of acoustic signal is 
modeled as a non-uniform acoustic tube. This tract is 
comprised of cascading p tubes. Each tube has different 
cross-section areas with the same lengths. The glottis is 
connected to the first tube. The last tube is connected to the 
lips (Fig.4.).  

 

 
 

Fig.4.  The acoustic tubes of sound production model. 

 
In this approach, the length of each tube depends on the 

time difference between two sound samples. The log area 
ratio coefficients are calculated from the cross-section areas 
of the tubes. The number of LAR coefficients depends on 
the number of tubes. It is equal to the number of tubes minus 
1. The following formula is used to calculate reflection 
coefficients: 
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The RC to LAR block converts the reflection coefficients to 
the LAR coefficients [16], [18]. The relationship between 
the LAR coefficients and the RC is: 
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Absolute values of the log area ratio coefficients are used 

in the next calculations (Fig.5.). 

 

 
 

Fig.5. Absolute values of log area ratio coefficients of acoustic 
signals of induction motor (5 coefficients). 

2.5.  The Bayes classifier. 

Many classification and feature extraction methods were 
developed in literature [19]-[40]. In this approach, the Bayes 
classifier is used. This classifier uses the Bayes theorem: 
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where p(cj | d) - probability of instance d being in class cj 
(Posterior probability); p(d | cj) - probability of generating 
instance d given class cj; p(cj)- probability of occurrence of 
class cj; p(d) - probability of instance d occurring. 

A strong point of this classifier is that it uses a few training 
samples to estimate the parameters. The method has two 
steps of classification: 

-Training step: the method estimates the parameters of a 
probability distribution. It uses the training samples. 

-Prediction step: Each sample from a test set is processed. 
The classifier computes the posterior probability of samples. 
After that the method classifies the test sample according to 
the higher posterior probability [16]. 

 

2.6.  Nearest Neighbor Classifier. 

Nearest Neighbor classifier uses training set and 
identification set. The method classifies feature vectors 
based on the nearest training samples. It contains two steps. 
The training step is following: store every training sample 
with its label. The prediction step for a test sample is 
performed as follows: compute its distance to every training 
sample, next, select the nearest training sample [16]-[18]. 
Proposed classifier uses test samples to identify the fault of 
electric motor.  

A pattern is a vector of features s=[s1, s2,…, sn]. Classes of 
the patterns are defined as c1, c2,…, cJ, where J denotes the 
index of the class. Training set has vectors s1, s2,…, sj. 
Identification set has feature vectors k1, k2,…, kj. Manhattan 
distance is used to calculate this distance between vectors. 
For vectors s and k with the same length n it is expressed as 
follows: 
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where k and s are following feature vectors:  

k=[k1, k2,…, kn], s=[s1, s2,…, sn]. 
 

3.  THE RESULTS OF ACOUSTIC SIGNAL RECOGNITION OF 

INDUCTION MOTOR 

Researches were carried out for three induction motors 
with power PN = 500 W. Other parameters were the 
following: nN = 1400 rpm, UN=220/380 V (∆/Y), 
IN=2.52/1.47 A (∆/Y), where nN - rotor speed, Un - nominal 
stator voltage, In - nominal stator current. Acoustic signals 
generated by motors were called as follows: acoustic signal 
of induction motor with two faulty rotor bars (Fig.6.), 
acoustic signal of induction motor with one faulty rotor bar, 
acoustic signal of faultless induction motor. Moreover, 
power supply was 220 V, nN = 1400 rounds per minute.  
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The pattern creation process was conducted using 20 five-
second training samples. In the identification process 60 
five-second test samples were used. Acoustic signal 
recognition efficiency was defined: 

 

 100%   =
NoATS

NoCITS
ASRE                 (8) 

 
where: ASRE – acoustic signal recognition efficiency, 
NoCITS – number of correctly identified test samples, 
NoATS – number of all test samples.  

 

 
 

Fig.6.  Faulty ring of squirrel-cage of induction motor with two 
faulty rotor bars. 

 
Fig.7. presents acoustic signal recognition efficiency 

depending on the number of LAR coefficients.  

 

 
 

Fig.7.  Efficiency of acoustic signal recognition of induction motor 
depending on number of LAR coefficients. 

 
The best results were obtained for 3 and 5 LAR 

coefficients. Acoustic signal recognition efficiency was in 
the range 95-100 %. The results of acoustic signal 
recognition with proposed methods of processing were not 
as good as the results of current recognition showed in the 
literature [12] (Efficiency of current recognition=100 % for 
each state). The approach based on log area ratio 
coefficients and Nearest Neighbor classifier can be 
beneficial for other diagnostic methods of electrical 
machines. 

 
4.  THE RESULTS OF ACOUSTIC SIGNAL RECOGNITION OF 

DIRECT CURRENT MOTOR 

The Direct Current motor had the following operation 
parameters: PN = 13 kW, UN = 75 V, IN  = 200 A, UfN = 220 
V, IfN  =4 A, nN = 700 rpm. Group of three loops of rotor 
coils was shorted with the help of resistance Rbz = 7.7 mΩ. 
It was connected with DC machine as external resistance. 

This resistance was used to avoid damage of rotor windings. 
Acoustic signals were analyzed for a flawless Direct Current 
motor and a Direct Current motor with shorted rotor coils 
(Fig.8.).  

 

 
 

Fig.8.  Scheme of rotor winding of Direct Current motor with 
shorted rotor coils. 

 
Acoustic signals were recorded under laboratory 

conditions. 10 one-second training samples were used in the 
pattern creation process for each type of sound. 70 one-
second test samples were used in the identification process. 
Calculations were conducted for 1-8 features. Following 
ranges of normalized frequency were investigated: [1-1], [1-
172], [1-345], [1-517], [1-689], [1-861], [1-1034], [1-1206], 
[172-172] [rad/sample]. Window size was 256. Very good 
recognition results were obtained. Digital filter passed 
frequencies from 223 Hz to 235 Hz. The range of 
normalized frequency was [1-172] or [172-172]. The 
frequencies 223 Hz to 235 Hz concerned with the rotation of 
the rotor fc=4XnN Hz, where X was a multiple of the 
frequency, nN = 700 rpm. On the basis of literature of 
considered 4-pole Direct Current Motor [41], characteristic 
frequency of current spectrum of shorted rotor coils for 
mentioned parameters was 46.67 Hz (4(700/60)). Author 
investigated multiple frequencies of 46.67 Hz (93.33, 140 
etc.). If X was equal 5, the frequency fc=(4)(5)(700/60) = 
233.33 Hz was contained in the frequency range [223 Hz, 
235 Hz]. The frequency 223 Hz was chosen, because there 
was a possibility of decreasing of the rotor speed. Acoustic 
signal recognition efficiency of a flawless Direct Current 
motor was 100 %. Acoustic signal recognition efficiency of 
a Direct Current motor with shorted rotor coils was 71-80 % 
(Fig.9.). 

Moreover, a second method based on acoustic signal 

recognition was carried out. This method used digital filter, 
which passed frequencies from 223 to 235 Hz, Multiple 
Signal Classification and the Nearest Mean classifier. The 
results of this classifier were better than the results of the 
Bayes classifier. Acoustic signal recognition efficiency of a 
flawless Direct Current motor was 97.05 %. Acoustic signal 
recognition efficiency of a Direct Current motor with 
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shorted rotor coils was 97.0 5%. The approach based on the 
Bayes classifier can be competitive in relation to other 
diagnostic methods. 

 

 
 

Fig.9.  Acoustic signal recognition efficiency depending on the 
range of normalized frequency. 

 
5.  DISCUSSION 

The first problem for the presented method is the number 
and types of faults of the electric motor being considered. 
The results showed that three states of electric motor were 
recognized properly. The second problem is the number of 
motors under test. In this paper, DC motor and three 
induction motors were investigated. Access to industrial 
electric motors requires cooperation with industry and 
engineers. A construction scheme of industrial electric 
motors is also required. Preparations of faults are time-
consuming tasks. The motor load is also one parameter 
which affects recognition success. 

Price is an advantage for the proposed method. 
Microphone and PC cost about $400. All the system needs is 
a large database of patterns.  
 

6.  CONCLUSIONS 

Electric motor technical condition assessment is a very 
complex process. Acoustic signals generated by Direct 
Current motor and induction motors require different signal 
processing methods to be effective in motor diagnostics. The 
system based on pattern recognition was proposed and 
applied to the diagnostics of electric motors. Diagnostic 
methods were used for detecting and locating flaws. The 
results of this acoustic signal recognition were sufficient 
enough. The Bayes classifier had a bit lower efficiency than 
the Nearest Mean classifier for the same training and test 
sets. The experimental results proved that the pattern 
recognition method was effective for condition monitoring 
of electric motors. Further studies on the use of diagnostics 
based on acoustic signals may lead to the development of 
easier and more effective methods of early fault diagnostics 
of electric motors. 
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